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Abstract In the paper we obtain an explicit formula for the intrinsic diameter of
the surface of a rectangular parallelepiped in 3-dimensional Euclidean space. As a
consequence, we prove that an parallelepiped with relation 1 : 1 : √

2 for its edge
lengths has maximal surface area among all rectangular parallelepipeds with given
intrinsic diameter.

Keywords Convex surface · Rectangular parallelepiped · Intrinsic distance ·
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1 Introduction

A convex surface is the boundary of a bounded convex body in the 3-dimensional
Euclidean space E

3. The problem of finding the intrinsic diameter (i.e., the longest
of all shortest paths on the surface between pairs of points) of a given convex surface
is known to be very hard and has been solved only for surfaces of some very spe-
cial kinds. For instance, it is known that the intrinsic diameter of a convex centrally
symmetric surface of revolution is equal to the length of its generators [11]. It should
be noted that the intrinsic diameters for any class of convex surfaces can be used to
estimate extremal values of some natural functionals defined on convex bodies.

Interesting results on computing the intrinsic diameters of general polytopal sur-
faces were obtained in [10] and [1], where one can find also extensive references. The
reader is referred to [4] and references therein for methods for approximate comput-
ing the geodesic diameters. In particular, the authors of [10] presented an algorithm
for computing the intrinsic diameter of a general polytope in E

3. On the other hand,
all known methods for computing the intrinsic diameter are neither easy nor fast,
therefore, one should apply some special ideas in order to express the intrinsic diam-
eter of a given polytopal surface explicitly.
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In this paper we obtain an explicit formula for the intrinsic diameter of the surface
of an arbitrary rectangular parallelepiped in E

3.
Let us consider a rectangular parallelepiped P = ABCDA′B ′C′D′ in E

3 with edge
lengths |AB| = a, |AD| = b, |AA′| = c, 0 < a ≤ b ≤ c (this object is commonly known
as “rectangular box”). The object of our study is the intrinsic distance on the surface
∂P , the boundary of the parallelepiped P . Recall that the intrinsic distance d(M,N)

between points M ∈ ∂P and N ∈ ∂P is the minimal length of polygonal lines, con-
necting the points M and N , in ∂P . Simply speaking, the intrinsic distance is the
length of the shortest path that a spider needs to overcome between two points on the
boundary (walls, a floor and a ceiling) of a room. Many properties of the intrinsic
distance on the parallelepiped’s surface are not obvious. For instance, it is not obvi-
ous what points of the surface are the farthest from a vertex of parallelepiped. For a
cube, the farthest point is the opposite vertex, whereas the opposite vertex is not the
farthest point for a parallelepiped with a : b : c = 1 : 1 : 2. Moreover, in the paper [9]
it is proved that for a parallelepiped with edge lengths 0 < a ≤ b ≤ c, the opposite
vertex is the farthest point (on the parallelepiped’s surface) from a given vertex if and
only if 2c2 − 2bc − ac − ab ≤ 0. Note that the same result was obtained later in [12].
One can find some remarkable results on the set of farthest points on general convex
surfaces in [5, 11, 13, 14].

The intrinsic diameter of a parallelepiped (more precisely, of the surface of a par-
allelepiped) is the maximal intrinsic distance between pairs of points on the surface
of a parallelepiped. We shall denote the intrinsic diameter of the parallelepiped P

by D(P ). Note that the term “the geodesic diameter” is often used instead of “the
intrinsic diameter”.

Let us consider the following sets:

M = {
(a, b, c) ∈ R

3 |0 < a ≤ b ≤ c
}
, (1)

M E = {
(a, b, c) ∈ M |

√
max

{
0, a2 + 2ab − 2bc

} +
√

max
{
0, b2 + 2ab − 2ac

}

≥ 2c − a − b
}
. (2)

The main result of this paper is the following:

Theorem 1 Let D(P ) be the intrinsic diameter of the surface of a rectangular par-
allelepiped P with edge lengths 0 < a ≤ b ≤ c. Then the following are true:

(1) If (a, b, c) ∈ M E , then D(P ) = √
(a + b)2 + c2.

(2) If (a, b, c) ∈ M \ M E and a2b2 ≤ c2(b − a)(a + b + 2c), then

D(P ) =
√

b2 + 3c2 + 2b(a + c) − 2c
√

(b + c)2 − 2a(c − b) − a2.

(3) If (a, b, c) ∈ M \ M E and a2b2 ≥ c2(b − a)(a + b + 2c), then D(P ) = l, where
l is a unique real solution of the equation

√
l2 − (a + c)2 +

√
l2 − (b + c)2 +

√
2l2 − (a + b + c)2 = c (3)

with the property l ≥ max{b + c,
√

(a + b)2 + c2}.
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By using calculations with Gröbner bases, it is easy to deduce that the number l

from Theorem 1 satisfies the following polynomial equation:

l8 − (
2a2 + 4bc + 2b2 + 8c2 + 4ac

)
l6 + (

a4 + 18c4 + 4b3c + 16c2a2 + 2a2b2

+ b4 + 16b2c2 + 24bc3 + 4a3c + 8a2bc + 8ab2c + 24abc2 + 24ac3)l4

− 2c
(
17c3a2 + 12ca3b + 2b4c + 8c5 + 16cb2a2 + 17c3b2 + 8c2a3 + 2a4b

+ 18c4b + 8c2b3 + 2ab4 + 32bc2a2 + 2a2b3 + 18c4a + 40bc3a + 2a4c

+ 2a3b2 + 32b2c2a + 12b3ca
)
l2 + c2(2b2 + c2 + 2bc

)(
2ac + c2 + 2a2)

× (
2a2 + 4ab + 6ac + 2b2 + 6bc + 5c2) = 0.

Obviously, D(P ) = d(M,N) for some points M,N ∈ ∂P . It can be proved that
the points M and N with the property d(M,N) = D(P ) are symmetric each to other
with respect to the center of P (Proposition 1). A detailed information on such points
(for the various cases described in Theorem 1), can be found below (Theorems 4, 5).
From Theorems 4 and 5 we get that N , the number of pairs M,N ∈ ∂P with the
property D(P ) = d(M,N), is finite for any parallelepiped P . Note that the set of
such pairs are invariant under the reflection with respect to the plane defined by the
midpoints of all edges of length α, where α is either a or b. The maximal value of N
is equal to 8 and is attained by parallelepipeds with the following properties: a2b2 >

c2(b − a)(a + b + 2c), l̃ = √
(a + b)2 + c2 and a < c. One of possible examples

is (a, b, c) = (1,1,
√

2). The minimal value of N is equal to 2 and is attained by
parallelepipeds such that a2b2 < c2(b − a)(a + b + 2c) and (a, b, c) �∈ M E (see (2)).

Consider any two (antipodal) points M,N ∈ ∂P with the property D(P ) =
d(M,N). It is interesting to find N (M,N), the number of distinct shortest paths
connected these points.

In the case (1) of Theorem 1 the points M and N are opposite vertexes of P , and
N (M,N) ∈ {2,4,6}. For instance, N (M,N) = 6 for a cube, but N (M,N) = 2 for a
parallelepiped with a �= b �= c (see Fig. 1A).

