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Abstract Given m points (sites) and n obstacles (barriers) in the plane, we address
the problem of finding a straight line minimum cost spanning tree on the sites, where
the cost is proportional to the number of intersections (crossings) between tree edges
and barriers. If the barriers are infinite lines, it is known that there is a spanning tree
such that every barrier is crossed by O(y/m) tree edges, and this bound is asymp-
totically optimal. Asano et al. showed that if the barriers are pairwise disjoint line
segments, then there is a spanning tree such that every barrier crosses at most 4 tree
edges and so the total cost is at most 4. Lower bound constructions are known with 3
crossings per barrier and 2n total cost.

We obtain tight bounds on the minimum cost of spanning trees in the special case
where the barriers are interior disjoint line segments that form a convex subdivision
of the plane and there is a point in every cell of the subdivision. In particular, we
show that there is a spanning tree such that every barrier crosses at most 2 tree edges,
and there is a spanning tree of total cost 5n/3. Both bounds are the best possible.
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1 Introduction

Chazelle and Welzl [2, 14] proved that for n points in d-space, there is a spanning
tree such that every hyperplane intersects at most O (n'~1/¢) edges of the tree. This
bound is tight apart from the constant factor: every spanning tree on n points of
a d-dimensional integer lattice section crosses an axis-aligned hyperplane at least
Q(n'~Y4) times. This result and its extensions by Matousek [10] were used in effi-
cient range searching data structures in finite VC-dimensional range spaces.

In the plane, in particular, there is a spanning tree for n points and a set of barrier
lines such that every line crosses at most O(4/n) edges [9, 15]. Interestingly, if the
barriers are disjoint line segments rather than infinite lines, then one can construct a
spanning tree that crosses every barrier at most O(1). The study of spanning trees
across disjoint barriers was motivated by the multi-point location problem, where a
set of points lies within an underlying geometric data structure. This question often
arises in geometric modeling systems (e.g., in robotics, vision, radio wave propa-
gation prediction, CAD/CAM, and others). Given a subdivision of the plane (e.g. a
triangulation) with O (n) edges and vertices and a set S of m distinct points, we wish
to find the face containing s;, for every i = 1, ..., m. Through iterated use of a worst-
case optimal planar point location algorithms (e.g. [3, 7], or [11]), one can locate all
points in O (m logn) time. A potential strategy for locating all m points in O (m + n)
time is to find a walk w of O(m 4 n) combinatorial complexity that visits all m
points. Snoeyink and van Kreveld [13] demonstrated empirically that walking to the
next point to be processed with the method of Guibas and Stolfi [4] is better than
traversing all faces of T in a pre-specified order. A pre-order traversal of a spanning
tree T of S provides such a walk in time 2 cost(T), where cost(T") is the number of
crossings between tree edges and the boundaries of the cells of the subdivision.

Snoeyink [12] posed a specific version of this problem: Given a set S of m distinct
points (sites) and a set L of n segments (barriers) in the plane where the relative
interiors of the barriers are pairwise disjoint and no site lies on any barrier, does a
spanning tree T of S always exist that, when embedded with straight line edges, has
the property that no barrier of L crosses more than a constant number of edges of T7'?

Asano et al. [1] gave an upper bound of 4 on the number of crossings per barrier,
which implies an upper bound of 4n on the total cost. Hoffmann and T6th improved
this bound to 3 in the special case that all segments are axis-parallel [6], and they
constructed an example (which can be realized with axis-parallel segments) where
every spanning tree crosses some barrier at least three times [5]. For the restricted
problem where barriers form a convex planar subdivision and each cell contains a
site, Krumme et al. [8] showed that a spanning tree with at most 3 crossings per
barrier always exists.

Contribution We obtain tight bounds on the minimum cost of a spanning tree in the
special case that the barriers are interior disjoint line segments that form a convex
subdivision of the plane and there is a site in every cell. In this case, we may as well
assume that every cell contains exactly one site by specifying a single site in each cell
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(since we can connect the designated site to all other sites of the same cell without
crossing any barriers). We prove that there exists a straight line spanning tree that
crosses every barrier at most twice and one with a total cost of at most %n On the
other hand, there are examples where any spanning tree crosses some barrier at least
twice and others where any spanning tree has total cost at least %n — 0(J/n).

Organization Sects. 2 and 3 present the proofs for our upper and lower bounds for
the number of crossings per barrier and the total number of crossings required for
connecting all sites. Section 4 discusses some directions for future work.

2 The Maximal Number of Crossings Per Barrier

Theorem 1 Given a set L ={l1,...,1,} of n pairwise non-crossing line segments
(barriers) in the plane that subdivide the plane into n + 1 convex cells, and given a
set S of n + 1 points (sites), one in each convex cell, then there exists a straight line
spanning tree T on the sites such that the edges of T cross every barrier at most
twice.

Figure 1 depicts an example where every spanning tree on the sites crosses some
barrier at least twice, verifying that Theorem 1 is tight. The n barriers are n half-
lines with their initial portion lying along the sides of a regular n-gon C. Site s lies
at the center of C. Sites s1, 52, ..., s, are centrally symmetric around so such that
any segment sos;, i = 1,2, ..., n, crosses two consecutive barriers along C. Every
spanning tree 7 must contain an edge e; = sos; for some i = 1, 2, ..., n that crosses
both barriers that bound the cell containing s;11. Any edge e» € T incident to ;1
crosses one of these two barriers a second time.

