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Abstract Lukács and András posed the problem of showing the existence of a set
of n − 2 points in the interior of a convex n-gon so that the interior of every triangle
determined by three vertices of the polygon contains a unique point of S. Such sets
have been called pebble sets by De Loera, Peterson, and Su. We seek to characterize
all such sets for any given convex polygon in the plane.

We first consider a certain class of pebble sets, called peripheral because they
consist of points that lie close to the boundary of the polygon. We characterize all
peripheral pebble sets, and show that for regular polygons, these are the only ones.
Though we demonstrate examples of polygons where there are other pebble sets, we
nevertheless provide a characterization of the kinds of points that can be involved in
non-peripheral pebble sets. We furthermore describe algorithms to find such points.

1 Introduction

Lukács and András posed the following in [1]: Prove that there exists a set S of n− 2
points in the interior of a convex n-gon such that for any three vertices of the n-
gon, the interior of the triangle determined by the three vertices contains exactly one
element of S. Many solutions to this problem were given, one of which was published
in [2]. In [3], De Loera, Peterson, and Su employ analogous sets in d-dimensional
polytopes to prove a generalization of Sperner’s Lemma. Following the terminology
in [3], we will call a solution to the question posed in [1] a pebble set.

In this paper, we consider the problem of characterizing all pebble sets in a given
convex n-gon. We begin by characterizing a certain class of pebble sets, which we call
peripheral, since the points are near the boundary of the polygon. For some kinds of
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polygons, such as regular polygons, these are in fact the only pebble sets, but for other
kinds of polygons, there are others. If we take a certain natural notion of equivalence
of pebble sets, then this provides a lower bound to the number of pebble sets as a
function of n.

In some cases, there may be pebble sets that are not peripheral, and we study
necessary and sufficient conditions for such to exist. We also give a construction for
analyzing polygons in which such pebble sets exist, breaking any such set down into
pebble sets in smaller polygons. This allows us to characterize pebble sets for many
polygons.

We begin in Sect. 2 with a more precise statement of the problem and some prelim-
inary remarks about pebble sets. This section also contains terminology and notation
that will be used throughout.

Section 3 introduces a construction that provides peripheral pebble sets, and
proves that all peripheral pebble sets are of this type. Section 4 deals with non-
peripheral pebble sets, giving a necessary and sufficient condition for such to exist.
Here we also prove that there are no such pebble sets when the polygon is regular. In
Sect. 5, we provide an efficient algorithm for determining if this condition is satisfied.
Finally, in Sect. 6, we consider questions for further research.

2 Preliminaries

In this paper all polygons are assumed to be convex. In general, we will label the
vertices and edges of an n-gon in the counterclockwise direction with the sequence
〈v0, e0, . . . , vn−1, en−1〉. We consider the subscripts for the vertices and edges as in-
tegers modulo n, so that for instance vn = v0 and en = e0.

We will say that three vertices are consecutive if they are of the form vk , vk+1,
vk+2, and that two vertices are adjacent if they are of the form vk and vk+1. A vertex
is incident with an edge if it is an endpoint of the edge. Two edges are incident if they
are of the form ek and ek+1. By a chord of a polygon, we mean the segment joining
two non-adjacent vertices of the polygon.

Definition 1 A pebble set S in a convex n-gon P in the plane is a set of n − 2 points
in the interior of P so that every triangle determined by vertices of P contains exactly
one point of S in its interior.

First we note the following.

Proposition 1 If S is a pebble set in an n-gon P , then no point in S lies on a chord
of P .

Proof Let p be a point on a chord f in P , and consider a triangulation of P that
includes f . This triangulation contains n−2 triangles with pairwise disjoint interiors.
Thus no pebble set can contain p. �

By a chamber of a polygon, we mean a maximal connected subset of the polygon
that does not intersect any edges or chords of the polygon. We will say that two
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subsets of the polygon are equivalent if the sets of chambers containing points in
the subsets are identical. Clearly if S is a pebble set that contains a point p in a
chamber C, and if q is any point in C, then [S − {p}] ∪ {q} is also a pebble set.
Therefore the property of being a pebble set depends only on the equivalence class.

With a slight abuse of notation, we will refer to an entire equivalence class of
pebble sets as a pebble set, and note that we could construct pebble sets by merely
specifying an appropriate set of chambers.

For convenience, when we refer to a triangle as a subset of the plane, we actually
mean the interior of the triangle, since points in a pebble set by definition lie in the
interiors of the triangles.

If u, v and w are distinct vertices in a polygon, we will refer to the triangle they
form as �uvw. We will refer to the triangle formed by an edge or chord e and vertex
v as �ev, and the triangle formed by two incident edges or chords e and f as �ef .

If vk−1, vk , vk+1 are consecutive vertices, then we call �vk−1vkvk+1 a border
triangle, and we will refer to this triangle as the border triangle at vk . We call the
union of the border triangles the periphery of the polygon. The complement of the
periphery in the polygon will be called the core of the polygon.

Since there are n border triangles, then the fact that a pebble set contains n − 2
points necessitates that at least two points in a pebble set will lie in the intersection of
two overlapping border triangles. We will say that such a point lies close to an edge of
the polygon. If a pebble set contains precisely two points that are close to an edge of
the polygon, then the remaining points in the pebble set must be distributed among the
remaining border triangles in a one-to-one correspondence, revealing that all points
in the pebble set lie in the periphery. More generally, the pigeonhole property leads
us to the following observation.

Proposition 2 If a pebble set in an n-gon contains k ≥ 2 points that are close to an
edge of the polygon, then there are precisely k − 2 points in the pebble set that lie in
the core.

The following will be helpful in showing that a set of points is a pebble set.

Lemma 3 Suppose S is a set of n − 2 points in an n-gon P , none of which lies on a
chord. Let T be the set of triangles in P of the form �ev, where e is an edge and v a
vertex of P . If every triangle in T contains at most one point of S, then S is a pebble
set.

Proof First we show that every triangle in T contains precisely one point of S. Let
T ∈ T . Then there exist an edge e and a vertex v such that T = �ev. Triangulate P

with all chords from v. Every triangle in this triangulation is in T , and thus contains
at most one point of S. Since there are n − 2 triangles in this triangulation, and since
no point of S lies on a chord of P , we have that T contains exactly one point of S.

Now we show that S is a pebble set. Let T be any triangle determined by three
vertices of P . If T ∈ T , then T contains precisely one point of S. So suppose T /∈ T .
Then T = �vivj vk , where no two of {vi, vj , vk} are adjacent. Assume that 0 ≤ i <

j < k ≤ n − 1. Working counterclockwise, triangulate P with chords from vi to all
vertices vi+2 to vj , chords from vj to all vertices vj+2 to vk , and chords from vk to



Discrete Comput Geom (2007) 38: 680–700 683

Fig. 1 Shaded region is the fan
of edge e

Fig. 2 A periphery pebble set
for an 11-gon where
A = {1,2,4,6}

all vertices vk+2 to vi . Every triangle except �vivj vk in this triangulation contains
precisely one edge of P , and therefore contains precisely one point of S. Since there
are n − 3 triangles in the triangulation other than �vivjvk , and since no point of S

lies on a chord of P , there must be precisely one point of S in �vivjvk . �

Definition 2 For a given edge e of a polygon, the union of all triangles of the form
�ev across all vertices v of P is called the fan of e. (See Fig. 1.)

