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Abstract This paper addresses the problem of piecewise linear approximation of im-
plicit surfaces. We first give a criterion ensuring that the zero-set of a smooth function
and the one of a piecewise linear approximation of it are isotopic. Then, we deduce
from this criterion an implicit surface meshing algorithm certifying that the output
mesh is isotopic to the actual implicit surface. This is the first algorithm achieving
this goal in a provably correct way.
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1 Introduction

Implicit equations are a popular way to encode geometric objects; See, e.g., [4, 25].
Typical examples are CSG models, where objects are defined as results of boolean
operations on simple geometric primitives. Given an implicit surface, associated geo-
metric objects of interest, such as contour generators, are also defined by implicit
equations. Another advantage of implicit representations is that they allow for ef-
ficient blending of surfaces, with obvious applications in CAD or metamorphosis.
Finally, this type of representation is also relevant to other scientific fields, such as
level set methods or density estimation [8].

However, most graphical algorithms, and especially those implemented in hard-
ware, cannot process implicit surfaces directly, and require that a piecewise linear
approximation of the considered surface has been computed beforehand. As a conse-
quence, polygonization of implicit surfaces has been widely studied in the literature.
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There are two general classes of methods devoted to this problem: continuation meth-
ods and adaptive enumeration methods. A continuation algorithm is surface based in
the sense that it starts from a seed point on the surface, and computes successive
vertices of the mesh while following the surface in some tangent direction. None of
the algorithms in this category comes with topological guarantees: they might miss
some connected components, or merge different components into a single one. Adap-
tive enumeration methods, also called extrinsic polygonization methods [25], are grid
based, or, more generally, based on a tessellation of the ambient 3D space. They con-
sist of two steps: first build a tessellation of space, and then analyze the intersection of
the considered surface with each cell of the tessellation to construct the approxima-
tion. The celebrated marching cube algorithm [16] belongs to this category. The goal
of an implicit surface polygonizer is twofold: its output should be geometrically close
to the original surface, and have the same topology. While the former is achieved by
several polygonization schemes [26], the latter has been barely addressed up to now.

Some algorithms achieve topological consistency, that is, ensure that the result
is indeed a manifold, by taking more or less arbitrary decisions when a topologi-
cally ambiguous configuration is encountered. This implies that their output might
have a topology different from the one of the original surface, except in very specific
cases [15]. The problem of topologically correct polygonization of implicit curves in
the plane is treated by Snyder in [24], who uses an adaptive enumeration method. His
algorithm combines interval arithmetic with a quadtree tessellation of the domain of
interest. It seems hard to generalize this method to implicit surfaces in three-space.
Moreover, this algorithm seems to have high complexity due to the large number of
calls to the interval version of Newton’s method.

When the conference version of the present paper was published (Proceedings
of STOC’04), there was only one paper devoted to the problem of homeomorphic
polygonization of surfaces [19]. Since then there has been several papers [5, 7, 18]
that solve the same problem as ours, or a related one. The main theoretical tool used
in [19] is Morse theory. The authors first find a level set of the considered function
that can be easily polygonized. This initial polygonization is then progressively trans-
formed into the desired one, by computing intermediate level sets. This requires in
particular to perform topological changes when critical points are encountered. This
algorithm has an intuitive justification and seems to work on simple cases. Unfortu-
nately, the authors do not give any proof of its correctness, and it is not clear to us
whether it can deal with complex shapes in a robust way. In particular, the method
does not guarantee that the mesh produced are self-intersection free.

In this paper, we give the first certified algorithm for the more difficult prob-
lem of isotopic implicit surface polygonization. This means that our output can
be continuously deformed into the actual implicit surface without introducing self-
intersections [14]. For instance, if the original implicit surface is knotted, then our
output is guaranteed to be knotted in the same way, which would not be guaranteed
by an algorithm ensuring only homeomorphic polygonization. Moreover, the whole
algorithm can be implemented in the setting of interval analysis. We only assume that
the considered isosurface is smooth, that is, does not contain any critical point. By
Sard’s theorem [22], this is a generic condition. Our polygonization is the zero-set of
the linear interpolation of the implicit function on a mesh of R

3. We first exhibit a set
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of conditions on the mesh used for interpolation that ensure the topological correct-
ness (Sect. 2). Then, we describe an algorithm for building a mesh satisfying these
conditions, thereby leading to a provably correct isotopic polygonization algorithm
(Sect. 3).