In the case (2) of Theorem 1 the point M (distinct from a vertex) is determined in
Theorem 5 (see also Lemma 16): (D(P ))2 = g1(τ2) = g3(τ2) (see (10)). The points
M and N are on the plane π defined by the midpoints of all edges of length a. It is

Fig. 1
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easy to see that there are exactly two shortest paths which correspond to g1 (these two
paths are symmetric each to other with respect to the center of P and with respect
to the plane π ) and there are four shortest paths which correspond to g3 (the set of
these paths is invariant under the central symmetry of P and under the reflection with
respect to the plane π ). Therefore, in this case N (M,N) = 6 (see Fig. 1B).

In the case (3) of Theorem 1 the point M (distinct from a vertex) is determined
in Theorem 4 (see also Lemmas 8 and 11): D(P ) = d1(̃x, ỹ) = d2(̃x, ỹ) = d3(̃x, ỹ).
It is easy to see that for any 1 ≤ i ≤ 3 there are two shortest paths which correspond
to di (these two paths are symmetric each to other with respect to the center of P ).
Therefore, in this case we have N (M,N) = 6, too (see Fig. 1C).

It should be noted that these calculations are consistent with the fact pointed out in
[10]: If a pair of points x, y ∈ S realizes the geodesic diameter of S, then either x or y

is a vertex of S, or there are at least five distinct shortest paths between x and y. Here
S is the boundary of any convex polytope. It can be inferred that the convex polytopes
with two points at maximal intrinsic distance connected by exactly 5 shortest paths
form a dense set in the class. From this point of view all rectangular parallelepipeds
are exceptional since they are centrally symmetric.

It would be helpful to present the set of points (a, b, c) ∈ M satisfied by the cases
(1), (2), (3) of Theorem 1, taking c = 1. Let

E := {
(a, b) | (a, b,1) ∈ M E

}
,

F = {
(a, b) | (a, b,1) ∈ M \ M E , a2b2 ≤ (b − a)(a + b + 2)

}
,

G = {
(a, b) | (a, b,1) ∈ M \ M E , a2b2 ≥ (b − a)(a + b + 2)

}
.

Each of these sets is a part of a triangle determined by the inequality 0 ≤ a ≤ b ≤ 1
on a coordinate plane with coordinates (a, b) (see Fig. 2).

Note that Theorem 1 gives a method to look for extremal values of various func-
tionals (see [3]), defined on the set of rectangular parallelepipeds, with restrictions
on the intrinsic diameter. For instance, a natural problem of this kind is to find a
parallelepiped of maximal surface area among all rectangular parallelepipeds with
given intrinsic diameter. If we suppose a = b = 1, then from Theorem 1 we get

that D(P ) = √
c2 + 4 for c ∈ [1,

√
2] and D(P ) = l =

√
3c2 + 2c − 2c

√
c2 − 1

for c ≥ √
2. It is easy to prove that the maximal value of A(P )/(D(P ))2, where

A(P ) = 4 + 2c is the surface area of ∂P , is attained by the point c = √
2 in this

partial case. This observation leads to the assertion of the following theorem.

Theorem 2 Among all rectangular parallelepipeds with given intrinsic diameter the
maximal surface area is attained by a parallelepiped with the relation a : b : c =
1 : 1 : √2 for edge lengths. In other words, for any rectangular parallelepiped P with
edge lengths 0 < a ≤ b ≤ c the following inequality holds:

ab + ac + bc ≤ 1 + 2
√

2

6

(
D(P )

)2

with equality only when a : b : c = 1 : 1 : √2.
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Fig. 2

In particular, Theorem 2 implies that A(P ), the surface area of any parallelepiped
P with unit intrinsic diameter, satisfies the inequality A(P ) ≤ (1 + 2

√
2)/3 ≈

1.276142375. Note that the area of a doubly covered square (a degenerate paral-
lelepiped) with unit diagonal (the intrinsic diameter), is equal to 1. In this context it is
useful to recall a well known conjecture of A.D. Alexandrov [2], that the maximal sur-
face area of a convex surface with intrinsic diameter 1 is equal to π/2 ≈ 1.570796327
and is attained by a doubly covered plane disc. Note also that in [7] it is proved that
the area A(T ) and the geodesic diameter D(T ) of an arbitrary tetrahedron T in E

3

satisfy the inequality A(T )

D(T )2 ≤ 3
√

3
4 ≈ 1.299038106 with equality only when T is a

regular tetrahedron. Some generalizations of this result were obtained in [6].
We hope that the methods used in this article would be helpful for studying geo-

desic diameters of more general convex polytopes. The results of this paper could
be used also for testing applied computer programs, calculating geometrical charac-
teristics of convex polytopes. Note that the iterated calculation of the intrinsic diam-
eter of polytopal surfaces is a very complicated procedure, and the effectiveness of
any method of such calculation can be verified using Theorem 1 (see [1, 4, 10] and
references therein for algorithms for computing the geodesic diameter of a general
polytopal surface).

The paper is organized as follows. In Sect. 2 we give some general results on the
intrinsic distance and the intrinsic diameter of ∂P . In Sect. 3 we describe the set M E .
Sections 4 and 5 are devoted to searching of the intrinsic diameter of ∂P in the cases
a2b2 ≥ c2(b − a)(a + b + 2c) and a2b2 ≤ c2(b − a)(a + b + 2c), respectively. In
Sect. 6 we give the proofs of Theorems 1 and 2.
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2 Preliminaries

We remark that D(P ) can be calculated as the maximum of all intrinsic distances
between pairwise symmetric points on the parallelepiped’s surface. This follows from
the following:

Proposition 1 ([11]) Let F be a convex centrally symmetric surface in E
3, and D(F)

its intrinsic diameter. If M,N ∈ F are such that D(F) is equal to the intrinsic dis-
tance between M and N on F , then the points M and N move from one to the other,
under the central symmetry of the surface F .

Remark 1 In the paper [8] the following generalization of the above result was
obtained. Let us consider an inner metric space (M,ρ) homeomorphic to the 2-
dimensional sphere S2. Let I : M → M be an involute isometry with no fixed point,
and D(M) the intrinsic diameter of (M,ρ). Then there exists an x ∈ M such that
D(M) = ρ(x, I (x)). We do not know, whether this result is fulfilled for inner metric
spaces (M,ρ) homeomorphic to the sphere Sn for n ≥ 3.

An example of inner metric space with involute isometry is a boundary of a cen-
trally symmetric body in E

3. In this case the involute isometry is the restriction of the
central symmetry of the body under consideration.

It is convenient to introduce Cartesian coordinates in the space with the origin at
the point A and with coordinate axes AB , AD, AA′. We shall call two faces of the
parallelepiped P parallel to the plane of the two first coordinates as bases, and all the
other faces as profile faces of P .

The intrinsic distance between two points on the parallelepiped’s surface can be
calculated as the minimal length of polygonal lines that connect these points on ∂P .
For any points M,N ∈ ∂P there exists at least one polygonal line with length equal
to the intrinsic distance between M and N . A polygonal line with this property is
called shortest. It is easy to get the following:

Lemma 1 Let γ be a shortest polygonal line connecting two given points M and
N on the surface ∂P . Then the intersection of γ with any parallelepiped’s face is
connected.