Lemma 3 implies that it is only necessary to check that the triangles in the fans
of the edges of a polygon contain at most one point of a set S to determine if S is a
pebble set.

3 Characterizing Peripheral Pebble Sets

We say that a pebble set is peripheral provided all points in the pebble set lie in the
periphery. We present a construction whereby all peripheral pebble sets of an n-gon
can be obtained.

Construction 1 Given any subset of W = {1,2, . . . , n − 4}, we may determine a
unique pebble set that contains a point close to edge v0vn−1 in the following way.

First let A be a subset of W , and suppose A has k elements. (See Fig. 2.) Let
B = W − A, so that B has m = n − 4 − k elements. We begin by relabeling some of
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the vertices and edges of P for convenience. For 0 ≤ i ≤ m + 1, we let wi = vn−1−i .
Label edges fi = wiwi+1 for 0 ≤ i ≤ m. For 0 ≤ i ≤ k, let Ti denote the border
triangle at vi , and for 0 ≤ i ≤ m, let Ui denote the border triangle at wi .

Note that each Ti is divided into n− 2 chambers by the chords emanating from vi .
We label these chambers Ci,j (0 ≤ j ≤ n − 3) in the following way. For 0 ≤ i ≤ k,
we let Ci,0 be the chamber close to ei−1, labeling consecutively up to Ci,n−3, the
chamber close to ei . Similarly for the Ui (0 ≤ i ≤ n − 3), we let Di,0 be the chamber
of Ui close to fi−1, labeling up to Di,n−3, the chamber close to fi .

To construct a pebble set, begin by letting p0 be a point in the chamber close to
v0w0, and pn−3 a point in the chamber close to vk+1wm+1. Writing the elements of A

as a1 < a2 < · · · < ak , let pi be a point in each Ci,ai
. Similarly, writing the elements

of B as b1 < b2 < · · · < bm, let pi+k be a point in each Di,bi
. Let S = {p0, . . . , pn−3}.

Theorem 4 Let P be an n-gon (n ≥ 4) and e an edge of P . Then the construc-
tion described above determines a one-to-one correspondence between the periph-
eral pebble sets containing a point close to the edge v0w0 and the power set of
{1,2, . . . , n − 4} (n ≥ 4).

Proof We use induction to show that S as constructed above is a pebble set. If n = 4,
then A = B = ∅. Thus S consists of a point close to edge v0w0 and a point close
to v1w1, which is clearly a pebble set. So suppose n ≥ 5 and that this construction
produces a pebble set for a polygon on fewer than n vertices. Note that we may
assume that 1 ∈ A. For otherwise, an argument similar to the one to follow can be
applied to B .

First we let n′ = n − 1 and create an n′-gon, which we will denote P ′, by deleting
v0 and all chords of P emanating from it, then including the segment w0v1 as an edge
of P ′. (See Fig. 3 for an example.) We show that S′ = S −{p0} is precisely the same
construction in P ′ as the above construction is for P . To demonstrate this, we relabel
some of the vertices, border triangles, and chambers of P ′, as well as the points in
S′ to reveal a subset A′ of W ′ = {1,2, . . . , n′ − 4} that has k′ = k − 1 elements, a set
B ′ = W ′ − A′, and a selection of points in the chambers of the border triangles of P ′
analogous to that for P .

For 0 ≤ i ≤ k′ + 1, let v′
i = vi+1 and e′

i = ei+1. For 1 ≤ i ≤ n′ − 3, let p′
i = pi+1.

First note that S′ contains p′
0 = p1, which is close to edge v′

0w0, and it contains

Fig. 3 Deletion of v0 from P in
the proof of Theorem 4
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p′
n′−3 = pn−3, which is close to v′

k′+1wm+1. Label the border triangles at the v′
i as

T ′
i , and note that Ti′ = Ti+1. Label the chambers of T ′

i as C′
i,j as before, where C′

i,0
is the chamber in T ′

i close to e′
i−1, labeling consecutively up to Ci,n′−3, the chamber

of T ′
i close to e′

i . With this labeling, we have that C′
i,j = Ci+1,j+1 for i ≤ j ≤ n′ − 3.

Let A′ = {a − 1 : a ∈ A,a 
= 1} and label the elements of A′ as a′
i = ai+1 − 1 for 1 ≤

i ≤ k′. Note that A′ is a subset of W ′ = {1,2, . . . , n′ − 4} that contains k′ elements.
Furthermore, since ai ≥ i, we have that a′

i ≥ i. Also, C′
i,a′

i

= Ci+1,a′
i+1 = Ci+1,ai+1 ,

so that C′
i,a′

i

contains p′
i = pi+1.

In a somewhat similar fashion, we relabel the chambers in P ′ of the border tri-
angles at the wi (0 ≤ i ≤ m), where Di,0 is the chamber of Ui close to fi−1, up
to Di,n′−3, the chamber of Ui close to fi . With this relabeling, D′

i,j = Di,j+1 for
i ≤ j ≤ n′−3. Let B ′ = {b−1 : b ∈ B}, and label the elements of B ′ as b′

i = bi −1 for
1 ≤ i ≤ m. Note that B ′ = W ′ − A′. Since 1 ∈ A, we have that bi ≥ i for 1 ≤ i ≤ m.
Also, D′

i,b′
i

= Di,b′
i+1 = Di,bi

, so that D′
i,b′

i

contains p′
i+k′ = pi+k .

With this, we have that the removal of v0 from P leaves an n′-gon whose set of
points S′ is of the same construction as that for P . We now show that S is a pebble
set in P , for n ≥ 5 by applying Lemma 3.

Let e be any edge of P and v any vertex. We show �ev contains precisely one
point of S. If e /∈ {v0w0, e0}, and v 
= v0, then �ev is a triangle in P ′. By the inductive
assumption, �ev contains precisely one point of S′, and therefore of S.

Now suppose v = v0. If e = f0, then by the way S was constructed, �ev contains
the unique point p0. Also, if e = vk+1wm+1, then �ev contains the unique point
pn−3. If e = ei for some 1 ≤ i ≤ k, then �ev ∩ Ti contains all chambers Ci,j for
i − 1 ≤ j ≤ n − 3. Since ai ≥ i, �ev contains pi . Also, �ev ∩ Ti+1 contains the
chambers Ci+1,j for 0 ≤ j ≤ i − 1. Since ai+1 ≥ i + 1, pi+1 does not lie in �ev.

Reasoning in a similar fashion, if 1 ≤ i ≤ m and e = fi , then �ev ∩ Ui contains
chambers Di,i to Di,n−3, and �ev ∩Ui+1 contains chambers Di+1,0 to Di+1,i . Since
bi ≥ i, Si,bi

is one of the chambers in �ev, and thus �ev contains pi+k . Furthermore,
�ev does not contain Di+1,bi+1 , so that �ev does not contain pi+k+1.

