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Abstract We introduce the concept of pre-triangulations, a relaxation of triangula-
tions that goes beyond the frequently used concept of pseudo-triangulations. Pre-
triangulations turn out to be more natural than pseudo-triangulations in certain cases.
We show that pre-triangulations arise in three different contexts: In the characteriza-
tion of polygonal complexes that are liftable to three-space in a strong sense, in flip
sequences for general polygonal complexes, and as graphs of maximal locally convex
functions.
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1 Introduction

Polygonal complexes in the plane have been objects of interest in combinatorial
geometry from various points of view. With the advent of computational geome-
try, it soon became apparent that combinatorial and geometric properties of certain
polygonal complexes prove useful for structuring geometric data and designing effi-
cient algorithms. Classical examples are line arrangements that arise as duals of finite
point sets [9], Voronoi diagrams that capture proximity information among geomet-
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ric objects [2, 11], and triangulations that connect or partition geometric objects in
predefined domains [6, 11].

Whereas generalizations of line arrangements and Voronoi diagrams meanwhile
have been studied extensively, the discovery of a structure that generalizes trian-
gulations but still retains their basic properties (e.g., planarity, simple face shape,
and flippability) happened more recently. In a so-called pseudo-triangulation, faces
bounded by three reflex chains, rather than by three line segments, are allowed.
Pseudo-triangulations enjoy a variety of combinatorial and geometric properties, and
lead to efficient data structures and algorithms in several areas. See, for example,
[1, 19, 20, 24] and references therein, respectively.

The aim of this paper is to generalize triangulations in a natural way beyond
pseudo-triangulations. A pseudo-triangle is a simply connected polygonal region
where exactly three vertices have no reflex angle. Dropping simplicity, we arrive
at a concept we will call a pre-triangle, and following suit, a pre-triangulation of a
given domain. We show that pre-triangulations arise in three different contexts: In the
characterization of complexes that are liftable to three-space in a strong sense, in flip
sequences for general polygonal complexes, and as graphs of maximal locally con-
vex functions. Below we give some background on these topics and briefly outline
our results.

1.1 Liftable Complexes

The issue of characterizing complexes that can be ‘lifted’ to space has been frequently
investigated in the mathematical literature. A classical theorem of Steinitz [23] im-
plies that, for every complex in the plane whose edge graph is three-connected, there
exists a convex 3-polyhedron with isomorphic boundary. The Maxwell-Cremona the-
orem, see e.g. [8], characterizes polygonal complexes whose edges are exactly the
vertical projections of the edges of a polyhedral surface. Complexes with this prop-
erty are sometimes called projective or liftable complexes. When the projection sur-
face is required to be convex, the well-studied class of regular complexes is obtained.
Several criteria for characterizing regular complexes (in general dimensions) exist;
see e.g. [3] for a short bibliography. Deciding liftability is also a question of practical
importance, for example, in scene analysis.

In the present paper, we are interested in a concept of liftability which is robust
with respect to variations in lifting heights, and, at the same time, outrules com-
plexes that are (not) liftable only because of geometric artifacts. We introduce the
notion of combinatorial projectivity, which informally means that after a random
g-perturbation of the complex, the space of exact lifts has the maximum possible di-
mension with probability one. Interestingly, this dimension is related to the number
of those vertices in the complex where the angles at all their incident faces are con-
vex. This number we will call the degree of the complex. Every polygonal complex
has an exact lifting dimension at most its degree, and there are complexes achieving
this bound. Combinatorial projectivity is, thus, a property of the graph of edges of
the complex and of the order type! of its vertices, rather than of the geometry of the
vertices and their surface heights.

IThe order type [12] of a finite set S of points in the plane assigns to each ordered triple {p, g, r} C S its
orientation, either clockwise or counterclockwise.
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Fig. 1 Schlegel diagram with —9
perturbed vertex

Fig. 2 Pseudo-triangulation
with flat surface edge

To see some examples, triangulations are projective complexes that are also
combinatorial projective (though they are not necessarily regular). Schlegel dia-
grams [13], and thus Voronoi diagrams and power diagrams [3], are regular and there-
fore projective. However, these complexes are not combinatorial projective unless
they are triangulations: A movement of vertices of degree three will typically destroy
their projectivity, and thus the existence of an exact lifting surface; see Fig. 1. Also,
non-triangular faces will split for most choices of heights for surface vertices. Espe-
cially, complexes consisting of a single polygonal face are not combinatorial projec-
tive, in general. Their space of exact lifts is of dimension only three, even for convex
n-gons (where only convex angles occur at vertices, such that the above-mentioned
bound on the lifting dimension is 7). Clearly, such complexes are projective, but an
exact lift exists only for vertex heights with special geometry.

On the other hand, the complex shown in Fig. 2 (taken from [1]) is not projective,
because the edge drawn in bold flattens out in all possible projection surfaces: The
two triangles sharing this edge always lie in the same plane, which concurs with the
two adjacent planes at the point where the dotted lines cross. But e-perturbing almost
surely restores projectivity in this case. Moreover, this complex is combinatorial pro-
jective, as an exact lifting surface will exist for almost all choices of heights for the
vertices where all incident angles are convex (emphasized in black).

In Sects. 3 through 6 we derive a criterion that completely characterizes when a
given polygonal complex is combinatorial projective. This characterization hinges on
the concept of pre-triangulations, introduced in Sect. 3. More specifically, a complex
is combinatorial projective if and only if it is identical to its M-skeleton, a certain pre-
triangulation defined in Sect. 4. In that section we also show that the surface theorem
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C

C ... polygonal complexes
FR ... face-reducible complexes

FR
PR ... pre-triangulations
CP ... combinatorial projective complexes
FH ... face-honest complexes
PR CR ... combinatorial regular complexes
PT ... pseudo-triangulations
4 T ... triangulations

... Delaunay triangulations constrained by R
(shaded) ... area for Delaunay minimum complex of R

Fig. 3 Hierarchy of polygonal complexes in a given region R

for pseudo-triangulations in [1] holds in a more general setting. Loosely speaking,
this theorem asserts that three (non-trivial) vertex heights per face can be chosen in
any given pseudo-triangulation such that each face lifts to planarity. We characterize
the class of complexes where the surface theorem applies. This leads to the class of
so-called face-reducible complexes which contains the pre-triangulations as a proper
subclass.

In Sect. 7 we turn to convex projection surfaces and define combinatorial regular-
ity, a property stronger than combinatorial projectivity. We introduce the class of face-
honest complexes, which are basically those where each single face can be lifted to
a different plane. Both face-honest complexes and combinatorial regular complexes
are certain pre-triangulations. Combinatorial regular complexes in simply connected
regions are shown to be face-honest pseudo-triangulations. The various considered
complex classes and their containment relations are illustrated in Fig. 3. The pic-
ture is nonredundant in the sense that subclasses are proper and class overlaps are
nonempty.