We note that since the publication of the conference version of the present pa-
per, another method appeared that solves exactly the same problem as ours [18]. One
difference between the two methods is that [18] uses octrees instead of triangula-
tions. A more important difference is in the refinement stopping criterion: in [18],
cells are subdivided until the intersection of the implicit surface with each cell is
sufficiently flat. By contrast, we stop refinement as soon as a certain global criterion
ensuring topological correctness is met. Hence, we may expect that our method is
faster than [18]. This remains to be proved though, since we did not implement our
method.

2 A Condition for Isotopic Meshing

Let f be a C2 function from R
3 to R, and M be its zero-set. We assume that M , the

surface we want to polygonize, is compact (condition a1). In what follows, T denotes
a triangulation of a domain � ⊂ R

3 containing M and f̂ the function that coincides
with f at the vertices of T and that is linearly interpolated on the simplices of T .
A vertex v will be said to be larger (resp. smaller) than a vertex u if f (v) is larger
(resp. smaller) than f (u); the sign of f at a vertex will be referred to as the sign of
that vertex. We set M̂ = f̂ −1(0).

2.1 Topological Background

Collapses Loosely speaking, a collapse [20] is an operation which consists of re-
moving cells from a simplicial complex without changing its connectivity. More pre-
cisely:

Definition 1 If L is a simplicial complex and K a subcomplex of L, one says that
there is an elementary collapse from L to K if there is a p-simplex s of L and a
(p − 1)-face t of s such that:

– s is not a face of any simplex of L.
– t is not a face of any simplex of L other than s.
– L is the union of K , s, and all the faces of s.
– ∂s \ K is the relative interior of t .

Definition 2 If L is a simplicial complex and K a subset of L, one says that L

collapses to K if there is a subdivision L′ of L such that a subdivision of K can be
obtained from L′ by a sequence of elementary collapses.

Definition 2 is illustrated in Fig. 2. In Fig. 2, the complexes in the middle and on
the right do not collapse to the bold curve because they would need to be “torn” in
order to do so.
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Fig. 1 Elementary collapse

Fig. 2 The grey complex L on the left collapses to the bold curve K (dashed edges represent the subdivi-
sion L′). This is not true for the two other complexes

Smooth Morse theory The topology of implicit surfaces is usually investigated
through Morse theory [17]. Given a real function f defined on a manifold, Morse
theory studies the topological changes in the sets f −1(] − ∞, a]) (lower level-sets)
when a varies. In our case, as f is defined on R

3, this amounts to studying how the
topology of the part of the graph of f lying below a horizontal hyperplane changes
as this hyperplane sweeps R

4. Classical Morse theory assumes that f is of class C2.
In this case, as is well known, these topological changes are related to the critical
points of f , that is, the points where the gradient ∇f of f vanishes. More precisely,
the only topological changes occur when f −1(a) passes through a critical point p.
The value a is then called a critical value. Generically, in the 2-dimensional case, the
topology of f −1(] − ∞, a]) can change in three possible ways, according to the type
of the critical point p (see Fig. 3).

In Fig. 3, the sets f −1(]−∞, a]) are displayed as light grey regions. The leftmost
column depicts the situation where p is a local maximum, that is, when the Hessian of
f at p is positive. In this case, f −1(] − ∞, a + ε]) is obtained from f −1(] − ∞, a −
ε]) by gluing a topological disk along its boundary. In the case of a saddle point
(i.e. the Hessian has critical values of both signs), passing a critical value amounts to
gluing a thickened topological line segment (in grey) along its “thickened” boundary
(in bold). Finally, passing through a local minimum (negative Hessian) just amounts
to adding a disk disconnected from f −1(] − ∞, a − ε]). If p does not fall in any
of these categories, that is, if the Hessian at p is degenerate, then classical Morse
theory cannot be applied. C2 functions the critical points of which all have non-
degenerate Hessian are called Morse functions. From now on, we will assume that f

is a Morse function (condition a2). Also, we require that 0 is not a critical value of f