Finally, suppose e ∈ {v0w0, e0}. We may assume v /∈ {v0, v1,w0}, for otherwise
�ev contains p0. By the inductive assumption, �v1w0v contains precisely one point
of S′. In particular, �v1w0v contains p1, and no other points of S′. By the way S was
constructed, if e = v0w0, then �ev contains p0. Furthermore, since �v1w0v contains
only p1, there are no other points of S in �ev. On the other hand, if e = e0, then �ev

contains p1. Since �v1w0v contains no other points of S, then neither does �ev.
Thus every triangle of the form �ev contains precisely one point of S. By

Lemma 3, S is a pebble set.
Now we show that all peripheral pebble sets are derivable from the construction

described above. Let S be any pebble set, all of whose points lie in the periphery
of P . Suppose the vertices of P are labeled so that S contains a point p0 close to
en−1. Since all points of S lie in the periphery, there exists precisely one other point
pn−3 close to some other edge of P . Relabel vertices, edges, border triangles, and
chambers of the border triangles as was done above, so that p0 is close to edge v0w0,
and pn−3 is close to vk+1wm+1 for the appropriate k and m such that k + m = n − 4.
Since each border triangle contains precisely one point of S, we may let A be the
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set of all positive integers ai for which S contains a point in Ci,ai
(1 ≤ i ≤ k), and

B the set of all positive integers for which S contains a point in Di,bi
(1 ≤ i ≤ m).

We show that A is a uniquely determined subset of W = {1,2, . . . , n − 4}, and that
B = W − A.

Since p0 lies close to v0w0, no other points of S can lie in T0 or U0. But since
�e0w1 and �f0v1 must contain precisely one point of S, then there exists a unique
point p1 ∈ S in either C1,1 or D1,1. Thus either a1 = 1 ∈ A or b1 = 1 ∈ B , but not
both.

Now suppose that s ≥ 1 and that for 1 ≤ t ≤ s, either t ∈ A or t ∈ B , but not both.
We may assume that s ∈ A, for a similar argument would work in the event s ∈ B . Let
i be the number of elements in A ∩ {1,2, . . . , s}, so that ai = s. Let j be the number
of elements in B ∩ {1,2, . . . , s}, and let ps be the point of S that lies in Ci,ai

.
Notice that for 1 ≤ h ≤ n − 2, �eivi−h (where i − h is taken modulo n) when

intersected with Ti , yields all chambers Ci,h−1 to Ci,n−3. Since wj = vn−1−i =
vi−(i+j+1−n), we may let h = i + j + 1 to have that �eiwj intersects Ti to yield the
chambers from Ci,i+j = Ci,s to Ci,n−3. Thus ps is the unique point of S in �eiwj .
Similarly, �ei+1wj intersects Ti+1 to yield Ci+1,0 through Ci+1,i+j+1. Thus �eiwj

intersects Ti+1 to yield Ci+1,0 through Ci+1,i+j . Thus in Ti+1 there are no points
of S in any of the Ci+1,h for 0 ≤ h ≤ i + j . But �eivj+1 contains a point of S.
Thus there must exist a point ps+1 either in Ci+1,i+j+1 or in Dj+1,i+j+1, but not
both. Since i + j = s, there exists a point of S in either Ci+1,s+1 or Dj+1,s+1. If
ps+1 ∈ Ci+1,s+1, then s + 1 ∈ A, and we may write ai+1 = s + 1. On the other hand,
if ps+1 ∈ Dj+1,s+1, then s + 1 ∈ B , and we may write bj+1 = s + 1.

By induction (1 ≤ s ≤ n − 4), A and B are uniquely determined. �

If n = 3, then an n-gon has a unique pebble set. If n ≥ 4, then the power set of
{1,2, . . . , n − 4} contains 2n−4 elements. Thus we have the following.

Corollary 5 Let P be a convex n-gon, and e an edge of P . Let d(P ) = 1 if n = 3,
and d(P ) = 0 otherwise. Then the number of peripheral pebble sets in P that contain
a point close to e is 2n−4+d(P ).

If n ≥ 4, we may sum the numbers of pebble sets from Corollary 5 across all edges
of an n-gon. Since a peripheral pebble set contains precisely two points close to an
edge, we count each pebble set exactly twice. Thus we arrive at the following.

Corollary 6 If P is an n-gon (n ≥ 4), then the number of peripheral pebble sets is
n2n−5.

4 Characterizing Non-Peripheral Pebble Sets

For a given n-gon, pebble sets other than peripheral pebble sets might exist. In this
section, we want to characterize chambers for which a pebble set exists that contains
a point in the chamber. An important example of such a chamber lies in the hexagon
in Fig. 4.
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Fig. 4 Example of a
non-peripheral pebble set in a
hexagon

In any hexagon H , the chords f1 = v0v3, f2 = v1v4, and f3 = v2v5 intersect pair-
wise. If these three points of intersection are distinct, they determine a triangular
region R in H . For any given border triangle T , none of these three points lies in T ,
so that R lies in the core of H . Furthermore, all chords of H other than {f1, f2, f3}
are boundary segments of the border triangles, and thus do not intersect the core of H .
Therefore, R is a triangular chamber in the core of H .

4.1 Edge Supports and Viability

Definition 3 We say that a chamber is viable if there exists a pebble set containing a
point in the chamber.

By Theorem 4, we see that every chamber in the periphery of a polygon is viable.

Definition 4 Given a chamber C of a polygon P , the edge support of C, written
ES(C), is the set of edges e of P for which C is contained in the fan of e.

As an example, note that in Fig. 4, the edge support of the triangular chamber in the
core is {e0, e2, e4}. By the support size of C, we mean the cardinality of ES(C), which
we denote |ES(C)|. A major result of this section is that a chamber C is viable if and
only if |ES(C)| = 3 (Theorem 17 and Corollary 22). Along the way, we note other
necessary conditions of viability that are helpful in practice. In particular, if the edge
support of a viable chamber contains two incident edges, the chamber must lie in the
periphery (Proposition 15). In addition, the only pebble sets in a regular polygon are
peripheral (Theorem 16).

Proposition 7 If C is a chamber in a polygon and vk is any vertex, then there exists
a unique edge ej (j /∈ {k − 1, k}) such that C is contained in �ejvk .
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Fig. 5 A possible chamber
from Proposition 9

Proof The chords of the polygon emanating from vk form a triangulation of the poly-
gon. Thus C must lie within precisely one of these triangles, which are of the form
�ejvk , where j /∈ {k − 1, k}. �

Proposition 8 If C is a chamber in the periphery of a polygon, then |ES(C)| = 3,
and at least two edges of ES(C) are incident.

Proof Suppose C is in the periphery. Then it is contained in the border triangle at
some vk , so that ek−1, ek ∈ ES(C). Applying Proposition 7 to vk , we see that there is
an additional edge in ej ∈ ES(C). Now any triangle containing C must include vk as
a vertex. Since ej is the unique edge such that C is contained in �ejvk , there are no
other edges in ES(C). �

For convenience in the next proof, we will say that a vertex vj is between vertices
vi and vk if the counterclockwise ordering of the three vertices is 〈vi, vj , vk〉.

Proposition 9 Suppose vk , vk+1, vj and vj+1 are distinct vertices in a polygon, and
that C is a chamber in �ejvk . Let vi be a vertex between vk and vj , and suppose also
that C lies in �ejvi . Then C is not in the fan of ek . (See Fig. 5 for an illustration.)

Proof Let vm be any vertex (m /∈ {k, k + 1}). We show that C is not in �ekvm to
have that C is not in the fan of ek . If vm is between vk+1 and vj+1, then we may
triangulate the polygon by including the chord from vk+1 to vm, all chords from vk+1
to the vertices between vk+1 and vm, the chord from vk to vm, and all chords from
vk to the remaining vertices. This triangulation contains �ekvm and �ejvk , and are
therefore disjoint. Since C is contained in �ejvk it is not in �ekvm.