We prove Theorem 1 using an iterative algorithm that computes a spanning graph
on the sites. For ease, we assume that there is a small opening at the left endpoint of
each barrier, that can let an edge connecting the two sites in the two adjacent cells
through it without introducing new crossings.

At each iteration, we augment the graph by adding a single vertex (site) and an
edge. For each new site, we add the bent edge that connects it to the site in an adjacent
cell through a small openings in the set of barriers, this keeps the graph connected

Fig. 1 Lower bound
construction. At least one barrier
has to cross two edges of a
spanning tree
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and the new bent edge does not cross any barrier. Intuitively, the algorithm then trans-
forms the intermediate graph to a straight-line graph by contracting the bent edge as
if it were a rubber band, without introducing intersections between edges. The rub-
ber band contracts to a straight edge unless it hits “obstacles” formed by sites or by
regions swept by previous rubber bends. The beauty of the algorithm is the ingenious
use of a weakly simple polygon to bound the area already swept by the algorithm and
to verify that a bent edge can be pulled across a barrier at most once from each end,
guaranteeing at most two crossings per barrier.

Instep i, 1 <i <n, we produce a connected straight line graph 7; with vertex set
V(T;) €S, |V(T;)| =i + 1, that crosses every barrier at most twice. A significant
portion of the proof of correctness involves identifying a set of invariants and prov-
ing that they are maintained throughout the progress of the algorithm. Section 2.1
presents some basic assumptions and describes invariants maintained throughout the
algorithm, Sect. 2.2 describes the progress of the algorithm and Sect. 2.5 proves that
it terminates and achieves the cost of 2 crossings per barrier.

2.1 Basic Assumptions and Invariants

We assume that the barriers and the sites lie in a bounding box B and no two barriers
share a common endpoint. We choose a coordinate system such that B is not axis-
parallel, no barrier is vertical, and the left endpoints of the barriers have distinct
x-coordinates. Let by denote the leftmost corner of the bounding box. Observe that
the leftmost corner of every cell of the subdivision is either bg or a left endpoint of a
barrier.

Ordering The enumeration of all sites s;,7 =1, 2, ..., n, and consequently all cells
defines a method for creating a unique set of bent edges that connects all sites with-
out crossing each other or any barriers. Assume that L = {¢, ..., £,} represents the
barriers in increasing order of the x-coordinates of their left endpoints g1, g2, - . ., gn-
Let Cy be the cell adjacent to by, and, forevery i = 1,2...,n, let C; denote the cell
whose leftmost point is g;. Denote by s; the site contained in C; for i =0,1,...,n,
see Fig. 3a. Let C, denote the cell adjacent to C; such that ¢; and g; lie on the hne
separating C; and C;; and let §; denote the site in C;. Fori =1,2, ..., n, the V- shape
of s; is the 2-edge path w; = (s;, g;, §;), see Fig. 3b. It can also be considered a sin-
gle edge from s; to §; with a bend at g;. Let W denote the set of all straight line
segments s;¢g; occurring in V-shapes. Observe that the set L U W contains pairwise
non-crossing line segments.

Our algorithm proceeds in at most n steps. In step i, i = 1,2, ..., n, it computes
a connected straight line graph 7; and a weakly simple polygon P;. For clarity, we
adopt the terminology that graphs have vertices and edges; polygons have corners
and sides; and barriers have endpoints.

Weakly Simple Polygons Our algorithm will maintain a weakly simple polygon
whose corners are either sites or apices of V-shapes. Intuitively, this polygon cov-
ers the region that was previously swept by the algorithm. It is used for guiding the
process of transforming bent edges to straight-line edges but preventing intersections
between new edges and any previously drawn edges.
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Fig. 2 A weakly simple
polygon (perturbed by € into a
simple polygon) that can be
constructed by our algorithm.
Polygon sides in bold represent
tree edges of the intermediate
graph Ti/ . All other sides are part
of some V-shape. Circles
represent polygon corners. Full
circles represent sites. Empty
circles represent apices of
V-shapes

A closed polygonal chain P = (pg, p1, ..., Pk—1, Pk = po) Where any point p in
the plane could occur several times represents a weakly simple polygon if the sides
Pipi+1 are pairwise non-crossing segments and if each point p; can be moved by a
distance at most an arbitrarily small € > 0 to a position p;’ so that the closed polyg-
onal chain P' = (po/, p1/, ..., px—1’, p’ = po’) represents the boundary of a simple
polygon in counterclockwise order, with the interior lying to the left. A corner p; € P
is convex (reflex) if the clockwise angle Z(p;_1, pi, pi+1) measures less (more) than
180°. Figure 2 depicts a weakly simple polygon.

We denote the interior of the polygon by int(P). The weakly simple polygon P
and its interior int(P) jointly cover a closed polygonal region, which we denote by
P. The boundary of this region is denoted by 8 P. The polygonal region P may have
holes and its boundary may be disconnected. The edges of P may be traveled several
times during a traversal along the boundary of the polygon.