Lemma 1 easily implies the following:

Lemma 2 The intrinsic distance between the points A and C′ (i.e. the intrin-
sic distance between two opposite vertices of P ) satisfies the equality d(A,C′) =√

(a + b)2 + c2.

Proof It is clear that a shortest path between the points A and C′ is a polygonal
line with two segments, each of which is entirely in one of parallelepiped’s faces.
The shortest polygonal line of this kind (recall, that 0 < a ≤ b ≤ c) has length√

(a + b)2 + c2. �
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Fig. 3

Lemma 3 Let M,N ∈ ∂P be such that D(P ) = d(M,N). Then the points M and N

are symmetric to each to other (with respect to the center of the parallelepiped P ),
and one of these points is in the face ABCD.

Proof The fact that the points M and N are symmetric to each to other, follows
from Proposition 1. Suppose that the points M and N are not in the faces ABCD and
A′B ′C′D′. Since they are symmetric to each to other, it is possible to connect them by
a polygonal line on the parallelepiped’s surface with length less than

√
(a + b)2 + c2.

Since d(A,C′) = √
(a + b)2 + c2, this means that d(M,N) < d(A,C′) ≤ D(P ). �

Let us consider two points M,N ∈ ∂P with the property D(P ) = d(M,N). By
using Lemma 3 and obvious symmetries of the parallelepiped P , we may assume that
M has the coordinates (x, y,0) and N has the coordinates (a − x, b − y, c), where
0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2.

By comparing lengths of locally shortest polygonal lines which correspond to var-
ious unfoldings of the parallelepiped’s surface, one can find an explicit expression
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for d(M,N). Let us consider the functions di (1 ≤ i ≤ 5) defined by the following
formulas:

d1(x, y) =
√

(a + c)2 + (b − 2y)2,

d2(x, y) =
√

(b + c)2 + (a − 2x)2,

d3(x, y) =
√

(c + x + y)2 + (a + b − x − y)2,

d4(x, y) =
√

(a + b)2 + (c + 2y)2,

d5(x, y) =
√

(a + b)2 + (c + 2x)2,

(4)

where 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2. Consider the function D : [0, a/2] × [0, b/2] → R

defined by

D(x,y) = min
{
di(x, y) |1 ≤ i ≤ 5

}
. (5)

Proposition 2 Let M = (x, y,0), N = (a − x, b − y, c), 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2.
Then d(M,N) = D(x,y).

Proof Let γ be a shortest polygonal line on the surface of P between the points
M = (x, y,0) and N = (a − x, b − y, c). Consider γ̃ , which is a part of γ situated
on profile faces. It is clear that γ̃ is a (connected) polygonal line consisting of at
most three segments (each of which is entirely in some profile face). Consequently,
γ consists of at most five segments, each of which is in some face of P . Considering
various polygonal lines with this property and calculating their lengths, it is easy
to see that γ is one of the polygonal lines shown on Fig. 3. The lengths of these
polygonal lines are presented by formulas (4). Now the statement of the proposition
follows from the definition of D(x,y) (see (5)). �

Remark 2 It could happen that (for some x and y) one of the polygonal lines in
Fig. 3 does not correspond to a “real” polygonal line passing on the surface of P and
crossing faces as in Fig. 3. But it is easy to see that in this case the value of di(x, y)

which corresponds to this “unreal” unfolding is greater than the length of the shortest
polygonal line. Therefore, consideration of all di(x, y) for 1 ≤ i ≤ 5 in the formula
(5) is justified (for more details see, e.g., Sect. 2.2 in [10]).

From Propositions 1 and 2 we obtain:

Proposition 3 The intrinsic diameter of the parallelepiped P can be calculated by
the formula

D(P ) = max
{
D(x,y) |0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2

}
,

where the function D(x,y) is defined by the equality (5).
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3 Description of the Set ME

According to Lemma 2, the intrinsic distance between two opposite vertexes of the
parallelepiped P is given by

√
(a + b)2 + c2, hence for an arbitrary parallelepiped P

the inequality D(P ) ≥ √
(a + b)2 + c2 is true. From Proposition 2 it is easy to get

the following:

Lemma 4 The condition D(P ) >
√

(a + b)2 + c2 is equivalent to the existence of
x ∈ (0, a/2] and y ∈ (0, b/2] such that di(x, y) >

√
(a + b)2 + c2 for 1 ≤ i ≤ 3,

where the functions di are defined by (4).

From this it follows:

Lemma 5 If b = c, then D(P ) = √
(a + b)2 + c2 = √

(a + b)2 + b2.

Proof Indeed, D(P ) ≥ √
(a + b)2 + c2 = √

(a + b)2 + b2. Let us consider arbitrary
x ∈ [0, a/2] and y ∈ [0, b/2]. It is clear that (see (4))

d1(x, y) =
√

(a + c)2 + (b − 2y)2 =
√

(a + b)2 + (b − 2y)2 ≤
√

(a + b)2 + b2.

Therefore, D(x,y) ≤ √
(a + b)2 + b2. From Proposition 3 we get that D(P ) =√

(a + b)2 + b2. �

Lemma 6 The function h(x, y) = (d3(x, y))2 = (c + x + y)2 + (a + b − x − y)2

is convex and
√

h(0,0) = d3(0,0) = √
(a + b)2 + c2. The inequality d3(x, y) >√

(a + b)2 + c2 holds for any (x, y) ∈ [0, a/2] × [0, b/2] when a + b < c, and it
is equivalent to the inequality x + y > a + b − c when a + b ≥ c.

Proof The first statement of the lemma follows from the convexity of the function
t 
→ (c + t)2 + (a + b − t)2. The second statement of the lemma follows from the
fact that (d3(x, y))2 − ((a + b)2 + c2) = (x + y)(x + y + c − a − b). �

For an arbitrary parallelepiped P with edge lengths 0 < a ≤ b ≤ c we define two
sets:

Ωx = {
x ∈ [0, a/2] | (b + c)2 + (a − 2x)2 ≥ (a + b)2 + c2

}
,

Ωy = {
y ∈ [0, b/2] | (a + c)2 + (b − 2y)2 ≥ (a + b)2 + c2

}
.

(6)

A simple direct calculation implies the following:

Lemma 7 If a2 + 2ab − 2bc ≤ 0, then Ωx = [0, a/2]; if a2 + 2ab − 2bc > 0, then
Ωx = [0, (a − √

a2 + 2ab − 2bc)/2]. If b2 + 2ab − 2ac ≤ 0, then Ωy = [0, b/2]; if
b2 + 2ab − 2ac > 0, then Ωy = [0, (b − √

b2 + 2ab − 2ac)/2].

The main result of this section is the following
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Theorem 3 The equality D(P ) = √
(a + b)2 + c2 is equivalent to the condition

(a, b, c) ∈ M E (see (2)).

Proof We should prove that D(P ) >
√

(a + b)2 + c2 if and only if (a, b, c) ∈ M \
M E (cf. formulas (1) and (2)). It is easy to check that there is no point with the
property b2 + 2ab − 2ac ≤ 0 in the set M E . Note also that the inequality a2 + 4c2 −
2ac − 4bc ≤ 0 is equivalent to the inequality (2c − a − b)2 ≤ b2 + 2ab − 2ac.