If vm is between vj and vk , triangulate the polygon by including chords from vi

to all vertices between vi and vm, and chords from vm to all remaining vertices. This
triangulation contains �ejvi and �ekvm. Since C is in �ejvi it is not in �ekvm.

In either case, C is not contained in �ekvm. Since this is true for all m, we have
that C is not in the fan of ek . �
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To characterize viable chambers in the core of a polygon, we will need to relate
a given n-gon to an (n − 1)-gon formed by removing a vertex, as in the proof of
Theorem 4.

Let vk be a vertex in an n-gon P , and let C be a chamber of P not in the border
triangle at vk . Let P ′ be the (n−1)-gon formed by deleting vk and including the edge
vk−1vk+1, and let C′ be the chamber of P ′ that contains C. Since chambers do not
intersect any chord in a polygon, we may make the following observation.

Proposition 10 Suppose T is a triangle determined by three vertices of P ′, and sup-
pose T contains C. Then T also contains C′.

Proposition 10 allows us to show that an edge e is in ES(C′) by showing merely
that C is contained in �ev for some vertex v in P ′. The following proposition relates
the edge support of a chamber in P to the edge support of the chamber that contains
it in P ′.

Proposition 11 Let vk be a vertex in an n-gon P , let C be a chamber of P not in the
border triangle at vk , and let C have edge support ES(C). Let P ′ be the (n − 1)-gon
formed by deleting vk and including the edge f = vk−1vk+1. Let C′ be the chamber
of P ′ that contains C, and let ES(C′) be the edge support of C′ in P ′. Then the
following are true:

1. If neither ek−1 and ek is in ES(C), then ES(C′) = ES(C).
2. If precisely one of ek−1 and ek is in ES(C) (say ek), then ES(C′) = [ES(C) −

{ek}] ∪ {f }.
3. If ek−1, ek ∈ ES(C), then there exists an edge ej ∈ ES(C) (j /∈ {k − 1, k}) such

that ES(C′) = [ES(C) − {ek−1, ek, ej }] ∪ {f }.

Proof We prove the result by showing the following.

1. f ∈ ES(C′) if and only if ek−1 ∈ ES(C) or ek ∈ ES(C).
2. For every other edge ej in P ′ (so that j /∈ {k − 1, k}), the following hold:

(a) If ek−1 and ek are not both in ES(C), then ej ∈ ES(C) if and only if ej ∈
ES(C′); and

(b) If ek−1, ek ∈ ES(C), and if (by Proposition 7) ej is the unique edge for which
C is contained in �ejvk , then ej ∈ ES(C)− ES(C′), and for every other edge
ei (i 
= j ), ei ∈ ES(C′) if and only if ei ∈ ES(C).

For claim 1, if f ∈ ES(C′), then there exists a vertex vj (j /∈ {k−1, k, k+1}) such
that C′ is contained in �f vj . This triangle is itself contained in the union of �ek−1vj

and �ekvj . Thus C is contained in one of these triangles, so that either ek−1 or ek

is in ES(C). Conversely, if either ek−1 or ek is in ES(C), then we may consider that
ek ∈ ES(C) (the argument for ek−1 would be similar). Thus there exists a vertex vj

(j /∈ {k, k + 1}) such that C is contained in �ekvj . But j 
= k − 1 also, because C is
not in the border triangle at vk . Thus C is contained in �f vj . By Proposition 10, C′
is also contained in �f vj , so that f ∈ ES(C′).

For claim 2a, suppose j /∈ {k − 1, k} and ek /∈ ES(C). (The arguments for the case
of ek−1 /∈ ES(C) would be similar to the ones to follow.) Suppose ej ∈ ES(C) and
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that ej /∈ ES(C′). Then there exists a vertex vi such that C is contained in �ejvi .
If i 
= k, then �ejvi contains C, and therefore contains C′ by Proposition 10. This
contradicts the fact that ej /∈ ES(C′). Therefore, vk is the only vertex such that C is
contained in �ejvk . Since ek /∈ ES(C), it is impossible that j = k +1. Thus the edges
ej and ek determine a quadrilateral in P , which is the union of triangles �ekvj+1 and
�ejvk+1. Furthermore, C must lie in this quadrilateral, because it lies in �ejvk . But
C does not lie in �ekvj because ek /∈ ES(C). Also, C′ does not lie in �ejvk+1 by
supposition, so that C does not lie in �ejvk+1 either. This is a contradiction, so it
must be that ej ∈ ES(C′).

Conversely, suppose ej ∈ ES(C′). Then there exists vertex vi (i 
= k) such that
C′ is contained in �ejvi . Since C ⊆ C′, C is also contained in �ejvi , so that ej ∈
ES(C).

For claim 2b, suppose ek−1, ek ∈ ES(C) and that ej is the unique edge such that C

is contained in �ejvk . Then clearly ej ∈ ES(C), so we must show that ej /∈ ES(C′).
First suppose that j = k + 1. Then C is in the border triangle at vk+1. By Proposi-
tion 8, ES(C) = {ek−1, ek, ek+1}, and by Proposition 7 applied to vk+1, C must lie in
the border triangle at vk . This is impossible, since C is assumed not to be in this bor-
der triangle. By similar reasoning, j 
= k −2. Thus ek−1, ek and ej determine a penta-
gon in P , and we may apply Proposition 9. If C is contained in �ejvi for some vertex
vi between vk and vj , then C cannot be in the fan of ek . But ek ∈ ES(C) by assump-
tion. Reasoning similarly from Proposition 9, if C is contained in �ejvi for some
vi between vj+1 and vk+1, then C cannot be in the fan of ek−1. But ek−1 ∈ ES(C).
Thus for any i 
= k, C does not lie in �ejvi , and neither is C′ contained in �ejvi .
Therefore, ej /∈ ES(C′).

Finally, if ei is an edge, i 
= j , we show that ei ∈ ES(C′) if and only if ei ∈ ES(C).
As before, if ei ∈ ES(C′), then there exists a vertex vm so that C′ ⊂ �eivm. Since
C′ ⊃ C, we have that ei ∈ ES(C). Conversely, suppose ei ∈ ES(C). Then there exists
a vertex vm so that C ⊂ �eivm. Now m cannot equal k, since i 
= j and �ejvk is the
unique triangle given by Proposition 7 based at vk containing C. Therefore, �eivm

is in P ′, and so ei ∈ ES(C′). �

Proposition 11 implies the following about the support size of C, and its relation-
ship to the support size of C′.

Corollary 12 Let C be a chamber in an n-gon P . Then |ES(C)| is odd and at least
three. In fact, If vk is a vertex whose border triangle does not contain C, and C′
is the chamber in the (n − 1)-gon created from P by deleting vk , then |ES(C)| =
|ES(C′)| + 2 whenever ek−1, ek ∈ ES(C). Otherwise, |ES(C)| = |ES(C′)|.
Proof If n = 3 then |ES(C)| = 3. So suppose n ≥ 4 and that the result is true for all
polygons on fewer than n vertices. Now C cannot be in every border triangle. We may
therefore remove some vertex vk whose border triangle does not contain C to create
the n-gon P ′ with a chamber C′ ⊇ C, where by the inductive assumption, |ES(C′)|
is odd and at least three. If ek−1, ek ∈ ES(C), then by Proposition 11, |ES(C)| =
|ES(C′)| + 2. Otherwise, |ES(C)| = |ES(C′)|. �

We will show that a support size of three is necessary and sufficient for the viability
of a chamber. First we show the following.
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Proposition 13 Suppose S is a pebble set in an n-gon P (n ≥ 4), and v is any vertex
of P . Let p be the point of S that lies in the border triangle at v, and let P ′ be the
polygon formed from P by removing v. Then S − {p} is a pebble set in P ′.