1.2 Flips and Convexity

One of the most basic properties of convex sets is their facial structure [7, 13]. In
this sense, every convex and piecewise linear function generates a cell complex in
its domain of definition. For example, the maximal convex function that does not ex-
ceed certain prescribed values on a finite set of points in the plane leads to a complex
whose faces are polygonal. This insight dates back to the classical observation that
Delaunay triangulations are projected lower convex hulls; see e.g. [2, 11]. A similar
relation exists in a more general setting [1]: Maximal locally convex functions gener-
ate constrained regular pseudo-triangulations if the domain of definition is a noncon-
vex polygon. We extend the situation to more general domains. In Sect. 8 we prove
that graphs of locally convex functions on arbitrary polygonal domains (with possible
holes) generate combinatorial regular complexes, and thus pre-triangulations, in the
generic case. This result turns out useful in the design of a new and powerful flipping
operation for polygonal complexes, whose properties are studied in Sects. 9 to 12.
So-called flips are a frequently used means to modify polygonal complexes. Var-
ious types of flip operations have been considered in the literature, mainly for tri-
angulations and pseudo-triangulations. To give a few relevant citations, we refer to
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Fig. 4 Exchanging flips

Fig. 5 Removing flips

[10, 15, 16] and [1, 19, 20, 24], respectively. All these flips can be defined via geo-
desic lines in the domain where the flip takes place.

Figure 4 shows the standard Lawson flip for triangulations (left) and the ex-
changing flip for pseudo-triangulations (right). An edge-removing flip and a vertex-
removing flip are illustrated in Fig. 5 left and right, respectively. In both figures, the
edges to be flipped are drawn in bold, and the geodesic lines that define the edges
created in the flip (if any) are shown dashed. The class of pseudo-triangulations is
closed under flips of these four types.

Extending a different approach, taken in [1] and based on locally convex functions
rather than on geodesic lines, we derive a general flip operation in Sects. 9 and 10.
This operation works for the entire class of face-reducible complexes and covers all
the classical flip types. The smallest class (from the classes listed in Fig. 3) that is
closed under this operation are the pre-triangulations.

In Sect. 11 we introduce the Delaunay minimum complex, which is a variant of
the well-known Delaunay triangulation [2, 11] for general polygonal domains. This
(unique) structure is the complex of smallest combinatorial size that still retains the
desired ‘Delaunay properties’: an analog of local Delaunayhood, and reachability
by improving flips. The Delaunay minimum complex is strongly related to the con-
cept of constrained regular pseudo-triangulations introduced in [1], and generalizes
the concept of pointed Delaunay pseudo-triangulation in [22]. We prove that any
given face-reducible complex in a polygonal region R can be flipped to the Delaunay
minimum complex of R by means of improving flips. This connectivity result is a
generalization of the optimality theorem in [1]. Section 12 shows that, within sim-
ply connected regions, every triangulation can be flipped to a predefined constrained
regular pseudo-triangulation, in a way such that all intermediate complexes are face-
honest pseudo-triangulations (except immediately before a vertex is removed). Flip
sequences that retain face-honesty are desirable because they change the complex at
hands in a local way.
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2 Polygonal Complexes

This section provides the definitions and notions we will use to work on polygonal
complexes.

Let R be a bounded subset of the plane. We call R a polygonal region if the
boundary of R is piecewise linear and coincides with the boundary of the interior
of R. Neither connectedness nor simple connectedness of a polygonal region R is
required. The boundary components of R are called edges and vertices of R. A corner
of R is a vertex of R with no internal angle larger than 7. All other vertices of R are
termed noncorners of R. See Fig. 6. The depicted region consists of three connected
components, two being simply connected. Corners and noncorners are distinguished
as black dots and white dots. Note that more than one internal angle may arise at a
single vertex. For corners, all these angles have to be convex.

A polygon is a polygonal region that is homeomorphic to a disk. Observe that the
convex hull of a polygonal region R is a convex polygon whose vertices are corners
of R. This implies that every polygonal region has at least 3 corners.

A polygonal partition, C, of R is a partition of R into (finitely many) polygonal
regions. Such a region f is called a face of C if the interior of f is connected. Faces
need not be simply connected; they may contain holes and thus are not polygons, in
general. The edges and vertices of C are the edges and vertices of its faces. An edge
(vertex) of C is called internal (to R) if it does not lie on the boundary of R. C is
termed a polygonal complex in R if each internal edge is an edge of two different
faces.

We will restrict attention to polygonal complexes in this paper. The vertices of
any polygonal complex C are assumed to be in general position” in the plane. As the
vertices of the underlying polygonal region R arise as vertices of C, the vertices of R
are required to be in general position as well.

Consider an arbitrary subset B of faces of a polygonal complex C. Let v be a vertex
of some face in B. Adopting notation from [1], vertex v is called complete in B if v
is a corner of each face in B that is incident to v. Otherwise, v is called incomplete
in B. Note that, if v is incomplete in B, then there is a unique face in B where the

Fig. 6 General polygonal
region

2A set S of points in the plane is in general position if no 3 points of S are collinear.
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Fig. 7 A polygonal complex

internal angle at v is larger than 7. For vertices of C which are not incident to some
face in B, the completeness status with respect to B is left undefined. Distinguishing
complete and incomplete vertices will be crucial in deciding liftability of a complex.

For notational convenience, we will mostly write a polygonal complex C as the
set of its faces. If a vertex v is complete in C, then there is no subset B of faces
of C where v is incomplete. Equivalently, if v is incomplete in B C C, then v is also
incomplete in C. We define the degree of B as the number of vertices of C that are
complete in B. The notion of degree of a face set is central for the developments in
the present paper. Notice that the union of the faces in B is a polygonal region, and
that each corner of this region has to be complete in B. This implies that the degree
of B, and in particular the degree of C, is at least 3.

Figure 7 shows a polygonal complex of degree 8. Complete and incomplete ver-
tices are drawn as black dots and white dots, respectively. We will keep this conven-
tion (which is also compatible with Figs. 1, 2, and 6) throughout this paper. Observe
that the (in)completeness of a vertex is a property based on the underlying complex,
whereas the (non)corner property of a vertex is based on the respective polygonal
region. Note finally that adjacent faces of a complex may touch at many edges, but
each internal edge has to belong to exactly two faces.

3 Pre-Triangulations

This section introduces the concept of pre-triangulation. We start by recalling the (re-
lated) definition of a pseudo-triangulation [1, 19, 20, 24]. We then define minimum
complexes in polygonal regions, and finally give a characterization of face sets of
degree 3. Such face sets will turn out important in most of our subsequent investiga-
tions.

A pseudo-triangle is a polygon with exactly 3 corners. A pseudo-triangulation is
a polygonal complex all whose faces are pseudo-triangles.
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NN A

(b)

Fig. 8 Five valid pre-triangles

Fig. 9 M-skeleton of the
face-reducible complex in Fig. 7

We define a pre-triangle as an arbitrary polygonal region with exactly 3 corners.
Clearly, any pseudo-triangle is a pre-triangle, but the latter may contain convex holes,
because no vertex of such a hole is an additional corner. In fact, the interior of a pre-
triangle may be disconnected, as it may consist of many edge-disjoint faces. See
Fig. 8. Part (a) illustrates two pseudo-triangles, whereas parts (b), (c), and (d) show
pre-triangles which are not pseudo-triangles. The pre-triangle in (c) consists of two
faces, and the pre-triangle in (d) consists of three faces.