Later on we shall use the following representation: M E = M1 ∪ M2, where

M1 = {
(a, b, c) ∈ M, |b2 +2ab > 2ac, a2 +2ab ≤ 2bc, a2 +4c2 −2ac−4bc ≤ 0

}
,

M2 = {
(a, b, c) ∈ M, |a2 + 2ab > 2bc,

√
a2 + 2ab − 2bc +

√
b2 + 2ab − 2ac

≥ 2c − a − b
}
.

It is clear that M1 ∩ M2 = ∅.
Using the statement of Lemma 5, we assume that b > c (all points (a, b, c) ∈ M

with relation b = c are in the set M E , as it is easy to see). According to Lemma 4,
we should clarify when there exist x ∈ (0, a/2] and y ∈ (0, b/2] such that di(x, y) >√

(a + b)2 + c2 for 1 ≤ i ≤ 3.
Let us consider successively the following three cases: (1) b2 + 2ab − 2ac ≤ 0,

(2) b2 + 2ab − 2ac > 0; a2 + 2ab − 2bc ≤ 0, (3) a2 + 2ab − 2bc > 0.
Case 1. In this case Ωx = [0, a/2] and Ωy = [0, b/2]. Moreover, for any x < a/2

and y < b/2, we have d1(x, y) >
√

(a + b)2 + c2 and d2(x, y) >
√

(a + b)2 + c2.
Note now that d3(a/2, b/2) >

√
(a + b)2 + c2, since a/2 + b/2 > a + b − c (see

Lemma 6). Therefore, (using the continuity) for some x < a/2 and y < b/2 we get
di(x, y) >

√
(a + b)2 + c2 for 1 ≤ i ≤ 3. Consequently, D(P ) >

√
(a + b)2 + c2 in

this case.
Case 2. In this case Ωx = [0, a/2] and Ωy = [0, (b − √

b2 + 2ab − 2ac)/2],
moreover, 0 < (b − √

b2 + 2ab − 2ac)/2 < b/2 (since c > b). Let us consider
the point (̃x, ỹ) = (a/2, (b − √

b2 + 2ab − 2ac)/2). It is clear that if x < x̃ and
y < ỹ, then d1(x, y) >

√
(a + b)2 + c2 and d2(x, y) >

√
(a + b)2 + c2. Hence,

the existence of a point (x, y) ∈ (0, a/2] × (0, b/2], which has the property
di(x, y) >

√
(a + b)2 + c2 for 1 ≤ i ≤ 3, is equivalent to the condition d3(̃x, ỹ) >√

(a + b)2 + c2 (see Lemma 6). The latter inequality is equivalent to the inequality
a2 +4c2 −2ac−4bc > 0 (and also to the inequality (2c−a−b)2 > b2 +2ab−2ac).
Therefore, D(P ) >

√
(a + b)2 + c2 if and only if a2 + 4c2 − 2ac − 4bc > 0 in this

case.
Case 3. It is clear that in this case Ωx = [0, (a − √

a2 + 2ab − 2bc)/2] and Ωy =
[0, (b − √

b2 + 2ab − 2ac)/2]; moreover, 0 < (a − √
a2 + 2ab − 2bc)/2 < a/2 and

0 < (b − √
b2 + 2ab − 2ac)/2 < b/2 (since c > b ≥ a). Let us consider the point

(̃x, ỹ) = ((
a −

√
a2 + 2ab − 2bc

)
/2,

(
b −

√
b2 + 2ab − 2ac

)
/2

)
.

If x < x̃ and y < ỹ, then d1(x, y) >
√

(a + b)2 + c2 and d2(x, y) >
√

(a + b)2 + c2.
Hence, the existence of a point (x, y) ∈ (0, a/2] × (0, b/2] with the condition
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Fig. 4

di(x, y) >
√

(a + b)2 + c2 for 1 ≤ i ≤ 3, is equivalent to the condition d3(̃x, ỹ) >√
(a + b)2 + c2 (see Lemma 6). The latter inequality is equivalent to the following

one:
√

a2 + 2ab − 2bc +
√

b2 + 2ab − 2ac < 2c − a − b.

Therefore, D(P ) >
√

(a + b)2 + c2 if and only if
√

a2 + 2ab − 2bc +√
b2 + 2ab − 2ac < 2c − a − b in this case.
Consequently, we have proved that D(P ) >

√
(a + b)2 + c2 if and only if

(a, b, c) ∈ M \ M E (see (1) and (2)). The theorem is completely proved. �

4 The Case a2b2 ≥ c2(b − a)(a + b + 2c)

The key idea lies in the following:

Lemma 8 If a2b2 ≥ (<)c2(b − a)(a + b + 2c), then there exists a unique point
(respectively, there is no point) (̃x, ỹ) ∈ [0, a/2] × [0, b/2] such that d1(̃x, ỹ) =
d2(̃x, ỹ) = d3(̃x, ỹ).

Proof Consider functions q1, q2 : [0, a/2] × [0, b/2] → R defined as follows:
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q1(x, y) = 1

8

(
2
(
d3(x, y)

)2 − (
d1(x, y)

)2 − (
d2(x, y)

)2)

=
(

x + c − a

2

)(
y + c − b

2

)
− c2 − ab

4
,

(7)

q2(x, y) = 1

4

((
d1(x, y)

)2 − (
d2(x, y)

)2)

=
(

y − b

2

)2

−
(

x − a

2

)2

− (b − a)(a + b + 2c)

4
.

Obviously, the condition d1(̃x, ỹ) = d2(̃x, ỹ) = d3(̃x, ỹ) is equivalent to the equality
q1(̃x, ỹ) = q2(̃x, ỹ) = 0. It is clear that the curves q1(x, y) = 0 and q2(x, y) = 0 are
hyperbolas (the first (respectively, the second) curve is a pair of straight lines for
c = b = a (respectively, for b = a)). The first (the second) hyperbola has the center
((a−c)/2, (b−c)/2) (respectively, (a/2, b/2)). Let us describe intersections of these
curves with the set Ω = [0, a/2] × [0, b/2]. Set

L1 = {
(x, y) ∈ Ω | q1(x, y) = 0

}
, L2 = {

(x, y) ∈ Ω | q2(x, y) = 0
}
. (8)

In Fig. 4 the curves L1 and L2 are depicted for (a, b, c) = (14,16,18). Note that
for c = b = a the curve L1 is a union of two segments: with endpoints at the points
(0, b/2) and (0,0), and also with endpoints at the points (0,0) and (a/2,0). If c >

a, then L1 is the graph of the decreasing function f (x) = (c2 − ab)/(2(2x + c −
a))− (c − b)/2 on the interval [ a(c−b)

2c
, a

2 ]. Note also that f (
a(c−b)

2c
) = b

2 and f (a
2 ) =

b
2 (1 − a

c
) = b(c−a)

2c
.

It is easy to see that for b = a the curve L2 is an intersection of the straight line
y = x + (b − a)/2 with the set Ω . If b > a, then L2 is either the empty set or it is a
graph of the increasing function

f̃ (x) = b

2
−

√(
x − a

2

)2

+ (b − a)(a + b + 2c)

4
.