Proof If T is any triangle in P ′, it is also a triangle in P . Thus T contains a unique
point of S. Now every triangle that contains p includes v as a vertex, so that p is not
the point of S that lies in T . Therefore, S − {p} is a pebble set in P ′. �

Corollary 14 Suppose C is a viable chamber in an n-gon (n ≥ 4), and that C is not
in the border triangle at vertex v. Then C′ ⊇ C is viable in the (n − 1)-gon created
by removing v.

4.2 Proof of Necessity

We are now ready to show that every viable chamber has support size three. In
Sect. 4.3 we will prove the converse. In preparation for the proof of necessity, we
first demonstrate another necessary condition for viability that has practical applica-
tion. Proposition 15 implies that if a chamber lies in the core of a polygon and its
edge support contains two incident edges, then it is not viable.

Proposition 15 If C is a viable chamber and ES(C) contains two incident edges,
then C is in the periphery.

Proof Suppose C is viable and ES(C) contains ek and ek+1. Then there exist vertices
vi, vj (i, j 
= k + 1) such that �ekvi and �ek+1vj contain C. Let T be the border
triangle at vk+1. Now T consists of n − 2 chambers, which we label C0, . . . ,Cn−3,
where C0 = T ∩�ek−1vk+1, and the others are numbered consecutively up to Cn−3 =
T ∩ �ek+2vk+1.

By Proposition 7, there is an edge em so that �emvk+1 contains C. Thus
T ∩ �emvk+1 is a single chamber, which we call Cm. By convexity, any triangle
containing C and vk+1 must intersect (and therefore contain) Cm.

Since the triangles �ekvi and �ek+1vj both contain C, they both contain Cm.
Now �ek+1vj contains C0, so by convexity, it contains chambers C0 through Cm.
Similarly, �ekvi contains Cm and Cn−3, and therefore, all the chambers Cm through
Cn−3. We can then conclude that �ekvi ∪ �ek+1vj contains T .

Now since �ekvi is a triangle, any pebble set containing a point in C cannot
contain another point in �ekvi . Similarly for �ek+1vj . Thus a pebble set containing
a point in C can have no other point in T . But T is a triangle, and so the pebble set
must have a point in it. Therefore C must be in T , and hence in the periphery. �

An interesting implication of Proposition 15 is the following.

Theorem 16 If P is a regular n-gon, then all pebble sets are peripheral.

Proof If n ∈ {3,4} then every chamber is in the periphery, so let n ≥ 5, and let P

be the regular polygon on n vertices. We show that every point in the polygon that
does not lie on a chord is in a chamber whose edge support contains two incident
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Fig. 6 A regular polygon from
the proof of Theorem 16

edges. Let O be the center point of P . For a point x 
= O anywhere in P , define θ(x)

to be the counterclockwise angle between segments Ov0 and Ox (0 ≤ θ < 2π ). Let
k = �n/2�. Then k is the smallest positive integer for which θ(vk) ≥ π .

Suppose p is any point in a viable chamber C of P . Since chambers are open
and nonempty, we may assume p 
= O . By rotating the indices of P and exploiting
reflective symmetries of P , we may assume that 2π

n
≤ θ(p) ≤ 3

2
2π
n

. In other words,
we may assume that p lies in a closed triangular B ⊆ P defined by O , v1, and the
midpoint of e1.

If p lies in �e1v0, then it is in the periphery. So we may assume otherwise. By the
way k was chosen, we may consider a triangulation of chords emanating from v0 and
have that there is some ej (2 ≤ j ≤ k − 1) such that p lies in �ejv0. This triangle is
a subset of the quadrilateral determined by e0 and ej . We show that p is in the fans
of both e0 and e1.

First we show that p is in the fan of e1. If n is odd, then �e1vk+1 contains O ,
so that it contains all of B . Thus p lies in �e1vk+1. If n is even, then chord v1vk+1
passes through O . Since p does not lie on a chord of P , then p must lie in �e1vk+1.
In either case, p, and therefore all of C, lies in the fan of e1.

Now we show that p is in the fan of e0. Suppose that p does not lie in either �e0vj

or �e0vj+1. Then it must lie in �ejv1 ∩ �ejv0. Now the chords v0vj and v1vj+1
intersect at a point q where θ(q) is the average of θ(v1) = 2π/n and θ(vj ) = 2jπ/n.
Thus θ(q) = (j + 1)π/n, so that θ(p) > π(j + 1)/n. But since j ≥ 2, we have that
θ(p) ≥ 3π/n. This is a contradiction, so p must lie in either �e0vj or �e0vj+1,
Thus p, and therefore C, lies in the fan of e0.

Therefore e0 and e1, which are incident edges, are in ES(C), and by Proposi-
tion 15, we can conclude C is in the periphery. �

Theorem 16 can actually be stated in a slightly stronger form. If P is an n-gon
for which the intersections of the chords generates the same internal topology as the
regular n-gon, then all pebble sets are peripheral. Given that we have characterized
all peripheral pebble sets in general in Sect. 3, we therefore have solved the problem
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of characterizing all pebble sets for polygons whose internal topology is equivalent
to that of a regular polygon.

We are now ready to prove one direction of the viability question.

Theorem 17 If C is a viable chamber in an n-gon, then |ES(C)| = 3.

Proof Suppose C is viable. If n = 3, the result it clear, so suppose n ≥ 4, and that
the result is true for all polygons on fewer than n vertices. If C is in the periphery,
then |ES(C)| = 3 by Proposition 8. Thus we may assume C is in the core, so that
ES(C) does not contain two incident edges, by Proposition 15. Let vk be a vertex
for which ek−1 and ek are not both in ES(C). Remove vk to form the (n − 1)-gon as
in Proposition 11. Since at least one of ek and ek−1 is not in ES(C), then by Corol-
lary 12, |ES(C)| = |ES(C′)|. By Corollary 14, C′ is viable, so that by the inductive
assumption, |ES(C′)| = 3. Thus |ES(C)| = 3. �

An important consequence of Theorem 17 is the following.

Proposition 18 A chamber with support size three is triangular.

Proof Suppose |ES(C)| = 3. Since all chambers in the periphery are triangular, we
assume C is in the core. We demonstrate a one-to-one correspondence between the
chords that determine the boundary of C and the pairs of edges chosen from ES(C).
Let vivj be a chord that determines part of the boundary of C. The line ←→vivj cuts the
plane into two half planes. We may assume that C lies in the half plane containing
edges ei−1 and ej . Since C is a chamber, it lies in both �ei−1vj and �ejvi . Thus
ei−1, ej ∈ ES(C), and we have that every chord vivj of P determines a unique pair of
edges in ES(C) that lie in the same half plane as C upon cutting the plane with vivj .