Initialization Ty has vertex set {so} and no edges. Py is a degenerate polygon with
a single corner sp.

Invariants The vertex set V(T;) and the region P; are monotone increasing in every
step. That is, V(T;) C V(T;+1) and P; C P;+;. We maintain the following invari-
ants.

1. The graph T;. T; is a connected straight line graph.
(a) Its vertex setis V(T;) C S, with |V (T;)| >i + 1.
(b) Every edge of T; is a side of the polygon P;.
2. The polygon P;. P; is a weakly simple polygon with the following properties.
(a) The convex corners of P; are in the set V (T}) U {q1, ..., qn}
(b) If a left endpoint ¢; of a barrier is a convex corner of P;, then the V-shape
associated with ¢; lies on the boundary of the region P;, thatis, w; C 3 P;.
(c) Every side of P; is either part of the graph 7; or part of a V-shape.
(d) If a side of P; intersects a line segment £ € L U W at point r, then the portion
of ¢ between r and one of £’s endpoints is completely contained in the interior
of Pl‘ .
(e) The interior of P; contains no sites.
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By maintaining the invariants, we guarantee that at every step of the algorithm at
most two edges of the graph can cross a barrier.

Proposition 1 If T; and P; satisfy invariants 1b and 2d, then at most two edges of T;
can cross a barrier.

Proof By invariant 1b, every edge of 7; is a side of the polygon P;. By invariant 2d,
if an edge of P; intersects a barrier £ € L at point r, then the portion of £ between
r and one of the endpoints of ¢ is completely contained in the interior of P;. Since
every barrier £ € L has only two endpoint, the boundary of P; can cross £ at most
twice. g

2.2 Progress of the Algorithm

We start with a graph T;_; and a weakly simple polygon P;_; satisfying the above
invariants. To generate 7; and P;, we consider two cases. In both cases, we compute
an intermediate graph 7} on a vertex set V(T}), |V (T/)| > |V (T;-1)|, which has one
or two edges with a bend, and an intermediate polygon P/. Section 2.3 describes how
the intermediate graph 77 is transformed into a straight line graph 7; by straightening
the bent edges and updating P;.

Case 1 Foreverysites; & V(T;_1), the segment s jq; is disjoint from P;_1.Consider
the smallest index 1 < j <n such that s; ¢ V(T;_1). Note that the leftmost point of
é‘j is to the left of ¢;, and so §; € V(T;_1). We augment the graph 7;_; by the V-
shape w;. We put T, = T; 1 +w;, where w; is an edge with one bend. We append the
V-shape w; to the weakly simple polygon with two different orientations by letting
Pi/ =P_1+ (§j,Qj, S qj, 51) (See Fig. 3b, f, h.)

Case 2 There is a site s; ¢ V(T;—1) such that the segment s jq; is not disjoint from
Pi_i. By invariant 2e, the int(P;_1) contains no site and so s; ¢ ?i_l, hence s;q;
must intersect the boundary dP;_;. Let r be the first intersection point of s jq; and
dP;_1. By invariant 2¢ and since all V-shapes are noncrossing, r lies on an edge s,s)
of T;_1. We replace edge sy, by two edges (each with one bend), ej, = (sj,1,54)
and ej, = (sj,7,5p) to get T/ =T,_1 — sqasp + ej; + ej,. We append the segment
rs; to the weakly simple polygon with two different orientations by letting P/ =
Pi_1+ (r,sj,7). (See Fig. 3d.)

In Case 1, it follows from invariant 2d that the segments ¢;s; and ¢;§; are disjoint
from int(P;_1). In Case 2, the segment rs; is disjoint from int(P;_;) by definition.
It follows that P/ is a weakly simple polygon, and it is easy to check that 7/ and P/
satisfy all conditions of invariant 2. The graph 7/ is not a straight line graph; it is
a connected graph where each edge is a polyline and satisfies invariants la and 1b.
Note, however, that every bend in the graph T/ maps to a reflex corner of the weakly

simple polygon Fl/
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Fig. 3 Six segments, seven sites, and the steps of our algorithm. In each instance the shaded region is
bounded by a weakly simple polygon. Parts b, ¢ reflect a Case 1 update, parts d, e reflect a Case 2 update
and parts f, g and h, i reflect a Case 1 update

2.3 Removing a Bend

We are given a connected graph G = T with bends satisfying invariants la and 1b
and a weakly simple polygon P = P/ satisfying invariant 2. G and P also satisfy the
following invariant.

3. Each edge of G has at most two bends and each bend maps to a reflex corner of P.

Intuitively, we place a rubber band along an edge ¢ with bends. Ideally the rubber
band contracts to a straight line edge, and we add the area swept by the rubber band to
the polygon P (for example, Fig. 3b—c). Since we want to generate a weakly simple
polygon whose interior is disjoint from the sites, the rubber band may wrap around
obstacles represented by S and convex corners of P.