Note, that f̃ ( a
2 ) = b−√

(b−a)(a+b+2c)
2 .

It is clear, that there exists a point (̃x, ỹ) ∈ Ω with the property q1(̃x, ỹ) =
q2(̃x, ỹ) = 0 if and only if f̃ ( a

2 ) ≥ f (a
2 ); moreover, it is obvious that such a point

is unique. Now it suffices to note that the latter inequality is equivalent to the inequal-
ity a2b2 ≥ c2(b − a)(a + b + 2c). �

Later on, in the case a2b2 ≥ c2(b − a)(a + b + 2c), we shall denote by (̃x, ỹ) the
unique point in Ω = [0, a/2] × [0, b/2] from the statement of Lemma 8. Moreover,
we shall use the notation

l := d1(̃x, ỹ) = d2(̃x, ỹ) = d3(̃x, ỹ). (9)

Remark 3 It follows from (7) that x̃ = a/2 is equivalent to a2b2 = c2(b − a)(a + b +
2c). Moreover, in this case we get (̃x, ỹ) = (a/2, τ2) = (a/2,

b(c−a)
2c

) (see Theorems 4
and 5). Lemma 10 implies that (̃x, ỹ) = (0,0) if and only if a = b = c.
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Lemma 9 Suppose that the inequality a2b2 ≥ c2(b − a)(a + b + 2c) holds. Then:

(1) a2(b2 + c2) ≥ b2c2,
(2) a(a + b + c) > bc,

(3) a(a+b+c)−bc
a+c

≥
√

a2b2−c2(b−a)(a+b+2c)

c
.

Proof The first inequality is proved by the following computation:

a2b2 ≥ c2(b − a)(a + b + 2c) ≥ c2(b − a)(a + b) = c2(b2 − a2).

Using Inequality (1), we get

a + b + c > b + c >
√

b2 + c2 ≥ bc/a,

which proves (2). In force of Inequality (2), Inequality (3) is equivalent to the follow-
ing:

(
a(a + b + c) − bc

)2
c2 ≥ (a + c)2(a2b2 − c2(b − a)(a + b + 2c)

)
.

The latter inequality is proved by the following chain of pairwise equivalent inequal-
ities:

a2(a + b)2c2 + (a − b)c3(c(a − b) + 2a(a + b)
)

≥ (a + c)2a2b2 − c2(b − a)(a + c)2(a + b + 2c),

a2((a + b)2c2 − (a + c)2b2) + c2(b − a)
((

a2 + 2ac + c2)(a + b + 2c)

− c
(
2a2 + 2ab + ac − bc

)) ≥ 0,

a2(a2(c2 −b2)+2abc(c−b)
)+c2(b−a)

(
a3 +a2b+2bc2 +2a2c+4ac2 +2c3) ≥ 0,

where the latter one is obvious. �

Lemma 10 Let a2b2 ≥ c2(b − a)(a + b + 2c) and let (̃x, ỹ) be the point in Ω =
[0, a/2] × [0, b/2] as in Lemma 8. Then

x̃ ≥ b(c − a)

2(c + a)
, ỹ ≥ b(c − a)

2c
≥ a(c − b)

2(c + b)
.

Proof In the case c = b = a all are clear. Later on we shall assume that c > a. Recall
(see the proof of Lemma 8), that (̃x, ỹ) is the point of intersection of the curves L1

and L2. Since L1 is a graph of the decreasing function f (x) = (c2 − ab)/(2(2x +
c − a)) − (c − b)/2 on the interval [ a(c−b)

2c
, a

2 ], then ỹ = f (̃x) ≥ f (a
2 ) = b(c−a)

2c
.

Note also that the inequality b(c−a)
2c

≥ a(c−b)
2(c+b)

is equivalent to the (obvious) inequality

(b − a)c2 + b2(c − a) ≥ 0.
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Now we should prove that x̃ ≥ b(c−a)
2(c+a)

. Since the point (̃x, ỹ) is on the curve L2,
then

(
a

2
− x̃

)2

=
(

b

2
− ỹ

)2

− (b − a)(a + b + 2c)

4
.

As we have shown above, ỹ ≥ b(c−a)
2c

; therefore, ( b
2 − ỹ)2 ≤ a2b2

4c2 . Furthermore,

(
a

2
− x̃

)2

≤ a2b2

4c2
− (b − a)(a + b + 2c)

4
= a2b2 − c2(b − a)(a + b + 2c)

4c2
.

Consequently,

x̃ ≥ a

2
−

√
a2b2 − c2(b − a)(a + b + 2c)

2c
.

Then it suffices to show that a
2 −

√
a2b2−c2(b−a)(a+b+2c)

2c
≥ b(c−a)

2(c+a)
. But, as it is easy

to see that the latter inequality is equivalent to Inequality (3) of Lemma 9, and the
lemma has been proved. �

Lemma 11 Let a2b2 ≥ c2(b − a)(a + b + 2c) and let (̃x, ỹ) be the point in Ω =
[0, a/2] × [0, b/2] as in Lemma 8. Then (see (5))

D(̃x, ỹ) = l = d1(̃x, ỹ) = d2(̃x, ỹ) = d3(̃x, ỹ).

Proof By definition of the function D (see (5)) it suffices to show that d4(̃x, ỹ) ≥ l

and d5(̃x, ỹ) ≥ l (see (4)). It is easy to verify that

(
d2(x, y)

)2 − (
d5(x, y)

)2 = −4(a + c)

(
x − b(c − a)

2(c + a)

)
.

By Lemma 10 it follows that x̃ ≥ b(c−a)
2(c+a)

, hence l = d2(̃x, ỹ) ≤ d5(̃x, ỹ).
Analogously,

(
d1(x, y)

)2 − (
d4(x, y)

)2 = −4(b + c)

(
y − a(c − b)

2(c + b)

)
.

By Lemma 10 it follows that ỹ ≥ a(c−b)
2(c+b)

, hence l = d1(̃x, ỹ) ≤ d4(̃x, ỹ). �

Now we can state the main result of this section.

Theorem 4 If a2b2 ≥ c2(b − a)(a + b + 2c), then the intrinsic diameter of the par-
allelepiped P can be calculated by the formula

D(P ) = max
{√

(a + b)2 + c2, l
}
,

where l is defined by (9). Moreover, if
√

(a + b)2 + c2 > l (respectively, < l), then
D(P ) = D(x,y) if and only if (x, y) = (0,0) (respectively, (x, y) = (̃x, ỹ)). If√

(a + b)2 + c2 = l, then D(P ) = D(x,y) if and only if (x, y) ∈ {(0,0), (̃x, ỹ)}.
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Proof According to Lemmas 2 and 11 the following equalities are true (see (5)):

D(0,0) =
√

(a + b)2 + c2, D(̃x, ỹ) = l.