Now let vsvt be a chord of P that determines part of the boundary of C. We show
that the only way the above algorithm can yield ei−1 and ej is if vsvt = vivj . Since
C lies in the core, there are four distinct chords incident with ei−1 and ej , defined by
the four distinct endpoints of ei−1 and ej . Since the chord vi−1vj cuts the plane so
that ei−1 and ej lie in different half planes, it is impossible that vsvt = vi−1vj . By
similar reasoning vsvt 
= vivj+1. Furthermore, since C is a chamber, it is impossible
that the chord vi−1vj+1 form part of the boundary of C, since vivj and vi−1vj+1 lie
on opposite sides of vivj+1. Thus the only chord for which the above algorithm can
determine ei−1 and ej is vivj . �

4.3 Proof of Sufficiency

Now we address the converse of Theorem 17 by showing that if the support size of a
chamber is three, then the chamber is viable. We will use the three edges in its edge
support to demonstrate a construction that produces all pebble sets containing a point
in the chamber. We begin by describing a construction whereby such a chamber can
be used to determine three polygonal subsets of a given n-gon.

Construction 2 Let C be a chamber in an n-gon P with support size three, and let
the edges in ES(C) be labeled counterclockwise as e1, e2, and e3. By Proposition 18,
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Fig. 7 A triangular chamber
with support size three

C is triangular. (See Fig. 7.) Label the three chords that define the boundary of C as
f1, f2, and f3, where fi is incident with ej and ek (i, j , and k all distinct). Similarly,
for 1 ≤ i ≤ 3, let Ei be the set of edges of P between ej and ek (i, j , and k all
distinct). Note that some of the Ei might be empty. Let Q1 be the polygonal subset
of P whose perimeter is defined by e3, f1, e2, and all edges in E1. Let Q2 and Q3 be
analogously defined polygonal subsets of P . Finally, let p be any point in C.

Since C is not in the fan (in P ) of any edge in E1, it is also not in the fan in Q1 of
any edge in E1. Thus the edge support of C in Q1 is precisely {f1, e2, e3}, and p lies
close to f1 in Q1. By Theorem 4, there exists a pebble set S1 in Q1 that includes p.
By similar reasoning, there exist pebble sets S2 and S3 in Q2 and Q3, respectively,
that include p. Let S = S1 ∪ S2 ∪ S3.

We now show that S as described in Construction 2 is a pebble set in P that con-
tains p, and that all pebble sets in P that contain p are uniquely described in this way.
We construct a bijection between the set of all possible ordered triples (S1, S2, S3) of
pebble sets in the Qi , where each Si contains p, and the set of all pebble sets in P

that contain p. For a polygon P and a point p in a chamber of P , we write S(P,p)

to mean the set of all pebble sets in P that contain the point p. Thus the construction
we desire is a one-to-one correspondence between S(P,p) and

∏3
i=1 S(Qi,p).

Let P be a polygon and S ∈ S(P,p). Define π : S(P,p) → ∏3
i=1 S(Qi,p) to

map S to the ordered triple (S ∩ Q1, S ∩ Q2, S ∩ Q3). To show that π is a bijection,
the following lemmas will be helpful. For convenience, we state them with specific
reference to Q1, though analogous results clearly hold for Q2 and Q3.

Lemma 19 Let P be a polygon and C a chamber of P . Let Q1, E2 and E3 be defined
as in Construction 2. Let S1 be a pebble set in Q1 that contains p, and let D be any
chamber of Q1 that contains a point of S1 − {p}. Then no point in S1 − {p} lies in
the fan of any edge of E2 ∪ E3 ∪ {e1}.
Proof Let q be any point in S1 − {p}, let e be any edge in E2 ∪ E3 ∪ {e1}, and let
v be any vertex of P . If v is not an endpoint of an edge in E1, then �ev does not
lie in Q1, so that q /∈ �ev. So suppose v is an endpoint of an edge in E1. Now
�ev ∩ Q1 ⊂ �f1v, and q ∈ Q1, so if q ∈ �ev, then we would have q ∈ �f1v. Yet,
p ∈ �f1v, and S1 is a pebble set in Q1, and so q 
∈ �ev. �
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Lemma 20 Let P be a polygon and C a chamber of P . Let Q1, E2 and E3 be defined
as in Construction 2. Let S1 be a pebble set in Q1 that contains p, and let D be any
chamber of Q1 that contains a point of S1 − {p}. Then D is also a chamber of P .

Proof Suppose D is a chamber of Q1 that contains some q ∈ S1 − {p}, and which
is not a chamber of P . Then there is a chord of P that intersects D. Such a chord is
clearly not a chord of Q1, and is thus of the form uv, where u is a vertex of Q1 and
v is not. Of all such chords, let uv be closest to q . If q does not lie on uv, then there
is an edge e ∈ E2 ∪ E3 ∪ {e1} that is incident with v such that q ∈ �eu. But then q

lies in the fan of e, which contradicts Lemma 19. If, on the other hand, q lies on uv,
then the fact that uv intersects f1 reveals that q ∈ �f1u, which is impossible. Thus
the chords that determine the chamber in P that contains q are also chords of Q1,
and D is a chamber of P . �

Theorem 21 The mapping π : S(P,p) → ∏3
i=1 S(Qi,p) defined above is a bijec-

tion.

Proof First we show that π is a function. If S ∈ S(P,p), then clearly for 1 ≤ i ≤ 3,
S ∩ Qi is a pebble set in Qi that contains p. Thus π(S) ∈ ∏3

i=1 S(Qi,p). To show
that π is well defined, suppose S,T ∈ S(P,p) are equivalent pebble sets. Then the
chambers of P that contain the points of S are precisely those that contain the points
of T . Let C be any such chamber, and suppose q ∈ S ∩ C and r ∈ T ∩ C. Suppose
also that C ⊆ Qi . Since every chamber of P is a subset of some chamber of Qi ,
the chamber in Qi that contains q also contains r , so that S ∩ Qi and T ∩ Qi are
equivalent pebble sets for Qi . Since this is true for all 1 ≤ i ≤ 3, we have that S ∩ Qi

and T ∩ Qi are equivalent pebble sets for all i. Thus π is well defined.
To show that π is one-to-one, suppose that S,T ∈ S(P,p) are two pebble sets

such that S ∩ Qi and T ∩ Qi are equivalent pebble sets in all the Qi (1 ≤ i ≤ 3). Let
q ∈ S be any point. Since S and T both contain p, we may assume that q 
= p. Since
the Qi cover P , there exists some i such that p ∈ Qi . Since S ∩ Qi and T ∩ Qi are
equivalent pebble sets in Qi , then there exists a point r ∈ T ∩Qi that lies in the same
chamber of Qi as q . But by Lemma 20, the chamber of Qi that contains q is also
a chamber of P . Thus q and r lie in the same chamber of P . Since q was chosen
arbitrarily, we have that S and T are equivalent pebble sets in P .

To show that π is onto, let S1, S2, and S3 be, respectively, pebble sets in Q1,
Q2, and Q3 that contain p. We show that S = S1 ∪ S2 ∪ S3 is a pebble set in P by
applying Lemma 3. Let e be any edge and v any vertex of P . We may assume that v

is an endpoint of an edge in E1, for an identical argument applies if v is an endpoint
of an edge in E2 ∪ E3. If e is an edge of Q1, then since S1 is a pebble set in Q1, �ev

contains precisely one point of S1. Furthermore, �ev cannot contain a point of S2.
For the only way that �ev intersects Q2 is if e = e3, in which case the facts that
p ∈ �e3f2 and that S2 is a pebble set in Q2 reveal that �ev ∩ Q2 contains no point
of S2. By similar reasoning, �ev contains no point of S3.