A polygonal complex C is called a pre-triangulation if C can be partitioned into
subsets Bj, ..., B; of faces such that (1) the union of the faces in each B; is a
pre-triangle, and (2) the faces of each B; are pairwise edge-disjoint. Clearly, every
pseudo-triangulation is also a pre-triangulation. However, a pre-triangulation may
contain faces with holes (Fig. 9) and even faces with a large number of corners
(Fig. 8(c)).

Let C be some polygonal complex. Recall that each corner of the underlying polyg-
onal region R is complete in C. This leads us to term C a minimum polygonal complex
if the corners of R are the only vertices that are complete in C. In other words, the
degree of C equals the number of corners of R, the minimum that can be achieved.
Observe that, in a minimum complex, every internal vertex (if any) is reflex in one of
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its incident faces. To give examples, the complex in Fig. 13 is minimum whereas the
complexes in Figs. 7 and 9 are not.

For pseudo-triangulations, the definition above is consistent with the original de-
finition that uses vertex pointedness: In a minimum pseudo-triangulation [24] each
vertex is pointed, that is, its incident edges span a convex angle. Observe that a polyg-
onal complex C in R is minimum if and only if C can be ‘filled up’ to a minimum
pseudo-triangulation in R by adding edges between vertices of C. In particular, the
number of edges of a minimum complex in R is not determined by its vertex set.
The natural counterpart to minimum complexes are complexes where all vertices are
complete. Triangulations and Schlegel diagrams (Fig. 1) are notable examples.

The following lemma characterizes face sets of degree 3 in a polygonal com-
plex C. Here and in later sections we denote with U (B) the union of the faces in
asubset B CC.

Lemma 1 Let B be any subset of faces of C. Then B is of degree 3 if and only if U (B)
is a pre-triangle and B forms a minimum polygonal complex in U (B).

Proof Assume that B is of degree 3. As U(B) has at least 3 corners, and each such
corner is complete in B, we conclude that U(B) has exactly 3 corners. That is,
U(B) is a pre-triangle, and the polygonal complex formed by B in U (B) is mini-
mum.

Conversely, assume that U (B) is a pre-triangle, and that the polygonal complex
formed by B in U(B) is minimum. Then the degree of this complex equals the num-
ber of corners of U(B), which is 3 because U (B) is a pre-triangle. That is, B is of
degree 3. (]

4 The M-Skeleton

Utilizing pre-triangulations, we now define a substructure for polygonal complexes,
the so-called M-skeleton, which is the key to combinatorial projectivity. Intuitively
speaking, the M-skeleton delimitates maximal face sets of the complex that lift to
planarity in a robust sense. We introduce the class of face-reducible complexes and
demonstrate that the surface theorem for pseudo-triangulations in [1] can be extended
to this more general class. Face-reducible complexes are also the largest class where
this is possible, as Sect. 6 shows.

A polygonal complex is termed face-reducible if and only if each of its faces is
contained in some subset of faces of degree 3. For example, every pre-triangulation
(and, in particular, every (pseudo-)triangulation) is a face-reducible complex. Note
that such complexes may contain faces of any shape. Figure 7 gives an illustration.
The reader is encouraged to check that this complex is face-reducible (using Fig. 9 as
an aid).

Let C be a face-reducible complex for the rest of this section. For a face f €C,
we will denote with M a maximal subset of faces of C that contains f and that is
of degree 3. Recall from Lemma 1 that U (M) is a pre-triangle. We state and prove
two basic properties of such maximal face sets.
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Lemma2 Let f,geC.If My N My # () then My = M,.

Proof Let My N Mg # . We claim that M s U M, is of degree 3. This implies M y =
M, by the maximality of these sets.

Put 0=UMyUM,g) and I =U(My N M,). Using counting arguments for the
vertices of Q and I, we prove that Q has exactly three corners, and that M ¢ U M,
forms a minimum complex in Q. This, by Lemma 1, then implies that My U M, is
of degree 3.

The sets My and M, form minimum complexes in U (M) and U (My), respec-
tively (Lemma 1). Hence, a vertex is complete in M if and only if it is a corner
of U(My) (same for M,). Moreover, a vertex v being incomplete in My or M, is
incident to a unique face h € My U M, at a reflex angle, and if v is incomplete in
both My and M, then h € My N M, holds. We thus observe two properties:

(a) If ¢ is a corner of Q or of I then ¢ is a corner of at least one of U (M)
and U (My).
(b) If ¢ is a corner of Q and of I then c is a corner of both U (M y) and U (M,).

Now, U(My) and U (M) together have 6 corners, and [ has at least 3 corners. So,
by properties (a) and (b), Q has at most (and thus exactly) 3 corners.

Concerning the complex in Q, we recall that My and M, already form minimum
complexes. Moreover, any vertex being incomplete in M s or M, has to be incomplete
in My U M, as well. So the minimum property of the complex in Q is violated only
if a vertex, w, that is complete in both sets My and M, becomes a noncorner of Q.
Observe that w has to be a corner of both U (M y) and U (M) then. So, from the pool
of 6 corners we get from U (M ¢) and U (My), already 2 are used for the noncorner w
of Q. Another 3 are used for corners of Q, by (a). To cover the corners of I according
to (a), 1 corner might be w, and 2 additional ones can be either yet unused corners,
or corners of Q. In either case, by (b), 2 more corners from the pool are needed,
resulting in a total of 7 corners—a contradiction. We conclude that the vertex w does
not exist. O

Corollary 1 The set My is unique for each face f € C. Moreover, the collection of
these sets defines a partition of C.

Proof As we have f € My for each set My, the uniqueness of My follows from
Lemma 2. To prove the partition property, let us write f ~ g if My = M, holds
for f, g €C. Then ~ is an equivalence relation on C. We show that [f]. =M/
are its equivalence classes. Clearly, g € [ f]~ implies My = My and thus g € My.
Conversely, g € My implies g € My, N My and thus M, = My by Lemma 2, that is,
g €[ f]~ holds. U

From Corollary 1 and Lemma 1 we know that the regions U (M), for all f €C,
partition the underlying region U (C) of C into pre-triangles in a unique way. We will
term the resulting pre-triangulation the M-skeleton of C. Figure 9 illustrates an exam-
ple. Note that not all faces of this pre-triangulation are simply connected, although
there are no holes in the underlying region.

The following lemma is similar in spirit to Lemma 2. It will be needed in the
design of a general flipping operation in Sect. 9.
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Lemma 3 Let f, g € C be two faces that share some edge. Then either My = My or
the degree of My U M is 4.