According to Proposition 3, it follows that

D(P ) = max
{
D(x,y) | 0 ≤ x ≤ a/2, 0 ≤ y ≤ b/2

}
,

therefore, it suffices to show that for any point (x, y) ∈ Ω = [0, a/2] × [0, b/2], dif-
ferent from (0,0) and (̃x, ỹ), the inequality D(x,y) < max{√(a + b)2 + c2, l} is
true. In other words, we should prove that for such a point (x, y) there is 1 ≤ i ≤ 5
such that di(x, y) < max{√(a + b)2 + c2, l} (see (4)).

Let us consider an arbitrary point (x, y) ∈ Ω , different from (0,0) and (̃x, ỹ).
There are 3 cases: (1) x > x̃, (2) y > ỹ, (3) 0 < x + y < x̃ + ỹ. We consider these
cases successively.

In the first case

l = d2(̃x, ỹ) =
√

(b + c)2 + (a − 2x̃)2 >
√

(b + c)2 + (a − 2x)2 = d2(x, y),

i.e. d2(x, y) < l.
In the second case

l = d1(̃x, ỹ) =
√

(a + c)2 + (b − 2ỹ)2 >

√
(a + c)2 + (b − 2y)2 = d1(x, y),

i.e. d1(x, y) < l.
Consider now the third case. The function h(t) = 2t2 +2(c−a −b)t + (a +b)2 +

c2 is strictly convex. Therefore,

max
0≤t≤x̃+ỹ

h(t) = max
{
h(0), h(̃x + ỹ)

} = max
{
(a + b)2 + c2, l2},

since h(̃x + ỹ) = (d3(̃x, ỹ))2 = l2. Consequently,
(
d3(x, y)

)2 = h(x + y) < max
0≤t≤x̃+ỹ

h(t) = max
{
(a + b)2 + c2, l2}

in this case, i.e. d3(x, y) < max{√(a + b)2 + c2, l}. The theorem is proved. �

Lemma 12 Let a2b2 ≥ c2(b − a)(a + b + 2c) and l ≥ √
(a + b)2 + c2, where l is

defined by (9). Then l is the unique solution of the equation

√
l2 − (a + c)2 +

√
l2 − (b + c)2 +

√
2l2 − (a + b + c)2 = c

under the condition l ≥ max{b + c,
√

(a + b)2 + c2}.

Proof The inequality l ≥ b + c ≥ a + c is obvious (d2(̃x, ỹ) ≥ b + c). If in addition
l ≥ √

(a + b)2 + c2, then

2l2 ≥ (
b2 + 2bc + c2) + (

a2 + 2ab + b2 + c2) = a2 + b2 + c2 + 2ab + 2ac + 2bc

= (a + b + c)2.
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The number l (see (4) and (9)) satisfies the equations

l = d1(̃x, ỹ), l = d2(̃x, ỹ),

from which we get

x̃ = a − √
l2 − (b + c)2

2
, ỹ = b − √

l2 − (a + c)2

2
.

Now, substituting the obtained expressions into the equality l2 = (d3(̃x, ỹ))2, after
some simple calculations we get

√
l2 − (a + c)2 +

√
l2 − (b + c)2 +

√
2l2 − (a + b + c)2 = c.

Since the function t 
→ √
t2 − (a + c)2 + √

t2 − (b + c)2 + √
2t2 − (a + b + c)2 in-

creases on the interval [max{b + c,
√

(a + b)2 + c2},∞), then such a number l is
unique. �

5 The Case a2b2 ≤ c2(b − a)(a + b + 2c)

In this case we should study in detail the points (x, y) = (a/2, t), where 0 ≤ t ≤
a/2 (≤ b/2). Put

g1(t) = (
d1(a/2, t)

)2 = (a + c)2 + (b − 2t)2,

g2(t) = (
d2(a/2, t)

)2 = (b + c)2,

g3(t) = (
d3(a/2, t)

)2 = 2t2 + 2(c − b)t + (b + a/2)2 + (c + a/2)2,

g4(t) = (
d4(a/2, t)

)2 = (a + b)2 + (c + 2t)2,

g5(t) = (
d5(a/2, t)

)2 = (a + b)2 + (a + c)2.

(10)

The following lemma is obvious.

Lemma 13 For any t ∈ [0, a/2] the inequality g5(t) ≥ g4(t) is true.

By direct calculations we get

Lemma 14 The function g1 is decreasing, but the functions g3 and g4 are increasing
on the interval [0, a/2]. Moreover, the following inequalities are true:

g1(0) > g3(0), g1(a/2) < g3(a/2), g1(0) ≥ g4(0), g1(a/2) < g4(a/2).

Lemma 15 Let τ1 = a(c−b)
2(c+b)

. Then g1(t) > g4(t) (respectively, g1(t) < g4(t)) for t ∈
[0, τ1) (respectively, t ∈ (τ1, a/2]). Moreover,
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g1(τ1) = g4(τ1) = (
b2 + c2)

(
1 + 2a

b + c
+ 2a2

(b + c)2

)

>
(
b2 + c2)

(
1 + a

b + c

)2

= g3(τ1).

Proof The point τ1 is the unique point t ∈ [0, a/2] with the property (see Lemma 14)
g1(t) = g4(t). All other relations are proved by direct calculations. �

Later on we shall need the following values:

τ2 = b + c − √
(b + c)2 − 2a(c − b) − a2

2
, (11)

l̃ =
√

b2 + 3c2 + 2b(a + c) − 2c
√

(b + c)2 − 2a(c − b) − a2. (12)

Lemma 16 For the values (11) and (12) the following are true: τ2 ∈ (τ1, a/2),
g1(τ2) = g3(τ2) = l̃ 2, g1(t) > g3(t) (respectively, g1(t) < g3(t)) for t ∈ [0, τ2) (re-
spectively, t ∈ (τ2, a/2]), g5(τ2) ≥ g4(τ2) > l̃ 2. If in addition a2b2 ≤ c2(b − a)(a +
b + 2c), then g2(τ2) = (b + c)2 ≥ l̃ 2 and D(a/2, τ2) = l̃.

Proof By Lemma 14 there exists a number η ∈ (0, a/2) such that g1(η) = g3(η) and
g1(t) > (<)g3(t) for t ∈ [0, η) (respectively, t ∈ (η, a/2]). Direct computations show
that η = τ2. The equality g1(τ2) = g3(τ2) = l̃ 2 is verified directly.

According to Lemma 15 g1(τ1) > g3(τ1), hence τ2 > τ1. Further, g4(τ2) >

g4(τ1) = g1(τ1) > g1(τ2) = l̃, since g4 increases, but g1 decreases. By Lemma 13
g5(τ2) ≥ g4(τ2) > l̃.

Finally, note that the inequality g2(τ2) = (b + c)2 ≥ l̃ 2 is equivalent to the in-
equality a2b2 ≤ c2(b − a)(a + b + 2c).

The above reasoning shows that for a2b2 ≤ c2(b − a)(a + b + 2c) the equality
D(a/2, τ2) = l̃ holds. The lemma is proved. �

Now we state the main result of this section.

Theorem 5 If a2b2 ≤ c2(b − a)(a + b + 2c), then D(P ) = max{√(a + b)2 + c2, l̃},
where l̃ is defined by the equality (12). Moreover, if

√
(a + b)2 + c2 > l̃ (respectively,√

(a + b)2 + c2 < l̃), then D(P ) = D(x,y) if and only if (x, y) = (0,0) (respectively,
(x, y) = (a/2, τ2), where τ2 is defined by (11)). If

√
(a + b)2 + c2 = l̃, then D(P ) =

D(x,y) if and only if (x, y) ∈ {(0,0), (a/2, τ2)}.