Now if e is not an edge of Q1, then it is an edge in E2 ∪ E3 ∪ {e1}. First consider
that e = e1. Then the interior of �ev ∩ Q1 is a subset of �f1v. But p ∈ �f1v, and
S1 is a pebble set in Q1. Thus �ev contains no point of S1 − {p}. Furthermore, since
p ∈ �e1f2 and S2 is a pebble set in Q2, then �ev contains no point of S2 − {p}.
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Similarly, since p ∈ �e1f3 and S3 is a pebble set in Q3, then �ev contains no point
of S3 − {p}. Thus �ev contains at most one point of S.

Finally, consider that e ∈ E2 ∪ E3. We may assume e ∈ E2, for an identical argu-
ment will apply if e ∈ E3. By Lemma 19, �ev contains no point of S1. Since �ev

does not intersect Q3, then �ev contains no point of S3. Finally, consider the quadri-
lateral determined by f2 and e. This quadrilateral contains precisely two points of S2,
one of which is p. Since e /∈ ES(C), we have that p /∈ �ev. Thus �ev contains at
most one point of S2.

We therefore have that every triangle of the form �ev contains at most one point
of S, so that by Lemma 3, S is a pebble set in P . Thus π is onto. �

We are now ready to prove the converse of Theorem 17. If C is a chamber with
support size three, and we let p be any point in C, then p is close to an edge in each
of the Qi . Theorem 4 assures us that there are pebble sets in each of the Qi that
contain p. By the proof of Theorem 21, the union of these pebble sets is a pebble set
in the polygon. Thus we arrive at the following.

Corollary 22 A chamber with support size three is viable.

With the help of the next proposition, we can count the number of pebble sets that
contain a point in a given chamber, where all other points lie in the periphery of the
polygon.

Proposition 23 Let C be a viable chamber in a polygon P , and let S be a pebble set
in P that contains a point p ∈ C. Then the S ∩ Qi are peripheral pebble sets in Qi if
and only if all points of S − {p} lie in the periphery of P .

Proof First suppose all the S ∩Qi are peripheral pebble sets in the Qi . Now the only
border triangles of Qi that are not also border triangles of P must be defined by fi

and an edge of P incident with fi . Such a triangle contains p. Thus if q ∈ S − {p}, q

lies in a border triangle of some Qi that is also a border triangle of P . Conversely, if
every point q ∈ S − {p} lies in the periphery of P , then for any i, either q lies in the
periphery of Qi , or it lies outside Qi . �

By Proposition 23, the bijection in Theorem 21 can be restricted to a bijection
between pebble sets in P that contain a point in C and where all other points lie
in the periphery, and ordered triples of peripheral pebble sets in the Qi that contain
a point close to the edge fi . With Theorem 4, we now have a way to construct all
pebble sets in P that have a point in C and where all other points lie in the periphery.
The following corollary allows us to determine the number of such pebble sets.

Corollary 24 Let C be a chamber of a polygon P such that |ES(C)| = 3. Define Ei

and Qi as in Construction 2, and let ni be the number of distinct endpoints of the
edges of Ei . Let D = ∑3

i=1 d(Qi), where d(Qi) is defined as in Corollary 5. Then
the number of pebble sets in P containing p and with all other points in the periphery
is 2n−6+D .
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Proof Each Qi contains ni + 2 vertices, and n1 + n2 + n3 = n. By Theorem 21 and
Corollary 5, the number of such pebble sets is

∏3
i=1 2ni−2+d(Qi) = 2n−6+D . �

5 Finding Viable Chambers

In this section we approach the task of finding the viable chambers of a polygon in
two slightly different ways. First, given a particular chamber in a polygon, we show
that determining whether its support size is three is surprisingly easy. Second, given
an arbitrary n-gon, we describe an algorithm for finding all viable chambers that is
O(n3). This represents an improvement over checking every chamber, for as we will
show, the number of chambers in an n-gon is O(n4).

5.1 A Second Characterization of Viability

According to Proposition 18, only triangular chambers are viable. The converse, how-
ever, is not true in general. But if C is a triangular chamber, and the chords and edges
that determine the boundary of C are incident with edges of the polygon in a partic-
ular way we will describe, then we can conclude that |ES(C)| = 3 and that therefore
C is viable.

One direction of claim 1 from the proof of Theorem 11 says that if either ek ∈
ES(C) or ek−1 ∈ ES(C), then f ∈ ES(C′). Equivalently, if f /∈ ES(C′), then neither
ek nor ek−1 is in ES(C); and furthermore, by claim 2a in the proof of Proposition 11,
every other edge of P is in ES(C) if and only if it is in ES(C′). The important point
to be made here is that if f /∈ ES(C′), then ES(C′) = ES(C).

We may apply this result inductively on a set of consecutive edges in a polygon to
have the following.

Lemma 25 Let E = {ei, ei+1, . . . ej } be any set of consecutive edges of a polygon P ,
where 2 ≤ |E| ≤ n − 2. Let g be the chord vivj+1, and C be any chamber of P that
does not lie in the polygon determined by E and g. Let P ′ be the polygon determined
by g and the edges of P not in E. Let C′ be the chamber of P ′ that contains C.
Finally, suppose that g /∈ ES(C′). Then ES(C′) = ES(C).

Now we demonstrate how to determine if a triangular chamber has support size
three. Let C be a triangular chamber in a polygon P , and suppose f is an edge or
chord that determines part of the boundary of C. In the proof of Proposition 18, we
noted that the two edges of P that are incident with f and lie on the same side of f

as C are edges in ES(C).
So consider all the edges of P with the property that they are incident with an

edge or chord that bounds C and lie on the same side of the chord as C. Call this
set of edges the boundary support of C, which we will denote BS(C). Then by the
observation in the previous paragraph, we have that BS(C) ⊆ ES(C).

Proposition 26 Suppose C is a triangular chamber in an n-gon P , and suppose that
BS(C) contains precisely three edges. Then BS(C) = ES(C).
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Proof Let {f1, f2, f3} be the chords that determine the boundary of C, and write
BS(C) = {e1, e2, e3}, where fi is incident with ej and ek (i, j , k distinct). Let V

be the set of endpoints of the fi . Note that 3 ≤ |V | ≤ 6. First consider that |V | ≤ 5,
so that at least two of the fi are incident. Now the intersections of pairs of the fi

determine the vertices of C. We thus have that a vertex of P is also a vertex of C,
so that C lies in the periphery. In this case, ES(C) contains precisely three edges, so
that BS(C) = ES(C).

We may assume, therefore, that |V | = 6. Let P ′ be the convex hull of BS(C).
Since |V | = 6, we have that P ′ is a hexagon, and C is a chamber in the core
of P ′. (See Fig. 7.) Each fi is a chord of P , and the perimeter of P ′ consists of
{e1, e2, e3, g1, g2, g3}, where the gi are chords of P joining ej and ek (i, j , and k

all distinct). The perimeter of P ′ naturally partitions the edges of P into six sub-
sets: {e1}, {e2}, {e3}, E1, E2, and E3, as illustrated in Fig. 7. Note that the Ei are all
nonempty. We show that no edge of the Ei is in the edge support of C.