Remove the bends recursively. Consider an edge with at most two bends e =
(Sq4,71,72, Sp). By invariant 1b, the polyline e lies along consecutive sides of P and
by invariant 3 these sides form a reflex chain along P;. Let m = w(sq, 11, 12, Sp) de-
note the shortest path between s, and s, that is homotopic to the path (s,, 71, 72, 5p)
in the presence of the obstacles PUS. (See Fig. 4.)

Consider the polyline @ = (s, = f9,t1,t2, ..., tk—1,tx = S$p), kK > 1, passing
through a sequence of sites and convex corners of P (Fig. 4). For every segment
tji—1tj Cm, j=1,2,...,k, we design a new edge e; (possibly with bends) and a
path fj- If ti—1,tj € S, then ej = fj =rtj—1tj. If ti—1 € S and t; € {ql,qz, ...,qi}
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is an apex of a V-shape, then by invariant 2b, ¢; is incident to the sides ;sp
and t;s; along polygon P, where sp, s, € V(G). We may assume w.l.o.g. that
sp is on the same side of the line #js, as tj_;. Let e; = (¢j_1, ¢, s,) with one
bend, and let f; = (t;_1,tj,s4,t;) that traverses the side ¢;s;, twice. The case that
tji—1€{q1,92,...,q;} and t; € S is analogous. Finally, if both #; | and ¢; are apices
of V-shapes, then we design an edge e; = (sg,%;_1,1;, s5) with two bends such that
s¢ and sy, are sites adjacent to ¢; 1 and ¢}, respectively (Fig. 4). We also design a path
fi=@j-1,84,tj—1,tj,5p, ;) that traverses the sides #; 15, and ¢;s; twice, once in
each direction.

We update the graph by setting G := G — e + Zk,l ej. If A denotes the region
enclosed by the closed curve (s4, r1, 2, s;,) Umr(sq,r1,7r2,55), then welet P = P —
e+ Z] fj,andso P=PUAU U i—1¢j. Note that s, or s, may occur as an
internal vertex in 7. Our argument goes through without any change if this happens,
but needs to allow that G has loops.

Call this subroutine recursively while G has an edge with bends. The number of
edges may increase in each step. Let

f(G, P) = #(non-straight edges of G) + 2 - #(convex verticesof P) 4 2|5\ V(G)|

Observe that f(G, P) decreases in each step. Since the number of convex vertices
of P and |S'\ V(G)| are bounded, the recursion terminates with a straight line graph
T; = G and a polygon P; = P.

2.4 Invariant Maintenance

Invariant 2 We have noted that we maintain invariant 2 when passing from P;_; to
Pl./ . Here we show that the subroutine in Sect. 2.3 also maintains invariant 2. Since
the path 7 (s,, 71,72, ,5;) is homotopic to (sq, r1, 2, 5 ), the open region A contains
no additional sites or corners (invariant 2e). Because 7 (s, , r1, 72, Sp) 1S a shortest
path homotopic to a reflex chain along 8 P, 7 is also a reflex chain, and so we do not
add any new convex corners to polygon P (invariant 2a). The two endpoints s, and
sp of m are sites, and so the neighbors of a convex corner g of ‘P remain the same
(invariant 2b). Note, however, that if 77 passes through a convex corner r of P, then r
will not be a convex corner anymore and invariant 2b no longer poses restriction on
r (see e.g. Fig. 4). Every new side along the boundary 8 P is covered by new edges
of G (invariant 2c).

The edges of V-shapes are segments in W, so the portions of the path ZI;: L fi
along the V-shapes cannot cross barriers. Since 7 (s4, 1, 2, Sp) is a homotopic short-
est path to a reflex chain (s4, r1, 2, ) along P, for any barrier partially contained in

Fig. 4 The shortest path
7(Sq, 11,17, Sp) and region A
which is added to P. Empty
circles represent apices of
V-shapes on d P
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Fig. 5 The path y for h =6 of
the instance of the algorithm
depicted in Fig. 3

bo

this region, the portion between the intersection point and one of its endpoints must
be fully contained in the region (invariant 2d).

Invariants 1 and 3 'We have noted that we maintain the connectivity of the graph
when we pass from 7;_1 to T;, and the subroutine of Sect. 2.3 transforms Tl./
into a straight line graph T7;. It remains to show that the subroutine maintains the
connectivity of the graph G. In each step of the subroutine, we replace an edge
e = (sq4, 71,72, Sp) by a sequence of edges M(E) = (ey, e, ..., ex), Where two con-
secutive edges are either adjacent or incident to two sites of a V-shape (s;, g;7, §i)
along 8 P. Invariants 1 and 3 guarantee that there is a path A(i’) C G between the
sites s;» and §;7. Hence, it is enough to show that the path A(i’) is not disconnected
when we remove edge e, that is, we need to show that A(i’) does not pass through
the edge e.

Note a global view of the algorithm. The main algorithm applied Case 1 in step
i = 1 because polygon Py lies in the interior of cell Cy. For astep i, leth = h(i), 1 <
h <1, denote the last step before (and including) step i when the algorithm applied
Case 1.

Proposition 2 The edges of T,,—1 are never removed from our graph.