Proof Assume My # M,. Then My and M, are disjoint, by Lemma 2. U (M y) and
U (M) have an edge e in common, because f and g doso,ande =U (M) NU (M)
holds because we have My = M, otherwise. Like in the counting argument in the
proof of Lemma 2 (put / = ¢), each endpoint c of e leads to a loss of at least one of
the 6 possible corners of Q = U (M ¢ U M,). Thus Q has at most 4 corners. Moreover,
if an endpoint ¢ of e is complete in My U M, but is a noncorner of Q, then ¢ causes
a loss of two possible corners of Q. We conclude that M U M, is of degree 4. [

Face-reducible complexes enjoy a strong lifting property which stems from the
existence of their M-skeletons, and that we are going to describe next. Define a poly-
hedral surface as (the graph of) a continuous and piecewise-linear function ¢ whose
domain is a polygonal region R. ¢|, is called a facet of ¢ if L is a maximal interior-
connected subset of R where ¢ is linear.

Theorem 1 Let C be a face-reducible polygonal complex. Further, let h be any vector
assigning a height h; to each complete vertex v; of C. There exists a unique polyhe-
dral surface ¢ for C and h, with ¢(v;) = h; for all i, and such that ¢| ¢ is a subset of
a facet of @, for all faces f €C.

Proof As C is face-reducible, the M-skeleton of C exists (and is unique). Let PR
denote this pre-triangulation. The conditions required for the surface theorem in [1]
to hold can be formulated as follows: For each incomplete vertex v of C, there is
a unique pre-triangle V = U (M) of PR such that (1) v is incomplete in My and
(2) v lies in the convex hull of the 3 corners of V.

Consider condition (1). If v is not a vertex of PR then there is a unique V such
that v is internal to V. Otherwise, there is a unique V where v is a noncorner, because
an internal angle larger than 7 occurs in V at v. In both cases, v is incomplete in the
face set My with V = U (M), by Lemma 1. Condition (2) holds because the vertices
of the convex hull of V are corners of V. O

5 Planar Face Sets

Throughout this section, let C be a face-reducible complex. Theorem 1 makes explicit
that C can be lifted, in various ways, to a polyhedral surface in three-space without
introducing new edges. However, not all edges of C might have their counterparts in
this surface, for several reasons. For instance, the choice of the height vector 4 may
force more than three complete vertices to be coplanar in the lifting. Also, geometric
degeneracies of C may be the reason; consult Fig. 2. Using our concept of M-skeleton,
we are able to characterize those edges of C which, even under ‘generic’ conditions,
cannot be made to show up in the surface.

Let S be the set of all vertices of C. Let S, be some replacement within distance &
of each vertex in S, for arbitrarily small &€ > 0. (We assumed S to be in general posi-
tion, so the order type of S. equals the order type of S.) An e-perturbation, C, of C is
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the polygonal complex with vertex set S, and with the same combinatorial structure
as C. As order types are preserved, a vertex is complete in C, if and only if its original
is complete in C.

A subset B of faces of C is called combinatorial planar if, for all e-perturb-
ations C, of C, and for all height vectors 4 for the complete vertices of C,, the sub-
set ¢|p of the surface ¢ for C; and /4 lies in a single plane. Recall that ¢ uniquely
exists by Theorem 1.

Lemma 4 The maximal combinatorial planar face sets in a face-reducible complex C
are the pre-triangles U(My), f €C, of its M-skeleton.

Proof Consider such a pre-triangle U (M y). By definition of an M-skeleton, M is
of degree 3. So exactly 3 vertices are complete in M y. For every height vector &
for C, the plane through the corresponding 3 points in space determines a possible
surface for M ¢, because all other vertices of the complex formed by My are incom-
plete in My, and thus are incomplete in C. By the uniqueness of this surface, all
surface vertices for M ;¢ have to lie in this plane. This reasoning remains true for any
g-perturbation C, of C. Therefore M is combinatorial planar.

It remains to show that M y is maximal under the condition of being combinatorial
planar. Consider the linear system that, given C and #, describes the unique surface
according to Theorem 1; see [1]. The variables in this system are the heights for all
the vertices of C, including the incomplete ones. Let now B be any proper superset
of My. By the structure of the system, the heights of the vertices in B only depend
on heights of vertices for supersets B’ of B. Moreover, the heights for any such B’
can be described by using only the heights for the vertices that are complete in B’
(Theorem 1 applied to B’). On the other hand, the face set M  C B, by definition,
is maximal under the condition of having 3 complete vertices. That is, every super-
set B’ O B has degree at least 4. Therefore, when using the equations of the system,
the vertex heights for B cannot be described by only 3 of the system variables (unless
the system is overdetermined because of geometric artifacts; these can be removed
by e-perturbing both C and h). Moreover, no other system with the same solution
space can describe the heights for B with fewer variables, because our system takes
into account all the vertex heights. But a plane in three-space is determined by 3 pa-
rameters, and we conclude that there exist e-perturbations C, of C and &, of & such
that the subset ¢|p of the surface ¢ for C; and 4, is not coplanar. That is, B is not
combinatorial planar. (]

6 Combinatorial Projectivity

We now define a notion of projectivity (i.e., liftability) for polygonal complexes
which is robust with respect to variations in lifting height and, at the same time,
outrules complexes that are projective (or non-projective) only because of geometric
artifacts.

Consider an arbitrary polygonal complex C. Define an exact lift of C as a polygonal
surface whose set of edges projects exactly to the set of edges of C. In an exact lift
of C, no edge of C is allowed to flatten out, and no face of C is allowed to fold at
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new edges. Not every polygonal complex admits an exact lift; perturbed Schlegel
diagrams (Fig. 1) are an example.

We are interested in complexes whose space of exact lifts has maximal dimension.
It will turn out that this dimension is bounded from above by the degree, &, of C. Let
us call the complex C combinatorial projective if, for a random? e-perturbation C,
of C, the space of exact lifts of C, has dimension k& with probability 1. Intuitively
speaking, for almost all perturbations of a combinatorial projective complex, almost
all height vectors for its k complete vertices will lead to an exact lift.

Our aim is to characterize the class of combinatorial projective complexes. The
next assertion formulates a main observation in this context. Its proof is immediate
from the proof of Lemma 4.

Corollary 2 Let C be a face-reducible complex, and let h, € [0, 11F be a random
height vector for the k complete vertices of C,. Then, with probability 1, the edges in
the surface for C, and h, bijectively correspond to the edges of the M-skeleton of C.

Theorem 2 A polygonal complex C is combinatorial projective if and only if the
M-skeleton of C exists and is identical to C.

Proof For the class of face-reducible complexes, the assertion is true by Corollary 2.
To complete the proof, we assume that C is not face-reducible (i.e., the M-skeleton of
C does not exist) and argue that C then cannot be combinatorial projective.

Faces of C not being part of some set of degree 3 (C is supposed to contain at least
one such face) have more than 3 corners. So, for each such face f, some internal
edge can be added to split f into two faces, without changing any vertex from in-
complete to complete. We keep adding such edges until a face-reducible complex C’
is obtained. Let B(f) denote the set of faces of C’ that a face f of C splits into. Now,
C has to have some face f whose set B(f) is not contained in a single pre-triangle
of the M-skeleton of C’, as C would be face-reducible, otherwise. Therefore, in the
surface ¢’ for C, and h,, the set ¢'| () is not part of a single facet of ¢ with proba-
bility 1; see Corollary 2. By the uniqueness of the surface theorem, there is no other
way of constructing the required surface for C, and h,. This implies that, with prob-
ability 1, the space of exact lifts for C, is strictly less in dimension than the degree
of C,. That is to say, C is not combinatorial projective. O

Corollary 3 Every combinatorial projective complex is a pre-triangulation.