Let 1 ≤ i ≤ 3, and let Pi be the polygon formed from P by removing the edges of
Ei and including gi . Now C is a chamber in both P and Pi . We claim gi /∈ ES(C)

in Pi . If j 
= i, then C lies in the quadrilateral defined by ei and ej . Thus C lies in
no triangle determined by gi and an endpoint of any edge in Ej , so that gi /∈ ES(C)

(in Pi ). Thus by Lemma 25, no edge in Ei is in ES(C) (in P ). Since this is true for
1 ≤ i ≤ 3, we have that ES(C) = {e1, e2, e3}. �

If a chamber is not triangular, its boundary support must contain more than three
edges. With this and Propositions 18 and 26, we have the following.

Theorem 27 A chamber is viable if and only if its boundary support contains pre-
cisely three edges.

5.2 An Algorithm for Determining all Viable Chambers

To determine all viable chambers of a given n-gon, one approach would be to check
every chamber to see if satisfies the criterion of Theorem 27. For an n-gon in general
position (so that no three chords intersect at a single point), the number of chambers
is

(
n−1

2

)+ (
n
4

)
.1 Therefore, any algorithm that checks every chamber for viability will

generally run in O(n4) time.
This can be improved in the following way. Select three edges of the n-gon, and

denote them E = {ei, ej , ek}. In this subsection, we will describe a decision proce-
dure for determining when E is the edge support for some chamber of P .

Let P ′ be the convex hull of E. If P ′ is a quadrilateral or pentagon, then E is the
edge support of a peripheral chamber of P , which is viable. If P ′ is a hexagon such

1The number of chambers in P can be determined by considering the graph G whose vertices are the
intersections of all the chords and edges of P , and whose edges are the edges of P and segments of the
chords joining two points of intersection. We note that there is precisely one intersection of chords for
every choice of four vertices of P , so that the number of vertices of G is n + (n

4
)
. Every vertex of P has

degree n− 1 and the remaining vertices of G have degree four. Since the sum of the degrees of the vertices
of G is twice the number of edges, we have that G contains

(n
2
) + 2

(n
4
)

edges. Applying Euler’s formula

to this planar graph, the number of chambers in P is therefore
(n−1

2
) + (n

4
)
.
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that the chords that connect opposite vertices all meet at one point, then no chamber
of P ′ (and therefore no chamber of P ) has E as its edge support (as can be seen by
considering boundary support instead).

If P ′ is a hexagon in general position, then P ′ contains a triangular chamber C

in the core. If BS(C) = E, then C is a viable chamber of P ′, as illustrated in Fig. 4.
Furthermore, C is also a viable chamber in P , as the following theorem demonstrates.
For notational simplicity, we let {e1, e2, e3} represent any choice of three edges of the
n-gon.

Theorem 28 Let E = {e1, e2, e3} be any three edges of an n-gon P , and let P ′ be
the convex hull of E. Suppose P ′ is a hexagon in general position, so that it contains
a triangular chamber C in the core. Finally, suppose that BS(C) = E. Then C is a
viable chamber of P .

Proof Let {g1, g2, g3} be the other three edges of P ′, and let E1, E2, and E3 be the
edge subsets of P as labeled in Fig. 7. First we show that C is a chamber of P by
supposing that D is a chamber of P that is a proper subset of C. Then there is a chord
f of P that is not a chord of P ′ that intersects C. Clearly at least one endpoint of f

is not a vertex of P ′. Thus this endpoint would determine an edge of P in one of the
Ei that is in BS(D), hence in ES(D) in P . But then by Lemma 25, gi ∈ ES(C) in P ′,
which is false. Thus C is a chamber of P .

Let P1 be the convex hull of E ∪ E1. By Lemma 25, since g1 /∈ ES(C) in P ′,
then ES(C) in P1 is precisely the same as ES(C) in P ′. Now let P2 be the convex
hull of E ∪ E1 ∪ E2. Again by Lemma 25, since g2 /∈ ES(C) in P1, then ES(C) in
P2 is precisely the same as ES(C) in P1. Finally, since g3 /∈ ES(C) in P2, applying
Lemma 25 a third time reveals that ES(C) in P is precisely the same as ES(C) in P2.
Thus in P , ES(C) = E and by Corollary 22, C is a viable chamber of P . �

Since the number of such edge triples is
(
n
3

)
, any algorithm that enumerates all

viable chambers of P using Theorem 28 will run in O(n3) time.

6 Further Questions

In this paper, we have made some progress in characterizing all pebble sets in a given
polygon. First, we have a lower bound on the number of pebble sets, given by the
n2n−5 peripheral pebble sets. This lower bound is actually achieved when there are
no chambers outside the periphery whose support size is three—for instance, when
the polygon is regular.

Stronger still, a point can be in a pebble set if and only if the support size of its
chamber is three. And given such a chamber, we can use the construction in Sect. 4.3
to decompose the polygon into three subpolygons Q1, Q2 and Q3. Theorem 21 as-
sures us that finding pebble sets in each of the Qi is equivalent to finding a pebble set
in the original polygon. This suggests an inductive approach to characterizing pebble
sets. This inductive approach is algorithmic, but leaves much to be desired. It seems
inefficient, but worse, it does not seem to capture the entire structure of the problem.
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The set of chambers whose support sizes are all three does seem to relate to the cor-
responding sets for the Qi , and it might be possible to use this fact to extract a more
refined object that makes counting pebble sets easier.

For instance, we showed that if p lies in a viable chamber in the core, then we
can easily count the number of pebble sets whose only core point is p. What is the
corresponding description for two core points? Or more generally?

Beyond this main question, we could seek solutions to related problems. First, the
statement of the problem by Lukácz and András specified that there should be n − 2
points in the required set and that a point on the boundary of a triangle does not count
as being in that triangle. We showed in Proposition 1 that as a result, points in a pebble
set may not lie on chords of the polygon. But if we allow more points, or if we change
how we count points on the boundary of a triangle, this proposition no longer holds.
For instance, if the polygon is a square, we can augment any pebble set by adding a
point in the center of the square, which does not count toward any total since it does
not lie in any triangle. On the other hand, if we decide that points on the boundary of
the triangle count as lying in the triangle (so that the triangles are closed), we could
have a set with one point (the center of the square) with the required property. If we
count points on the boundary of a triangle as providing 1/2 a point to that triangle,
we could have sets with two points, both straddling the same chord but from opposite
sides of the center. The structure of these sets seems less clear.

Another obvious generalization would be to consider polytopes in higher dimen-
sions, as in [3], replacing the notion of triangle with that of simplices. But there are
many cases where the problem analogous to the polygon question has no solution. For
instance, in three dimensions, consider the triangular bipyramid—that is, the union
of two tetrahedra that share a face. This has a triangulation into two simplices (the
two tetrahedra used to define it), and another triangulation into three simplices, where
the simplices all surround the edge between the apexes of the tetrahedra. As a result,
if each tetrahedron contains a point, then we are left with requiring a set with two
points and three points simultaneously, which is impossible. Thus, the structure of
this problem seems very different.

One way around this is to insist that every simplex has at most one point, which
is precisely the definition of pebble set in [3]. It is likely that any generalization to
higher dimensions should use this notion.

Another generalization in the plane would be to insist that every triangle contain
k points, for a given integer k ≥ 1. Some preliminary investigations have indicated
that this problem has some interesting structure, though this problem seems to have a
character very different from the problem posed in this paper.
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