Proof According to Lemmas 2 and 16 the following equalities (see (5)) hold:

D(0,0) =
√

(a + b)2 + c2, D(a/2, τ2) = l̃.

Note that the function

h(t) = (c + t)2 + (a + b − t)2 = 2t2 + 2(c − a − b)t + (a + b)2 + c2
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is strictly convex on the interval [0, a/2 + τ2]. Besides this, h(0) = (a + b)2 + c2

and h(a/2 + τ2) = g3(τ2) = l̃ 2. Consequently, h(t) < max{(a + b)2 + c2, l̃ 2} for
t ∈ (0, a/2 + τ2).

Let us now consider an arbitrary point (x, y) ∈ Ω = [0, a/2] × [0, b/2], different
from (0,0) and (a/2, τ2). If y > τ2, then

D(x,y) ≤ d1(x, y) =
√

(a + c)2 + (b − 2y)2 <
√

(a + c)2 + (b − 2τ2)2

= √
g1(τ2) = l̃.

If y ≤ τ2, then 0 < x + y < a/2 + τ2, and

D(x,y) ≤ d3(x, y) = √
h(x + y) < max

{√
(a + b)2 + c2, l̃

}
,

and the theorem is proved. �

6 Proofs of the Main Theorems

Note that the proof of Theorem 1 follows directly from Theorems 3, 4, 5, and from
Lemma 12.

In order to prove Theorem 2 we need some auxiliary results.

Lemma 17 If 0 ≤ a ≤ b ≤ 0.77c and c �= 0, then

ab + ac + bc <
1 + 2

√
2

6

(
b2 + 3c2 + 2b(a + c) − 2c

√
(b + c)2 − 2a(c − b) − a2

)
.

Proof Using the homogeneity, we may assume that c = 1. Therefore, we should show
that for 0 ≤ a ≤ b ≤ 0.77 the inequality

3 + b2 + 2ab + 2b − 2
√

1 + b2 + 2ab + 2b − 2a − a2 >
6

1 + 2
√

2
(ab + a + b)

holds. Solving the equation 3 + b2 + 2ab + 2b − 2
√

1 + b2 + 2ab + 2b − 2a − a2 =
6

1+2
√

2
(ab + a + b) for a, we get that

a = F1(b) − 7
√

F2(b)

F3(b)
or a = F1(b) + 7

√
F2(b)

F3(b)
,

where

F1(b) = (
70 − 42

√
2
)
b3 + (

365 − 282
√

2
)
b2 + (

316 − 282
√

2
)
b + 161 − 126

√
2,

F2(b) = (
359 − 312

√
2
)
b4 + (

732 − 456
√

2
)
b3 + (

1858 − 1392
√

2
)
b2

+ (
2028 − 1032

√
2
)
b + 527 − 648

√
2,
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F3(b) = (
240

√
2 − 344

)
b2 + (

312
√

2 − 408
)
b + 72

√
2 − 260.

In order to get real solutions, the inequality F2(b) ≥ 0 must hold. The polynomial
F2(b) has exactly two real roots: r1 = 0.7858653434 . . . and r2 = 1.698023859 . . . .
Since (359 − 312

√
2) < 0, then F2(b) < 0 for b ≤ 0.77 < r1. Consequently, for 0 ≤

a ≤ b ≤ 0.77 the expression 3+b2 +2ab+2b−2
√

1 + b2 + 2ab + 2b − 2a − a2 −
6

1+2
√

2
(ab + a + b) does not change the sign. Substituting the point (a, b) = (0,0),

we conclude that it is positive for 0 ≤ a ≤ b ≤ 0.77. The lemma is proved. �

Lemma 18 If a +b ≤ √
2c and a2b2 ≥ c2(b−a)(a +b+2c), then a2 +4c2 −2ac−

4bc > 0 for any 0 < a ≤ b ≤ c.

Proof It suffices to consider the case c = 1. The conditions of the lemma can be
rewritten as follows: b ≤ h1(a) and b ≤ h2(a), where

h1(a) = √
2 − a, h2(a) =

√
1 + 2a + a2 − 2a3 − a4 − 1

1 − a2
.

The function h1 decreases. It is easy to verify that the function h2 increases on the
interval [0,1]. The graphs of these two functions intersect each other at the point

(a1, b1) = (0.6706890957 . . . ,0.7435244663 . . . )

(more precisely, a1 is a root of the equation t4 − 2
√

2t3 + 2t2 + (4 + 2
√

2)t − 2
√

2 −
2 = 0). Therefore, for any point (a, b,1) satisfying the conditions of the lemma, the
inequality b < 0.745 holds.

On the other hand, the condition a2 +4−2a −4b ≤ 0 is equivalent to the inequal-
ity h3(a) ≥ 0, where h3(a) = (a − 1)2/4 + 3/4. Obviously, h3(a) ≥ h3(1) = 3/4 =
0.75 for any a ∈ R.

Therefore, for any point (a, b,1) satisfying the conditions of the lemma, the in-
equality a2 + 4 − 2a − 4b > 0 holds. �

Lemma 19 If a + b ≤ √
2c, a2b2 ≥ c2(b − a)(a + b + 2c) and (a, b, c) ∈ M E

(see (2)), then a : b : c = 1 : 1 : √
2. In particular, the intrinsic diameter of the

parallelepiped P with edge lengths 0 < a ≤ b ≤ c satisfying a + b ≤ √
2c and

a2b2 ≥ c2(b − a)(a + b + 2c) is equal to l from the statement of Theorem 1.

Proof Since (a, b, c) ∈ M E , the inequality

√
max

{
0, a2 + 2ab − 2bc

} +
√

max
{
0, b2 + 2ab − 2ac

} ≥ 2c − a − b

holds. Since
√

α + √
β ≤ √

2(α + β) for any α,β ≥ 0 (here the equality holds if and
only if α = β), then

(2c − a − b)2 ≤ 2
(
max

{
0, a2 + 2ab − 2bc

} + max
{
0, b2 + 2ab − 2ac

})
.

From this we deduce that b2 + 2ab − 2ac > 0. Now we consider two cases: (1) a2 +
2ab − 2bc < 0 and (2) a2 + 2ab − 2bc ≥ 0.
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In the first case, by Lemma 18 we get that a2 + 4c2 − 2ac − 4bc > 0, but the latter
contradicts to the inequality (2c − a − b)2 ≤ b2 + 2ab − 2ac. Therefore, (a, b, c) �∈
M E .

In the second case we get that

3(a + b)2 − 4(a + b)c ≥ 2
((

a2 + 2ab − 2bc
) + (

b2 + 2ab − 2ac
)) ≥ (2c − a − b)2.