Proof Graph T;,_1 has no edge that intersects a cell containing a site of S\ V (Tj,—1),
otherwise Case 2 would have been applied in step 4. So Case 2 (which replaces an
edge by two bent edges) is never applied to the edges of 7;,_; in subsequent steps. [J

Return to step 7, and consider the subroutine that replaces an edge of 7} recursively
by new edges. In one step of this subroutine, a sequence M (e) of edges replaces a
single edge e. Our key observation is that if two consecutive edges e;_1,e; € M(e)
are incident to two sites of a V-shape (s;/, g;/, §;/) added to the polygon before step h,
then the sites s; and §;s are connected via edges of Tj,_1, that are present in graph G.
We need focus only on the single V-shape (sy,, gy, i), inserted into P in step h.

We show that in steps A, h + 1, ..., i, no shortest path  hits the apex of the V-
shape &, proving that Invariants 1 and 3 are maintained. First assume that the leftmost
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vertex of the V-shape (sy, gy, Sp,) is the apex gj,. By our ordering scheme, the apices
of V-shapes added previously to the polygon lie to the left of g, and so all internal
vertices of 7 (sy,, i, 5p) are sites. In every subsequent step i’, h < i’ < i, we recur-
sively extend the edges of 7 (sy, gn, Sp) to the right along segment s;:g;7, and so by
our ordering scheme, no apex of any V-shape can be an internal vertex of any path 7.

Next let us assume that the leftmost vertex of the V-shape (si, gn, Si) is S, and
so its rightmost vertex is s,. Assume w.l.o.g. that the line segment §y,s), lies below
the V-shape (s;, gp, Sp) (if it lies above the V-shape, we can argue analogously with
the vertical mirror image). We define a path y that partitions the bounding box B
into two regions and passes through the V-shape (sy, g, Sp): let y start with the line
segment bgso, it follows some path in the graph T}, from sg to Sp; then it follows the
V-shape from §j, to s;,, and terminates with a vertical line segment s;,b| connecting sy,
to the top side of B (refer to Fig. 4). It suffices to show that no edge created in steps
h,h+1,...,i lies in the region above y. Indeed, no newly created edge crosses any
of bosg, Th—1, and (s, gn, Sp). It remains to show that the new edges cannot extend
from the right side of the vertical segment s;,b; to its left side. In step &, the new
edges may extend along V-shapes inserted into P prior to step & whose apices lie
below y. Since the apices of all previous V-shapes lie to the left of g5, these V-shapes
cannot cross s;by. In every subsequent step i/, 1 < i’ < i, we recursively extend the
edges created in step / to the right along a segment s;/g;’, and so these edges cannot
extend to the left of s;,b1, either. We conclude that no shortest path can hit the apex
qn of the V-shape (s, gn, Sn).

2.5 Termination

The final graph 7; is a connected straight line graph over all sites. Since all invariants
are maintained throughout the algorithm, we can apply Proposition 1 and conclude
that at most two edges of 7; cross each barrier, proving Theorem 1.

3 Total Number of Crossings

In this section, we show that for every input (L, S) of n line segments forming a
convex subdivision and n + 1 sites, one in each convex cell, one can construct a
straight line spanning tree T of total cost at most %n We also present a family of

inputs for which any spanning tree has a total cost of at least %n — O(4/n). Our
upper bound is based on a two phase algorithm: In the first phase, we greedily add an
edge between sites s; and s; if s;5; crosses at most one barrier and this barrier does
not cross any previously added edge. The resulting graph G crosses every barrier
exactly once, but is not always connected. We analyze the structure of the connected
components of G and show that in the second phase of our algorithm one can augment
the graph G to a spanning graph 7 such that the new edges increase the total cost by
at most 3n.

3.1 A Greedy Algorithm that Almost Solves the Problem

We assume that the barriers and the sites lie in a bounding box B, and the endpoints
of the barriers are all distinct. The first phase in our algorithm for constructing a
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spanning tree T is the following simple greedy procedure: Initialize G to be a graph
with vertex set S and no edges. For any two sites s;, s; € S lying in two adjacent cells,
if the line segment s;s; crosses at most one barrier £ € L and no edge of G crosses
¢, then let G = G + s;s;. It is clear that the output graph G crosses every barrier at
most once. We can implement this greedy algorithm in O (n) time if we pre-compute
the list of O(n) pairs of adjacent cells and maintain during the algorithm the list of
barriers already crossed by an edge of G.

If G is a spanning graph over all sites S, then our algorithm is complete and
we have a spanning tree 7 € G of total cost at most n. Assume, that G has k > 2
connected components denoted by Sy, S, ..., Sk. The second phase of our algorithm,
in Sect. 3.3, will add edges between the components of G. But first we show, in
Sect. 3.2, that the components of G have a very special structure.

3.2 Nested Structure of Components

Forevery i =1,2,...,k, let M; denote the union of the cells corresponding to the
vertices of the component S; of G. Every M;,i =1,2,...,k, is a polygonal region in
the bounding box B containing all sites and all intersection points of barriers. Since
edges of G connect sites in adjacent cells, every region M; is connected and the
regions jointly form a subdivision of the bounding box B.

Lemma 1 For every barrier £ € L there is an edge e € G that crosses {.