(condition a3), which implies that M is a manifold.
The number n of negative eigenvalues of the Hessian at p is classically called the

index of p. However, for consistency reasons that will appear later, we call the index
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Fig. 3 Smooth Morse theory in 2D

of p the integer (−1)n. The index of f on a region V is the sum of the indices of all
critical points of f lying in V . The index satisfies the following important theorem:

Theorem 1 (Poincaré-Hopf index theorem) The index of f on one of its lower level-
sets is the Euler characteristic of that lower level-set.

PL Morse theory Morse theory has been extended to a broad class of non-smooth
functions by Goresky and McPherson [11]. We now outline the special case of PL
functions, that is, we consider the case of f̂ . We assume from now on that no two
neighboring vertices map to the same value under f , and that no vertex of T maps to
0 under f (conditions b1 and b2), which guarantees that M̂ is a manifold. We refer
to these assumptions as genericity assumptions. Let us first recall some well-known
definitions [10, 11]:

Definition 1 The star of a vertex is the union of all simplices1 containing this vertex.
The link of a vertex is the boundary of its star.

Definition 2 The lower star St−(v) of f̂ at a vertex v is the union of all simplices
incident on v whose vertices other than v are smaller than v. The lower link Lk−(v)

of f̂ at a vertex v is the union of all simplices of the link of v all vertices of which are
smaller than v. The upper star St+(v) and the upper link Lk+(v) are defined similarly.

1By simplex we mean a closed cell of T of any dimension.
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Fig. 4 Morse theory for PL functions in 2D. Plus and minus signs indicate whether neighbors of v are
larger or smaller than v. Lower links are displayed in bold, sets f̂ −1(] − ∞, f (v) − ε]) in grey, and sets
f̂ −1([f (v) − ε,f (v) + ε]) in light grey

Figure 4 shows that—for small ε—the topological changes between lower level-
sets f̂ −1(]−∞, f (v)− ε]) and f̂ −1(]−∞, f (v)+ ε]) are determined by the topol-
ogy of Lk−(v). In particular, in 2D, topological changes occur whenever Lk−(v) is
not connected or equals the link of v (right and middle cases in Fig. 4). This is what
motivates the next definition in the higher dimensional case:

Definition 3 A critical point of f̂ is a vertex whose lower link is not collapsible.2

A vertex that is not a critical point of f̂ will be called regular.

With this definition, topological changes in lower level-sets occur exactly at crit-
ical points, which is consistent with smooth Morse theory. The index of a vertex v

is defined to be 1 minus the Euler characteristic of Lk−(v) [2]. In particular, regular
points all have index 0. The converse is not true however in dimension at least 3. Also,
checking if a vertex is regular is easy for PL functions defined on three-dimensional
meshes: it is sufficient to check that the lower link and the upper link are both non-
empty and connected.3 Define the index of f̂ on a region V to be the sum of the
indices of all critical points of f̂ lying in V . Again, this definition is consistent with
the smooth case, since the PL index can be shown to also satisfy the Poincaré-Hopf
index theorem [2]. The following lemma will be used later:

Lemma 2 If the gradients of f̂ on tetrahedra incident to a vertex v all have a positive
inner product with some vector, then v is regular.

Proof By Proposition 1.2 page 450 in [1], f̂ −1(] − ∞, f (v) + ε]) retracts by de-
formation on f̂ −1(] − ∞, f (v) − ε]) for sufficiently small ε. Hence Lk−(v) has the
homology groups of a point, implying that it is collapsible since it is a subcomplex
of the 2-sphere. �

2A complex is collapsible if it collapses to a point.
3This follows from Alexander duality together with the fact that contractible subcomplexes of the 2-sphere
are collapsible.
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2.2 Main Result

We assume throughout the paper that f and T satisfy conditions a1, a2, a3, b1, b2.
That is, M is compact, f is a Morse function, 0 is not a critical value of f , no vertex
of T map to 0 by f , and no two neighboring vertices of T map to the same value
by f . Additionally, we assume that the following condition holds:

0. f does not vanish on any tetrahedron of T containing a critical point of f .