Put t = (a + b)/c. According to the conditions of the lemma, t ∈ [0,
√

2]. It fol-
lows from the latter inequality that 3t2 − 4t ≥ (2 − t)2, i.e. t ≥ √

2. Consequently,
(a, b, c) ∈ M E if and only if a : b : c = 1 : 1 : √2.

The second statement of the lemma follows directly from the first one and from
Theorem 1. �

Lemma 20 Suppose that a + b ≤ √
2c, a2b2 ≥ c2(b − a)(a + b + 2c), and a number

l satisfies the condition (see (3))
√

l2 − (a + c)2 +
√

l2 − (b + c)2 +
√

2l2 − (a + b + c)2 = c.

Then the inequality

ab + ac + bc ≤ 1 + 2
√

2

6
l2

holds with equality only when a : b : c = 1 : 1 : √2.

Proof Since for any α,β ≥ 0 we have that
√

a + √
b ≤ √

2(α + β), then
√

l2 − (a + c)2 +
√

l2 − (b + c)2

≤
√

4l2 − 2
(
a2 + b2 + c2 + 2ac + 2bc + c2

)

≤
√

4l2 − 2
(
a2 + b2 + c2 + 2ac + 2bc + 2ab

) =
√

4l2 − 2(a + b + c)2,

because 2ab ≤ c2. The latter inequality holds since, according to the conditions of
the lemma, 2

√
ab ≤ a + b ≤ √

2c.
Further,

c =
√

l2 − (a + c)2 +
√

l2 − (b + c)2 +
√

2l2 − (a + b + c)2

≤ (1 + √
2)

√
2l2 − (a + b + c)2,

therefore,

c2 ≤ (
3 + 2

√
2
)(

2l2 − (a + b + c)2). (13)

Now we consider the polynomial f (t) = (1 + √
2)t2 − (7 + 4

√
2)t + 6 + 5

√
2,

which has the roots t1 = √
2 and t2 = 1+2

√
2. It is clear that f (t) ≥ (>)0 for t ≤ √

2
(for t <

√
2). If we set t = (a + b)/c, then from the above inequality we get

(
1 + √

2
)
(a + b)2 − (

7 + 4
√

2
)
(a + b)c + (

6 + 5
√

2
)
c2 ≥ (>)0 (14)
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Fig. 5

for a + b ≤ √
2c (respectively, a + b <

√
2c). Note also that the inequality (14) is

equivalent to the next one:

c2

6 + 4
√

4
+ (a + b + c)2

2
≥ (>)

6

1 + 2
√

2

(
ac + bc +

(
a + b

2

)2)
.

According to the inequality (13), l2 ≥ c2

6+4
√

4
+ (a+b+c)2

2 , therefore,

l2 ≥ (>)
6

1 + 2
√

2

(
ac + bc +

(
a + b

2

)2)
,

for a + b ≤ √
2c (respectively, for a + b <

√
2c). Since (a + b)2 ≥ 4ab with equality

only when a = b, we get the lemma. �

Proof of Theorem 2 For any parallelepiped P with the condition a : b : c = 1 : 1 : √2
we have D(P ) = √

6a (see Theorem 1), and, consequently, in this case ab + ac +
bc = (1 + 2

√
2)a2 = 1+2

√
2

6 (D(P ))2.

Further we shall show that if the condition a : b : c = 1 : 1 : √2 does not hold, then
the inequality

ab + ac + bc <
1 + 2

√
2

6
(D(P ))2 (15)

holds.
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In order to prove the inequality (15) it suffices to choose (x, y) ∈ [0, a/2] ×
[0, b/2] such that

ab + ac + bc <
1 + 2

√
2

6

(
D(x,y)

)2
, (16)

since D(x,y) ≤ D(P ) (see Proposition 3). The most useful pair for this goal is the
pair (x, y) = (0,0) which correspond to a vertex of the parallelepiped. By Lemma 2,
D(0,0) = √

(a + b)2 + c2.
Using the similarity, we may suppose c = 1. Let us describe the set of points (a, b)

satisfying the inequality

ab + a + b <
1 + 2

√
2

6

(
(a + b)2 + 1

)
. (17)

Note that the set E of points (a, b) satisfying the condition

(a + b)2 + 1 − 6

1 + 2
√

2
(ab + a + b) = 0,

is an ellipse symmetric relative to the straight line b = a and with the center at the
point (u,u), where u = (3 + 12

√
2)/31 = 0.6442117015 . . . (see the curve L3 on

Fig. 5). Respectively, the points (a, b) satisfying the inequality (17) constitute the
exterior of the ellipse E.

Therefore, we should prove the inequality (15) for all points on the ellipse E and
for all points in its interior. Let IE be a set of these points, i.e. a set of points (a, b)

satisfying the inequalities (a + b)2 + 1 ≤ 6
1+2

√
2
(ab + a + b).

It is easy to verify that IE ⊂ [u1, u2] × [u1, u2], where

u1 = 3

31
+ 12

31

√
2 − 1

93

√
276

√
2 − 303 = 0.5437313296 . . . ,

u2 = 3

31
+ 12

31

√
2 + 1

93

√
276

√
2 − 303 = 0.7446920734 . . .

(sides of the square are tangent to the ellipse E). Besides this, the straight line a+b =√
2 is tangent to the ellipse E at the point (1/

√
2,1/

√
2), and all the points in IE

satisfying the inequality a + b ≤ √
2.

These arguments show that for points (a, b) ∈ IE the inequalities b < 0.745 and
a + b ≤ √

2 hold.
Further we consider two cases: (1) a2b2 ≤ c2(b − a)(a + b + 2c) = (b − a)(a +

b + 2) and (2) a2b2 ≥ c2(b − a)(a + b + 2c) = (b − a)(a + b + 2).
In the first case, by Lemma 17 we get the inequality (we have chosen c = 1)

ab + a + b <
1 + 2

√
2

6

(
b2 + 3 + 2b(a + 1) − 2

√
(b + 1)2 − 2a(1 − b) − a2

)
.
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According to Theorem 5, b2 + 3 + 2b(a + 1) − 2
√

(b + 1)2 − 2a(1 − b) − a2 ≤
(D(P ))2, for the parallelepiped P with edge lengths 0 < a ≤ b ≤ c = 1. Therefore,

ab + a + b <
1 + 2

√
2

6

(
D(P )

)2
.

Consequently, we have proved the inequality (15) in this case.
Let us consider the second case. According to Lemma 19 D(P ) = l in this case,

where l is taken from the statement of Theorem 1. Now by Lemma 20 we get the
inequality (recall, that c = 1)

ab + a + b ≤ 1 + 2
√

2

6
l2 = 1 + 2

√
2

6

(
D(P )

)2
,

which becomes an equality if and only if a = b = 1/
√

2. The theorem is completely
proved.

In order to clarify the proof of Theorem 2, one can use Fig. 5. In this picture the
straight line b = a is denoted by L1, the curve a2b2 − (b − a)(a + b + 2) = 0 by
L2, the curve (a + b)2 + 1 − 6

1+2
√

2
(ab + a + b) = 0 (i.e. the ellipse E) by L3, the

straight line a + b = √
2 by L4, the straight line b = 0.77 by L5 and, finally, the

curve 3 + b2 + 2ab + 2b − 2
√

1 + b2 + 2ab + 2b − 2a − a2 = 6
1+2

√
2
(ab + a + b)

by L6. �
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