Proof Select a coordinate system where £ is horizontal, and let gjef; and grighe de-
note its left and right endpoints, respectively. Let us denote the cells above £ by
A1, Ay, ..., Ay along £ such that A is incident to geft, and let a; denote the site lying
in A; fori =1,2, ..., «. Similarly, the cells below £ are denoted by By, B, ..., Bg
along ¢ such that Bj is incident to gjeft, and let b; denote the site lying in B; for
i=1,2,...,8 (see Fig. 6).

It is enough to show that there are two indices i € {1,2,...,a} and j €
{1,2,..., B} such that the segment a;b; crosses no other barrier but £. It follows
that the greedy algorithm, when processing the first such adjacent pair (a;, b;), aug-
ment G with the edge a;b; unless a previous edge of G already crosses £.

Consider two adjacent cells A; and B; lying on opposite sides of £. Their common
boundary #;; = A; N B; is an interval along £, which has non-zero length due to our
assumption that no two barriers share an endpoint. We say that the pair (i, j) is left-
leaning (right-leaning), if the segment a;b; crosses the line through £ on the left

Fig. 6 Construction in the proof

of Lemma 1. Pairs (1, 1), (1, 2)

and (2, 2) are right-leaning. The

pairs (3, 3) and (4, 3) are

left-leaning and (3, 2) is neither

left- nor right-leaning Qioft

Qright
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(right) of the interval #;;, see an illustration in Fig. 6. It suffices to show that there is
pair (i, j) which is neither left- nor right-leaning, and so a;b; crosses no other barrier
but £. Since giere and grighe must each lie either in the relative interior of another
segment or on the bounding box, the pair (1, 1) cannot be left-leaning and («, 8)
cannot be right-leaning. Assume that the pair (1, 1) is right-leaning, and let (i, j) be
the first pair along ¢ that is not right-leaning. This means that a;b; intersects / to the
left of the right endpoint of #;;. We may assume w.l.0.g. the previous pairis (i —1, j),
and since it is right-leaning, a;1b; crosses £ to the right of the left endpoint of #;;.
The pair (7, j) is not right-leaning, and we show that it cannot be left-leaning, either:
Let ¢’ denote the left endpoint of 7;;, and let ¢’ be the barrier along the boundary of
A;_1 and A; incident to [ at g’. Since (i — 1, j) is right-leaning, £’ must intersect
the line segment a; _1b;. This implies that a; and b; are on the same side of the line
through ¢’ and so a;b; intersects £ to the right of ¢’. O

Since M; is not necessarily simply connected its boundary dM; may not be con-
nected. A frame y is a connected component of a boundary oM; fori =1,2,...,k.
A frame is a closed curve along portions of barriers and portions of 9 B.

Lemma 2 For every i = 1,2,...,k, the boundary dM; cannot contain an entire
barrier.

Proof Suppose, to the contrary, that there is a frame y along the boundary of a region
M; that contains a barrier £ € L. Since £ is on the boundary of M;, every cell along
one side of £ belongs to region M; and every cell along the opposite side of £ is out-
side M;. By Lemma 1, there are two cells on two opposite sides of £ whose sites are
connected by an edge of G (note that £ cannot cross any edge of G), a contradiction.
We conclude that y cannot contain an entire barrier. O

We define the arc as a maximal (nonempty) connected component of the intersec-
tion of a frame y with either a barrier or 9 B. By Lemma 2, an arc cannot be an entire
barrier. For an arc 7, t € 9 B, we denote by £(¢) € L the barrier containing ¢ (note that
the same barrier may appear several times along a frame y). For every arc ¢, we define
an orientation: o (t) € {clockwise, counter-clockwise, neutral}. Let o (f) = neutral if
t C 9B or t does not contain either endpoint of £(¢); o (t) = clockwise if the first
endpoint of 7 is an endpoint of the barrier £(¢) when traversing y in clockwise order;
o (t) = counter-clockwise if the second endpoint of ¢ is an endpoint of the barrier
£(t) (by Lemma 1, ¢ cannot contain both endpoints of €(¢)), see Fig. 7.

Lemma 3 All arcs along a frame have the same orientation.

Fig. 7 Two examples of frames
(in bold) created by the
algorithm. In both cases, all of
the arcs are oriented clockwise
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Fig. 8 Proof of Lemma 4

Proof Consider the cyclic sequence of the arcs (¢1,...,7;) along a frame y. If
y # 0B, then this sequence consists of more than one arc. The common point of
every two consecutive arcs is an endpoint of a barrier, which contains one of the
arcs: this implies that clockwise and counterclockwise arcs cannot be consecutive,
and every neutral arc not on d B is preceded by a counter-clockwise and followed by
a clockwise arc. Since a clockwise arc is always followed by another clockwise arc,
there cannot be two consecutive arcs with different orientations. d

It follows that every frame is either d B or disjoint from 9 B: if a frame y contains
parts of the boundary d B and portions of barriers, then it contains a segment endpoint,
and so it contains arcs of both neutral and non-neutral orientation, which is impossible
by Lemma 3. Only 9 B consists of arcs of neutral orientations; all other frames consist
of arcs of all clockwise or counter-clockwise orientation.