The proof of Theorem 2 also shows the following: Every polygonal complex C
can be refined to a face-reducible one without changing its degree k. Therefore, the
space L of ‘face-embedding’ lifts of C, in the sense of Theorem 1, is of dimension
at most k, and this bound is achieved if C is face-reducible. The space £ of exact
lifts of C is the complement of a finite union of linear subspaces in £, each subspace
representing the lifts that flatten out a fixed edge of C. Thus & is either empty or the
dimension of & is k as well.

3Drawn uniformly for each vertex from its surrounding e-disk.
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If a complex C is not face-reducible then—apart from special cases caused by
geometric degeneracies—for almost all choices of heights for C’s complete vertices,
certain faces of C will split, in every surface which respects these heights. We thus
have:

Corollary 4 Theorem 1 cannot be extended beyond the class of face-reducible polyg-
onal complexes.

Figure 7 shows an example for a face-reducible complex which is not combinato-
rial projective; the complex is not identical to its M-skeleton (see Fig. 9). A pseudo-
triangulation which is not combinatorial projective is shown in Fig. 11(a) (upper
drawing); the four pseudo-triangles form a face set which is combinatorial planar.
However, combinatorial planarity of a set of two or more faces does not necessarily
destroy combinatorial projectivity. For example, the pre-triangle in Fig. 8(d) consti-
tutes both a combinatorial projective complex and a combinatorial planar face set of
size three. Note also that, although each combinatorial projective complex is a pre-
triangulation, not all of its faces need to be pre-triangles; see the pentagonal star in
Fig. 8(c).

7 Combinatorial Regularity

In this section we focus on convex projection surfaces. We introduce the classes of
combinatorial regular complexes and face-honest complexes and elaborate on their
interrelation. Face-honest complexes are of interest for two more reasons: Loosely
speaking, each such complex can be lifted to a surface so that its faces live in pairwise
different planes. Moreover, these complexes allow for easy modification with flipping
operations; see Sect. 12.

Let ¢ be some polyhedral surface. An edge e of ¢ is called convex if there exists
a line segment £ that nowhere lies above ¢ and that intersects e at exactly one point
interior to both e and £. Edges of ¢ which are not convex are called reflex. Note that
the image ¢|,/ of each boundary edge ¢’ of the domain of ¢ is a convex edge.

A polygonal complex C is called combinatorial regular if C is combinator-
ial projective and there exists some e-perturbation of C that admits an exact lift
where all edges are convex. By Corollary 3, combinatorial regular complexes are
pre-triangulations. Known examples are (constrained) Delaunay triangulations [18],
and more generally, the constrained regular pseudo-triangulations [1]. Schlegel di-
agrams [13] and thus Voronoi diagrams are not combinatorial regular (though they
are well known to be regular in the classical sense) because these complexes are not
combinatorial projective, apart from the special case of triangulations.

Lemma 5 Let C be a combinatorial regular complex. Then each internal vertex of C
is complete.

Proof Let C. and h define an exact lift that witnesses the combinatorial regularity
of C. Consider an incomplete vertex v of C, and let f be the unique face of C where v
is a noncorner. To get a contradiction, suppose v is an internal vertex of C. As there
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is an internal angle greater than 77 in f at v, there exists some line segment £ C U (C)
such that £ crosses all the edges of C incident to v. But C is combinatorial regular, so
the corresponding edges in the surface ¢ for C, and 4 are all convex. Therefore ¢ ( f)
cannot be part of a single facet of ¢ — a contradiction to the definition of ¢. O

A (face-reducible) polygonal complex is termed face-honest if My = { f'} holds for
each of its faces f. Being identical to its M-skeleton, every face-honest complex C
is a pre-triangulation that is combinatorial projective, by Theorem 2. Moreover, all
pre-triangles of C are single faces. Figure 9 gives an illustration. On the other hand,
even when a pseudo-triangulation is combinatorial regular, it is not necessarily face-
honest. Figure 8(d) reveals this fact. Triangulations are always face-honest: All their
vertices are complete, so their individual triangles constitute the only possible face
sets of degree 3. See Fig. 3 for the interaction of face-honest complexes and combi-
natorial regular complexes with other classes.

Below we derive some results for the case where the underlying region U (C) of
the complex C in question is a polygon.

Lemma 6 Let C be a face-reducible complex, and suppose each internal vertex of C
is complete. If U (C) is a polygon then C is a face-honest pseudo-triangulation.

Proof Let f be a face of C. As C is face-reducible, the set M ; exists. Each vertex v
that is incomplete in M ¢ is also incomplete in C, and thus v is a vertex of U (C), by as-
sumption. Therefore, if U (C) is required to be a polygon, then the pre-triangle U (M r)
is just a pseudo-triangle, and M ¢ contains a single face, U(My) = f. O

Lemmas 5 and 6 combine to the following statement.

Theorem 3 Let C be a combinatorial regular complex whose underlying region is a
polygon. Then C is a face-honest pseudo-triangulation.

Corollary 5 Let PT be a pseudo-triangulation without internal vertices in a poly-
gon R. Then PT is face-honest.

Proof As P7T contains no internal vertices, each internal edge of P7 is a diagonal
of R. This implies that P7 is combinatorial regular. The assertion now follows from
Theorem 3. O

8 Locally Convex Surfaces

We show next that combinatorial regular complexes—and thus certain pre-triangula-
tions—arise from graphs of locally convex functions on polygonal domains. This
generalizes results in [1] where locally convex functions are introduced and utilized in
the context of pseudo-triangulations. The relationship between locally convex func-
tions and pseudo-simplicial complexes in higher dimensions is discussed in detail
in [5].
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Let a polygonal domain R be given. A surface ¢ on R is called locally convex if
each edge of ¢ is convex.* Let now S C R be a finite set of points that includes all
the vertices of R. Further, let 4 be a vector that assigns an upper height bound 4 (v) to
each point v € S. We define Fj, as the maximal (i.e., highest) locally convex surface
on R that satisfies Fy,(v) < h(v) forallv € §.

The surface Fj exists and is unique: Any surface ¢ that consists of a single
facet, ¢|r, is locally convex and can be lowered to satisfy h, and Fj, is the point-
wise maximum of all possible surfaces on R that are locally convex and satisfy A.
The facets of Fj, project to the faces of a polygonal complex in R which we denote
by C(Fp).

The next lemma follows from results in [5]. We give a more direct proof here.

Lemma 7 All vertices of C(Fy) are included in S. For each complete vertex v
of C(Fy), Fr(v) = h(v) holds.