Theorem 3 Let W be a subcomplex of T satisfying the following conditions:

1. f does not vanish on ∂W .
2. W contains no critical point of f .
2′. W contains no critical point of f̂ .
3. W collapses to M̂ .
4. f and f̂ have the same index on each bounded component of � \ W .

Then M and M̂ are isotopic in W . Moreover, the Hausdorff distance between M

and M̂ is smaller than the “width” of W , that is, the maximum over the components
V of W of the Hausdorff distance between the subset of ∂V where f is positive and
the one where f is negative.

Here, isotopic in W means that M can be continuously deformed into M̂ while
remaining a manifold embedded in W , so that M could not be a knotted torus if
M̂ is an unknotted one, for instance. We first prove that under the conditions of the
theorem, M and M̂ are homeomorphic. Under the assumptions of the theorem, the
fact that they actually are isotopic will be a direct consequence of a result obtained
in [6]. Before proving the theorem, we first show by some examples that none of its
assumptions can be removed. In the three following pictures, (local) minima of f are
represented by min, (local) maxima by max, and saddle points by s. Critical points
of f̂ are represented similarly but with a caret. The sign preceding a critical point
symbol indicates the sign of the considered function (f or f̂ ) at the critical point.

Figure 5 shows that condition 0 cannot be removed even in the 2D case. By allow-
ing for critical points of f inside a triangle of T with positive vertices, one can build
an example where M has an extra component with respect to M̂ without violating

Fig. 5 Condition 0 is necessary
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Fig. 6 Critical points do not
determine the topology of
level-sets

Fig. 7 Condition 2′ and 4 are
necessary

conditions involving critical points and their indices. Indeed, in Fig. 5, f has index 0
on the triangle, since minima have index 1 and saddle points have index −1.

The situation in Fig. 6 is a 2D example of two zero-sets M (boundary of the grey
region) and M ′ which are not homeomorphic, though their defining functions have the
same critical points, with the same indices. The dashed curve represents a negative
level-set of the function defining M ′. Such an example can also be built such that
M ′ = M̂ for some mesh T . This shows the importance of the set W in the theorem.
In particular, conditions 1 and 3 cannot be removed. Indeed, if one drops 1, taking
for W any set satisfying 2 and 3 makes the theorem fail. On the other hand, if one
drops 3, any W satisfying 2 and 1 also makes the theorem fail.

Figure 7 shows a 3D example where M is a torus whereas M̂ is a sphere. This is
because f̂ has an extra negative minimum inside f̂ −1(] − ∞,0]) whereas f has an
index 1 saddle point outside the bounding box �. Depending on whether this extra
minimum lies in W or not (see the circle arc with arrows at both ends in Fig. 7), one
obtains counterexamples to the theorem if assumptions 2′ or 4 are dropped. One can
build similar examples showing that condition 2 is also needed.

We now return to the proof of Theorem 3.

2.3 Proof of the Theorem

Lemma 4 Let S and T be two subsets of a topological space X that meet (i.e.
S ∩ T �= ∅). Assume the boundary of S, as well as T and X \ T , are connected. If
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X \ S and X \ T meet but their boundaries do not, then S is contained in the interior
of T or the other way around.

Proof The boundary of S is the disjoint union of ∂S ∩ int(T ) and ∂S ∩ int(X \ T )

since ∂S ∩ ∂T is empty. So we have a partition of ∂S in two relatively open sets. As
it is connected, one has to be empty. If ∂S ∩ int(T ) is empty then ∂S ⊂ int(X \ T )

that is, T ∩ ∂S is empty. As a consequence, T is included in int(S) or in int(X \ S)

by connectedness. Since S and T meet, we have that T ⊂ int(S).
Now if ∂S ∩ int(X \ T ) is empty then X \ T is contained in int(S) or in int(X \ S) by
connectedness again. Similarly as above it has to be contained in int(X \ S), which
implies that S ⊂ T . Thus int(S) ⊂ int(T ) so ∂S ⊃ S \ int(T ) = S ∩ ∂T . If S would
meet ∂T , then ∂S and ∂T would meet, which is impossible. Hence, S is included in
the interior of T . �

Lemma 5 Let V be a connected component of W . M ∩ V is a connected smooth
compact manifold without boundary.