Lemma 4 Any point of a frame lies in the boundary of at most two regions of the
subdivision {M1, M», ..., M}.

Proof Suppose, to the contrary, that point p lies on the boundary of three regions M,
My, and M.. Since each region is the union of cells and the endpoints of the barriers
are distinct, p must be the intersection of two barriers: that is, p is the endpoint of
a barrier £1 € L and lies in the relative interior of another barrier £, € L (Fig. 8).
Assume that M, and M}, lie on opposite sides of £1; and ¢; and M, are on opposite
sides of ¢>. The orientation of the arcs along M, and M, are different (clockwise and
counterclockwise) since p is an endpoint of £ and it determines the orientation of the
arcs along £;. This incurs two different orientations on the arcs along ¢ containing
p: A contradiction. O

The above lemma reveals an important feature of the graph created by the greedy
algorithm. It proves that the regions are nested one in the other and that they admit
a specific partial ordering: Every region is a polygon with holes, where the holes are
filled by other regions and every frame is the outer boundary of exactly one region.

3.3 Total Number of Crossings

To build 7', we connect the components of G by edges that we call bridges. Consider a
frame y separating regions M; and M ;. For every point f € y, we define a potential
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Fig. 9 Construction of A(f),
B(f)s A(f), B(f) (the two
right triangles and their
associated primary edges).
AB(f)), AD(f)) and b(D(f))
are the two left triangles and the
depicted point

v

bridge B(f) as follows. Let A(f) be the closed triangle whose vertices are f and
the two sites in the two faces adjacent to f. Let S(f) be the edge of this triangle
opposite f. We say that (f) is the main edge of A(f) and the other two edges are
the secondary edges. If the interior of A(f) contains no sites, then let B(f) = 8(f).
Otherwise, consider the convex hull of the sites in A(f), including the endpoints of
B(f). Traversing the boundary of this convex hull in the interior of A(f) from one
endpoint of B(f) to the other, one encounters sites from both S; and S;; choose as
B(f) any segment on the convex hull which connects a site in S; to a site in S;.

We define A(f) to be the triangle whose vertices are f and the intersections of the
line determined by B( f) with the edges of A(f). We say that the edge of this triangle
which is an extension of B(f) is its main edge and the other two are its secondary
edges (Fig. 9).

Note that the use of the convex hull ensures that the triangle A(f) is contained
within the triangle A(f) and that the secondary edges of A(f) are subsegments of the
secondary edges of A(f). The secondary edges impose strong constraints exploited
in the proofs below.

Lemma 5 (a) No barrier intersects a secondary edge except at the endpoint of a
secondary edge at a frame. (b) Secondary edges do not intersect except at their end-
points.

Proof (a) By construction, the interior of each secondary edge lies entirely within one
(convex) face, due to the convexity of the faces. Consequently, (b) an intersection of
a secondary edge with the interior of another means two different sites (endpoints of
those edges) within a single face. O

Lemma 6 No site lies in the interior of A(f).

Proof This follows from B(f) lying on the boundary of the convex hull of the sites
in A(f). O
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For each point f on the frame, choose a point b( f) in the intersection of the frame
with B(f). Since the endpoints of B(f) are in different regions, there must be at least
one such point. If there are several such points, choose b( f) arbitrarily. We apply this
process iteratively. For example, b (f) denotes b(b(b(f))).

Lemma 7 Ifb(f) # f, then triangles A(f) and A(b(f)) are interior disjoint.

Proof The line through segment B(f) defines two halfplanes. We show that A(f)
and A(b(f)) lie on opposite sides the line through B(f). Since A(f) lies entirely in
the halfplane containing f, it is enough to prove that both endpoints of S(b(f)) lie in
the opposite halfplane. Suppose, to the contrary, that an endpoint s of B(b(f)) lies in
the same halfplane as f. By Lemma 6, s lies in the exterior of triangle A(f). Hence,
the secondary edge b( f)s crosses one of the secondary edges of A(f), contradicting
Lemma 5. O

Lemma 8 Ifb>(f) #b*(f) #b(f), then AB*(f)) N A(f) = .

Proof By Lemma 7, b>(f) lies on the opposite side of the line determined by B(f)
from f. If a secondary edge of AB%(f)) crosses a secondary edge of A(f), then
Lemma 5 is violated. If a secondary edge of Ab%( f)) crosses B(f) and terminates
within A(f), then either Lemma 6 is violated or the associated secondary edge of
a(b(f)) crosses a secondary edge of A(f), violating Lemma 5. If B(b*(f)) is the
only edge of A(b%(f)) which intersects A( f), then a secondary edge of A(f) crosses
B(b3( f)) and once again either Lemma 6 is violated or the associated secondary
edge of A(f) crosses a secondary edge of A(b(f)), violating Lemma 5. There are
no other ways for the triangles to intersect. g

Lemma 9 If a barrier intersects the boundary of A(f) in two points, then one of
themis f.

Proof If not, then one of the points is in a secondary edge of A(f), violating
Lemma 5. 0

Lemma 10 Suppose there is no point f suchthat b(f) = f. Then there is a sequence
of points on the frame ( fo, f1,..., fa = fo), d = 3, such that f; = b(f;_1) for all

1<i<d.