Proof Let w be a vertex of C(Fy). Assume w ¢ S. Then w has to be complete
in C(Fp): If w lies on the boundary of R then clearly no face of C(F},) has an in-
ternal angle larger than 7 at w. If w is an internal vertex of C(F}) then the same is
true, because the image Fj(e) of each edge e incident to w is a convex edge. But
for any complete vertex v of C(Fj) we must have v € S and Fj,(v) = h(v), because
otherwise the height of v can be increased without violating the local convexity of
the surface or the restrictions in /, in contradiction to the maximality of Fj,. O

Let us define a generic situation (for height vector & and point set ) as one where,
for some ¢ > 0, the maximal locally convex surface for any e-perturbation %, of A
and S, of S has the same combinatorial structure as the surface Fj,.

If the underlying polygonal region R is a convex polygon, then Fj, is the lower
convex hull [21] of the spatial point set {(h z)v)) | v € S}. If, in addition, the situation

is generic then C(F}) is a regular triangulation [10, 17]. This fact generalizes for
arbitrary polygonal regions R as follows.

Theorem 4 Under generic conditions, the complex C(Fy) is a pre-triangulation that
is combinatorial regular.

Proof By Lemma 7, Fj(v) = h(v) holds for each complete vertex v of C(F},). To-
gether with the genericity assumption on /, this implies that the space of exact lifts
of C(Fy) has dimension (at least) its degree. Since the underlying point set S is
generic, too, it follows that C(F}p) is combinatorial projective. But £ is a height
vector for C(Fj) such that all edges of Fj, are convex. We conclude that C(Fj) is
combinatorial regular. Moreover, C(F},) is a pre-triangulation, by Corollary 3. (]

Corollary 6 If the domain R of Fy, is a polygon, then C(Fy,) is a face-honest pseudo-
triangulation in the generic case.

Proof Combine Theorem 3 and Theorem 4. U

4Equivalently, @(£) defines a convex function, for every line segment £ C R that does not cross the bound-
ary of R. This definition of locally convexity is used in [1, 5].
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9 A General Flipping Scheme

Flip operations are a common tool for locally modifying polygonal complexes.
A general class where flip operations have been defined are the pseudo-triangulations.
The repertoire includes Lawson flips [16], exchanging flips [20, 24], and removing
flips and their inverses [1, 19]. Still, several interesting classes of complexes, in par-
ticular the combinatorial regular complexes whose relevance as optimal surfaces is
documented in Sect. 8, cannot be reached and modified with these flip operations.
The combinatorial regular complex in Fig. 8(c) serves as an example.

Let C be a face-reducible complex. Below we define a flip operation that applies to
any internal edge e of C, in a way such that face-reducibility is retained in the resulting
complex. The flip operation is based on locally convex surfaces and on maximal face
sets of degree 3. All the flips known for triangulations and pseudo-triangulations arise
as special cases of this operation.

OPERATION FLIP(e). Let f and g be the two faces of C incident to e. Consider
the subcomplex C, = My U Mg of C. Choose a height for each complete vertex of C,
such that, if My # M, the edge ¢|. is reflex in the surface ¢ for C.. Let the vector h
contain these heights and, in addition, the entry oo for each incomplete vertex of C,.
Replace C, by C(Fy,).

FLIP(e) deletes a subset E of edges of C and creates a subset E’ of edges disjoint
from E. Note that E # J because FLIP(¢) always deletes the edge e. That is, each
internal edge of C is flippable with this operation. We might have E’ = ¢ if the flip
is removing. The cardinalities of E and E’ may be large, though. We offer a detailed
discussion of the flip types covered by the operation FLIP in Sect. 10.

Lemma 8 FLIP(e) constructs a unique and combinatorial regular subcomplex
C(Fp).

Proof If My = M, then My U M, is of degree 3. For any entries in 4 for these 3 com-
plete vertices, we obviously have C(F},) unchanged. If My # M, then My U M, is
of degree 4, by Lemma 3. The corresponding 4 entries in & were chosen such that e
yields a reflex edge in the surface for M s U M. This implies that the respective 4 sur-
face vertices are not coplanar. So C(Fj,) remains unchanged when # is e-perturbed.
Moreover, even a large change of & does not alter C(F},) as long as the surface image
of e is reflex, because the (three-dimensional) order type of the 4 surface vertices
stays the same. This shows that FLIP(e) constructs a unique surface. In particular,
h is generic. Moreover, an e-perturbation of the vertices in M y U M, will not change
the surface combinatorially. Thus generic conditions are given, and C(F}) is combi-
natorial regular, by Theorem 4. O

Theorem 5 The class of face-reducible complexes is closed under the operation
FLIP. Pre-triangulations are the smallest class having this property, among the
classes listed in Fig. 3.

Proof Let C be some face-reducible complex in the polygonal region R = U(C).
Let e be an internal edge of C, and denote with C’ the complex that is obtained from C
by applying FLIP(e).
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The subcomplex C(F}y,) of C’ constructed by FLIP(¢) is combinatorial regular, by
Lemma 8. Thus C(Fy) is a pre-triangulation in Q = U(My U M,), for f and g being
the faces incident to e. In the complement R \ Q, the complex C’ coincides with C.
Moreover, by nature of FLIP(e), the M-skeletons of C" and C are identical in R \ Q.
Hence, the part of C’ in R \ Q is a face-reducible complex.

If, in addition, C is a pre-triangulation then there exists a partition of C into face
sets B; such that U (B;) is a pre-triangle and no edge of C is internal to U (B;), for
each set B;. So B; is of degree 3, which implies B; € M;, if b € B; holds for a face b
external to Q. This implies that B; is not affected by FLIP(e) in this case. Conse-
quently, the part of C" in R \ Q is a pre-triangulation.

But the concatenation of two pre-triangulations (or of two face-reducible com-
plexes) is a complex of the same type, as is easily seen from the definition of such
complexes.

To complete the proof, we observe that there exist Delaunay triangulations con-
strained by R that can be flipped to a pre-triangulation which is neither combinatorial
projective nor a pseudo-triangulation. Figure 11(b) exemplifies this fact. In view of
the containment relations in Fig. 3, this shows that any class closed under FLIP has
to include the class of pre-triangulations. (]

Note that Theorem 5 does not imply that all face-reducible complexes (or pre-
triangulations) within a given region R can be reached by the operation FLIP, if one
starts with a fixed one.

10 Instances of FLIP

Let us discuss the effect of the operation FLIP in different scenarios. First of all, the
interested reader may convince himself that FLIP is able to simulate the exchanging
flips in Fig. 4 and the removing flips in Fig. 5; see Sect. 1.2. In the figures for the
present section (Figs. 10, 11, and 12) the edge e to be flipped is shown in bold, and
only the region U (M s U M,) that gets restructured is displayed. Here f and g are
the two faces incident to e. Completeness of vertices (indicated by black dots) is with
respect to the set My U M,, and is not necessarily the same in the entire complex.
Edges created by the respective flip are drawn as dashed lines. By Lemma 3, the
degree of the face set My U M, is at most 4. Therefore, the region U (M U M,) (let
us call it Q in the discussion below) has either 4 or 3 corners.