Proof Condition 3 implies easily that V collapses to M̂ ∩ V . Therefore V contains a
simplex having positive and negative vertices. As a consequence, f vanishes on V .
Since f does not vanish on ∂W (condition 1), M intersects V . Also, M does not meet
the boundary of V (condition 1), so M ∩ V is a smooth compact manifold without
boundary.

Because V , which is connected, collapses to M̂ ∩V , M̂ ∩V is a connected closed
surface. Therefore, the complement of M̂ ∩ V has exactly two components, one of
which is bounded. Because V collapses to M̂ ∩ V , R

3 \ V also has exactly one
bounded component which we denote by A and one unbounded component we de-
note by B (see Fig. 8). The complement of A, which is B ∪ V , is connected, because
B and V are connected. For the same reason, A ∪ V is also connected. Moreover,
the complement of A ∪ V , being equal to B , is also connected. In summary, A is
connected as well as its complement, and the same is true for A ∪ V .

Call now Mi , i = 1, . . . , n the connected components of M ∩ V (see Fig. 8).
For each i, let Ni be the bounded component of R

3 \ Mi . Mi = ∂Ni does not meet
∂(A ∪ V ) ⊂ ∂W (1), and A ∪ V is connected as is its complement. So Ni is included
in A ∪ V thanks to Lemma 4. Now Ni contains at least one critical point of f . But as
Ni ⊂ A ∪ V , such a point has to lie in A, by 2. So Ni meets A, but since ∂Ni = Mi

does not meet ∂A ⊂ W̄ , Ni contains A by Lemma 4 again. Suppose M ∩ V is not
connected. Then N1 and N2 both contain A so they intersect. Because M is smooth,
their boundaries do not intersect. So one has w.l.o.g. N2 ⊂ N1. Now f vanishes on
∂(N1 \ N2) = ∂N1 ∪ ∂N2, and therefore has an extremum in N1 \ N2, which is im-
possible by 2 because N1 \ N2 ⊂ V . �

So M ∩ V and M̂ ∩ V are connected compact surfaces without boundary. As seen
in the preceding proof, A contains all critical points of f enclosed by M ∩ V . Also,
A contains all critical points of f̂ enclosed by M̂ ∩ V by 2′. From condition 4, we
deduce that the volumes enclosed by M ∩ V and by M̂ ∩ V have the same Euler
characteristic, since the Euler characteristic of a lower level set is the index of the
considered function on that lower level set (Theorem 1). So M ∩ V and M̂ ∩ V have
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Fig. 8 Proof of Lemma 5

the same genus and are thus homeomorphic. To complete the proof that M and M̂

are homeomorphic, it remains to check that:

Lemma 6 M is included in W .

Proof Let D be some component of � \ W . We claim that M ∩ D is empty. First
M̂ ∩ D is empty by condition 1 so w.l.o.g. vertices lying in the closure of D are all
positive. If M ∩D is not empty then some component E of f −1(]−∞,0]) meets D.
Moreover, ∂D does not meet E. Indeed, f is positive at vertices of ∂D, and does
not vanish on ∂D ⊂ ∂W ∪ ∂� by condition 1. So E, being connected, is included
in the interior of D. But then E is compact and thus f reaches its minimum on E,
implying that E contains a (negative) critical point of f . This is impossible since the
tetrahedron containing this critical point would have negative vertices by condition 0,
though being included in D. �

The proof of the bound on the Hausdorff distance between M and M̂ is not diffi-
cult. Pick any point p in M̂ and let V be the component of W containing it. Assume
w.l.o.g. that f (p) > 0 and let p′ be the closest point of p on the component of ∂V

where f is negative. By the intermediate value theorem, the line segment pp′ meets
M at a point q . The distance between p and q is smaller than the distance between
p and p′ which is smaller than the Hausdorff distance between the two components
of ∂V . This shows one part of the bound. The other part can be proved in a similar
way.