Proof Since there are only finitely many sites, the existence of such a sequence for
some d is assured. By hypothesis, d > 2. But b*(f) = f would mean the entire
segment fb(f) would lie within both A(f) and A(b(f)), contradicting Lemma 7. [J

Lemma 11 A fotal of at most %n crossings suffice to construct a spanning tree of S.

Proof Construct G. Suppose there are k regions My,..., M. Every M;, i =
1,2,...,k, has a unique frame y; as an outer boundary. Graph G has n + 1 vertices,
k components, and by Lemma 1 it has n edges. We can remove k — 1 edges from G
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(b

(a)

Fig. 10 Construction of the lower bound using a honey-comb: a The construction of arrangement. Only
blue sites within hexagonal faces and blue-blue edges connecting two blue sites are drawn. b Enlargement
of one section in the honey-comb. An edge incident to a red site in the shaded region of a triangular face
will always cross at least two barriers. This proves the lower bound of two crossings per barrier and total
of %n crosses

and obtain a graph G~ with n — k 4 1 edges and the same connected components
as G.

For each frame, add a bridge determined as follows. If the frame contains a point
f for which b(f) = f,use B(f). Otherwise, consider B(fy), B(f1), and B(f>) from
Lemma 10. Choose the bridge that intersects the fewest barriers, say it is B(f;). Note
that by Lemmas 7 and 8, the triangles A( fo), A(f1), and A(f2) have pairwise disjoint
interiors.

We now label all barrier endpoints that lie on this frame to facilitate counting.
If a barrier is crossed by a bridge B(f;) and its endpoint lies in the interior of tri-
angle A(f}), then we label the endpoint crossed. We label all remaining endpoints
of barriers uncrossed. By our choice of bridges, and since the interiors of the tri-
angles A(f;) for i =1, 2,3 are disjoint, at most % of the endpoints are labeled as
crossed.

For every bridge, each barrier endpoint labeled crossed corresponds to a crossing
between the barrier and the bridge, with one possible exception. The exception is the
one barrier which, under Lemma 9, has no endpoint in the interior of triangle A(f;)
but may be crossed as well. Since there are k bridges, there are at most k exceptional
barriers. There are at most 2n endpoints of barriers and therefore at most 2n/3 + k
crossings of barriers by bridges. The tree G~ creates n — k crossings. The total cost
is thus at most 5n/3. 0

@ Springer



Discrete Comput Geom (2008) 40: 377-394 393

3.4 Lower Bound for the Total Cost

Lemma 12 There are examples where every straight line spanning tree on S has a
total cost of at least %n

Proof Construct a honey-comb with n barriers as depicted in Fig. 10. Suppose T is
a spanning tree of connectors. We distinguish two types of sites: blue sites within
the hexagonal faces and red sites within the triangular faces. The perimeter’s effect
vanishes (there are O(y/n) cells along the perimeter) as the example grows in size.
Ignoring the perimeter effect, the number of red sites is %n and the number of blue
sites is %n We classify the edges between the sites as blue-blue, red-blue, and red-
red. Each blue-blue edge crosses some barrier, and each red-blue or red-red edge
crosses two or more barriers. Consider the graph (a forest) R formed from just the
red sites and the red-red edges. Because T is a spanning tree, each component of R is
connected to some blue site with a distinct red-blue edge. Thus the combined number
of red-blue and red-red edges cannot be less than the number of red sites. Thus T has
n — 1 edges, all of which cross some barrier and at least %n of which cross at least

two barriers. This yields a total of at least %n — 1 crossings. d

4 Summary and Future Work

We defined a restricted version of a problem posed by Snoeyink and proved a worst-
case optimal upper bound of 2 on the number of crossings per edge and an asymptot-
ically tight upper bound of %n on the total cost. The problem presented by Snoeyink
remains open, with a lower bound of 3 crossings per edge and 2n — 2 total cost and
an upper bound of 4 and 4n, respectively.

The lower bound of 3 crossings per edge indicates that the techniques presented
in Sect. 2 cannot be extended to the original, more general case, since our algorithm
cannot build any graph with more than 2 crossings per barrier. In addition, the tech-
niques described in Sect. 3 for the analysis of the total number of crossings does not
seem to apply for the general problem, either. The greedy algorithm in Sect. 3 gen-
erates a graph with a nested structure in the restricted setting, but this property no
longer holds in the general case.

Two natural extensions of our results appear to be plausible. Given a set of n
pairwise disjoint barriers (segments) and a set of sites (points) such that the sites
jointly “see” the entire plane (that is, for every point p in the plane there is a site s
such that the open segment sp is disjoint from the barriers), is it true that there is a
spanning tree on the sites that crosses every barrier at most twice and has a total cost
of at most 5n/3? We are also studying a connection between the infinite line barriers
(see [2]) and pairwise disjoint segment barriers: What is the minimum total number of
crossings between n line segments with O (n®) intersecting pairs (where 0 < o < 2)
and the edges of a spanning tree over all straight line spanning trees on m points?
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