The case of 4 corners for Q leads to a generalization of the exchanging flip for
pre-triangles; see Fig. 10. We have My # M, and the degree of MU M, is 4. As
in a usual exchanging flip, the completeness status of all vertices is preserved (apart
from possible vertices internal to Q that are necessarily incomplete and are removed
by the flip along with their incident edges). More than one edge may be created, as
is shown in flip (a) as well as in flip (b). Consequently, FLIP is not a symmetric
operation, in general: Flipping one edge (or all the edges in any order) that just have
been created need not give the initial complex.

The case of 3 corners for Q constitutes a generalization of the removing flip; see
Fig. 11(a). All edges and (incomplete) vertices internal to Q get removed. No new
edges are created and a single pre-triangle, Q, remains. The degree of My U M, is
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Fig. 10 Two exchanging flips

Fig. 11 (a) Removing flip.
(b) Many flips

() (b)

Fig. 12 (a) Correct flip.
(b) “‘Wrong’ flip




720 Discrete Comput Geom (2007) 38: 701-725

Fig. 13 Delaunay minimum
complex

either 3 as in our example and in Fig. 5 (left), or is 4 as in Fig. 4 (right). This depends
on whether My = M, or not. In the negative case, a noncorner of Q which is an
endpoint of the flipped edge e changes its status from complete to incomplete.

A natural question is why FLIP(e) is based on maximal face sets of degree 3 rather
than on single faces of C. Figure 12 provides an answer. The flip (a) is in accordance
with the definition of FLIP and retains face-reducibility. In flip (b) that is solely based
on the two faces incident to the flipped edge, face-reducibility is lost, and with it, the
applicability of the surface theorem (Theorem 1) and its advantages, which will be
exploited next.

11 Delaunay Minimum Complex

By the well-known paraboloid lifting function A(x) = |x|?, Delaunay triangula-
tions [2, 11] in a convex region R correspond to maximal locally convex surfaces
generated by the vertex heights A (x). (In this easy case, such surfaces are just lower
convex hulls of the lifted vertices.) This correspondence is extended to nonconvex
polygons R in [1] and leads to Delaunay triangulations constrained by (the edges
of) R. We define below a unique complex of smallest combinatorial size in an arbi-
trary polygonal region R that still shows the desired ‘Delaunay properties’: an analog
of local Delaunayhood, and the reachability by improving flip operations.

Let p be the height vector for the vertices of R such that p(c) = lc|? for each
corner ¢ of R, and p(v) = oo for each noncorner v of R. Consider the com-
plex Dg = C(Fp). We will assume generic conditions for R henceforth, in the sense
that e-perturbations of its vertices (and the changes of vertex heights caused by them)
leave the maximal locally convex surfaces above combinatorially unchanged. Then
the height vector p is generic, too, and by Theorem 4 the complex Dy is a pre-
triangulation that is combinatorial regular. Moreover, Dg is a minimum complex
in R because, by Lemma 7, its only vertices are those of R and each noncorner of R
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is incomplete in Dg. We term Dy the Delaunay minimum complex of R. Figure 13
gives an example.

Observe that Dg differs from the constrained Delaunay triangulation [18] of R,
unless R is a convex polygon and Dk is the (classical) Delaunay triangulation of the
vertices of R. In case R is a polygon, Dy is a minimum pseudo-triangulation which
is face-honest, by Corollary 6. The latter structure has been also considered in [22]
and is a constrained regular pseudo-triangulation as defined in [1].

The class of all possible face-reducible complexes in a given region R is connected
under the operation FLIP in the following sense.

Theorem 6 Let a polygonal region R be given. Each face-reducible complex in R
can be transformed to the Delaunay minimum complex Dy by using finitely many
operations FLIP.

Proof Let C be a face-reducible complex in R. We construct a finite sequence of
flips that transforms C into Dg. Let i be a height vector for the vertices of C, with
h(c) = |c|? for each corner ¢ of R, and with heights for the remaining vertices of C
being sufficiently large such that C(Fy,) = Dg.

Apply A to the complete vertices of C. This defines a unique surface ¢ on R by
Theorem 1. If ¢ contains reflex edges then choose such an edge ¢|., transform C to
a new complex C’ by performing FLIP(e) for the edge e of C, and put C = C’ and
repeat.

The complexes C; created above are face-reducible, by Theorem 5. So the proce-
dure is well-defined. We first prove that the created surfaces ¢; are pairwise different.’
Let FLIP(e) transform C; to C; 1. Denote by Q the region restructured by FLIP(e),
and let S and S’, respectively, be the subcomplex of C; and C;4+; in Q. By adding all
internal edges of S’ to C; (and splitting faces of C; accordingly) we obtain a polygonal
complex A in R. Extend % to a height vector /4 for the complete vertices of A such
that the surface for A and % 4 is ¢;. (This is possible although A is not face-reducible,
in general.) Similarly, extend & to ', such that the surface for A and /', is ¢;41. Then
h;‘ < h 4 holds (element-wise, with strict inequality for some elements), because e is
the only internal edge for S and ¢;|, is reflex, and all internal edges ¢’ of S’ have
a convex image ¢;1/|./. But surface heights can be shown to strictly decrease with
the height vector (see [1], Lemma 5.2). This implies that the surfaces ¢; are pairwise
different.

In fact, the complexes C; are pairwise different as well: If C; and C; have different
sets of complete vertices then clearly C; # C;. Otherwise, by the uniqueness of ¢; for
fixed h, ¢; # ¢; implies C; # C;. Observe next that no new vertices are created by the
operation FLIP. But the number of polygonal complexes with vertices from a fixed
set of n points is finite (in fact, exponential in n). We conclude that the procedure
above terminates with a surface ¢* where all edges are convex.

In the corresponding complex C*, the only vertices that are complete are the cor-
ners of R: Any other complete vertex v of C* would be incident to edges whose

5Thanks go to Paco Santos for pointing out, in the context of pseudo-triangulations, the following elegant
argument.
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images are reflex in ¢*, by the choice of 4 (v). This implies ¢p* = F,, by the unique-
ness of Fj,. Observe that C(Fy) = Dp is the M-skeleton of C*. If C* # Dy then C*
contains internal edges (and possibly, internal and incomplete vertices) that have no
counterparts in Fj,. As long as such an edge e exists, we apply FLIP(e). For the
two faces f and g incident to e, we have My = M. Therefore, FLIP(e) removes all
edges internal to U (M ¢) (in particular, the edge e) and creates no edges. The num-
ber of such flips is bounded by the number of edges of C*. The surface ¢* remains
unchanged, and the complex Dy, is the result. O

Theorem 6 is rather general. Flips can be applied in any order to edges with
reflex images, and we even can drop the requirement that such edges have to be
flipped before edges without surface counterparts. Moreover, when starting with a
pre-triangulation this class is never left; see Theorem 5. We remark that Theorem 6
is a generalization of the optimality theorem for pseudo-triangulations in [1].

As a special case, let R be a polygon, and let P7 be some minimum pseudo-
triangulation in R without internal vertices. Then P7 is face-honest by Corollary 5.
Let e be an edge of P7 which is incident to two pseudo-triangles V and V’. We have
My =V # V' = My and the region affected by FLIP(¢) is Q = V U V’. Moreover,
O has exactly 4 corners by Lemma 3. So FLIP(e) is an exchanging flip; see Sect. 10.
Let & be the height vector used above to define Dg = C(F;,). We may call FLIP(e)
a Delaunay flip if the edge ¢|. in the surface ¢ for P7 and 4 is reflex. As FLIP(e)
transforms P7 to a minimum pseudo-triangulation of R, and Dy is a complex of this
type, we obtain:

Corollary 7 Any minimum pseudo-triangulation of a polygon R can be flipped to Dg
by repeated application of Delaunay flips and without leaving the class of minimum
pseudo-triangulations.

If Delaunay flips are performed in a well-chosen order then O (n?) flips are suf-
ficient if R has n vertices, as can be seen by adapting a result in [1]. Note finally
that the edges of Dr do not form a subset of the edges of the constrained Delaunay
triangulation [18] of R, in general.

12 Face-Honest Flipping

Throughout this section, we restrict attention to polygonal complexes whose under-
lying region R is a polygon. We show that any triangulation 7 in R can be flipped to
the complex C(F},), for any given (generic) height vector 4 for the vertices of 7, in a
way such that each intermediate complex is a pseudo-triangulation. (We allow 7 to
contain internal vertices.) In fact, all obtained complexes are face-honest and thus are
combinatorial projective, except in cases where an internal vertex has to be removed
in the subsequent flip and face-honesty is impossible to keep. This guarantees that
only standard flips for pseudo-triangulations are performed. We start with a technical
lemma.
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Lemma 9 Let P7 be a pseudo-triangulation in R, and let v be an internal and
complete vertex of PT with at least 4 incident edges. Then at least one such edge
can be flipped by exchange such that no edge incident to v is created.

Proof Let Q be the union of the faces of P7 incident to v, and let C be the pseudo-
triangulation in Q defined by these faces. For an edge vx of C, define «(vx) as the
internal angle at v of the union of the two faces of C adjacent in vx. Imagine that
removing edge flips are applied to all edges vu where u is a non-corner of Q that
is complete in C. Each such flip makes a unique vertex incomplete. This vertex is
different from v (and thus is u#) because o (vu) < 7 holds by our assumption on u.
So v stays complete in the obtained complex, and therefore at least 3 edges of C are
still incident to v. Such an edge vw can be flipped in C by exchange, and without
creating an edge incident to v, if «(vw) < . But this is guaranteed for at least one
such edge, because we assumed v to be incident to at least 4 edges of C. ]

Theorem 7 Let R be a polygon and let T be a triangulation in R. Moreover, let h
be a height vector for the vertices of T, and assume generic conditions for the com-
plex C(Fy). Then T can be transformed by FLIP to C(Fy), in a way such that all
intermediate complexes are face-honest pseudo-triangulations, except immediately
before a vertex is removed.

Proof Denote with P7 the current complex obtained from flipping; initially,
PT =T.Recall that all vertices of 7 are complete. We construct a desired sequence
of flips that terminates with P7 = C(F},). Let ¢ denote the unique surface that results
from P7 when h is applied to all complete vertices. We say that an internal vertex v
of PT fulfills the hull condition if ¢|, lies strictly below the lower convex hull of its
neighbored vertices in ¢.

Step (1): As long as there exists an internal vertex v of P7 that violates the hull
condition, we do the following. Apply exchanging flips to the edges incident to v
until only 3 such edges remain. This is possible by Lemma 9. After each flip all the
internal vertices of P7 are complete, because this was true before the flip, and the flip
was exchanging. Two more applications of FLIP to v’s remaining edges first make v
incomplete (and P7 temporary non-projective and hence non face-honest), and then
remove v, leaving all internal vertices complete again.

Step (2): While there exists an edge ¢ in P7 such that ¢|, is reflex, do the follow-
ing: Apply FLIP(e). If e is exchanged then no vertex alters its completeness status.
If e gets removed then an endpoint of e which is a vertex of R becomes incomplete:
Each internal vertex fulfills the hull condition before the flip, and ¢|, was reflex. So
all internal vertices stay complete after FLIP(e). If some internal vertices now violate
the hull condition then repeat from Step (1). (Note that P7 need not be a triangula-
tion any more.)

The total number of flips performed in Step (1) is clearly O(n?), if 7 contains n
vertices. In Step (2) only edges with a reflex image are flipped. The number of these
flips is finite by the arguments in the proof of Theorem 6. In each created complex
all internal vertices are complete, except immediately before a vertex is removed. So,
with these exceptions, each such complex is a face-honest pseudo-triangulation, by
Lemma 6.
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In particular the final complex, P7*, is face-honest and therefore combinatorial
projective. The surface ¢* for P7* contains no reflex edge. This implies that, for
each edge e of PT*, its image ¢*|, is a convex edge. As only vertices that violate the
hull condition are removed, and such vertices cannot belong to C(F},), we conclude
PT* =C(Fp). O

We conjecture that only quadratically many flips are performed in Step (2). This
would yield a flip sequence of total length O (n?). Theorem 7 implies that the com-
plex C(Fy) for polygons is a pseudo-triangulation. A non-algorithmic proof for this
fact has been given in Sect. 8 (Corollary 6).

A result related to Theorem 7 has been proved in [14]. Namely, any triangula-
tion 7 can be flipped to the complex C(F};) such that no edges with convex images
in the corresponding surface are flipped, and such that all intermediate complexes are
combinatorial projective (with the above exceptions before vertex removal).

13 Concluding Remarks

We have introduced the concept of pre-triangulations, a relaxation of triangu-
lations that goes beyond the frequently used concept of pseudo-triangulations.
Less intuitive at first sight, pre-triangulations turned out to be more natural than
pseudo-triangulations in questions concerning liftability and flippability of polygo-
nal complexes—even in the most simple case where the underlying region is a convex
polygon.

One of the central tools used in our developments is the completeness status of
the vertices of a polygonal complex. (In)completeness of a vertex depends on the
(non)convexity of its incident internal angles and thus on the order type of the vertices
of the complex in the end. This enabled us to characterize complexes which exhibit
the ‘robust’ lifting property we called combinatorial projectivity.

We did not address algorithmic issues in this paper. Deciding combinatorial pro-
jectivity of a given polygonal complex in an efficient way is one of them. In view
of Theorem 2 this question reduces to identifying the M-skeleton of the complex
or detecting its non-existence. As a simple approach we may try to construct—
after e-perturbing the vertices—a surface for the complex in question, using random
heights for its complete vertices. The surface construction mainly means resolving a
system of n linear equations [1] where n is the number of vertices. If the system has a
solution then the edges of the resulting unique surface correspond to the M-skeleton
with probability one (see Corollary 2). Otherwise, the M-skeleton does not exist.

Other relevant algorithmic questions are finding short flip sequences within partic-
ular complex classes, and implementing the operation FLIP efficiently. These ques-
tions are discussed in detail in a separate paper [4]. Emphasis is laid on constructing
locally convex functions, and Delaunay-type complexes in particular.
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