Now that we know that M and M̂ are homeomorphic, the fact that they are isotopic
is a consequence of Proposition 7, which is proved in [6].

Proposition 7 Let M̂ be an orientable compact surface without boundary and let M

be a surface such that

• M̂ is homeomorphic to M ,
• M separates the sides of a topological thickening4 W̃ of M̂ .

Then M is isotopic to M̂ in W̃ .

4This means that there is a homeomorphism � : W̃ → M̂ × [0,1] mapping M̂ to M̂ × {1/2}.
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Indeed, considering a regular neighborhood of W [20] yields the desired topolog-
ical thickening W̃ , as can be seen from the uniqueness theorem for regular neighbor-
hoods from piecewise-linear topology [20].

3 Algorithm

In the algorithm, we take as W a set that is related to the notion of watershed from
topography. This set satisfies properties 2′ and 3 by construction. In Sect. 3.1, we give
its definition, basic properties, and construction algorithms. Section 3.2 describes the
meshing algorithm itself, which ensures that W fulfills also conditions 0, 1, 2, and 4,
and proves its correctness.

3.1 PL Watersheds

We first assume that the mesh T conforms to M̂ , i.e. M̂ is contained in a union of
triangles of T . We will see later how to remove this assumption, which is in con-
tradiction with the genericity assumptions. Define W+ as the result of the following
procedure:

Positive Watershed Algorithm

set W+ = M̂ .
mark all vertices of M̂ .
while there is a positive regular unmarked vertex v of T

such that the vertices of Lk−(v) are marked
do

set W+ = W+ ∪ St−(v).
mark v.

end while
return W+

W− is defined as the result of the same algorithm applied to −f . We set W =
W+ ∪W−. Note that W contains no critical point of f̂ . Also, positive marked vertices
are exactly the vertices of W+.

Lemma 8 W collapses to M̂ .

Proof It is sufficient to show the result for W+. Let W+
i be the state of W+ after i

steps of the algorithm, and let vi be the i-th marked vertex. As W+
0 = M̂ , the only

thing we have to show is that W+
i+1 collapses to W+

i for all i. Let us first show that
Lk−(vi) is included in W+

i . If it is not the case, let u be the largest vertex of some
simplex s of Lk−(vi) that is not in W+

i . Simplex s is in St−(u) which is therefore not
included in W+

i . This is a contradiction since vi is marked. Therefore Lk−(vi) ⊂ W+
i .

Now since vi is regular, Lk−(vi) is collapsible. Consider a sequence of elemen-
tary collapses allowing to collapse Lk−(vi) to p and let sj ⊂ Lk−(vi), j = 1, . . . , n
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Fig. 9 Construction of W+:
lower stars of regular vertices
(such as v1) are added one by
one. Lower stars of critical
vertices (v2) are discarded

be the sequence of simplices defining these elementary collapses. The simplices
conv(sj ∪ vi), j = 1, . . . , n and the edge pvi define a valid sequence of elementary
collapses allowing to collapse W+

i+1 = W+
i ∪ St−(vi) to W+

i , which concludes the
proof. �

One may prefer a more intrinsic definition of W+. In the same spirit as in [9], one
can define a partial order on the vertices of T by the closure of the acyclic relation ≺
defined by u ≺ v if u ∈ Lk−(v) or u = v. We will denote this order ≺ again and say
that v flows into u whenever u ≺ v. The next lemma shows that the vertices of W+
do not depend on the order in which the vertices are considered in the construction.

Lemma 9 The vertices of W+ are exactly the positive vertices that do not flow into
any positive critical point of f̂ .

Proof The vertices of W+ have this property by construction. Let p be a positive
vertex not belonging to W+ and assume p does not flow into any positive critical
point. In particular, p is regular by reflexivity. Hence, as p /∈ W+, the lower link
of p, which is not empty, has to contain an unmarked vertex. It cannot contain a
critical point because as T conforms to M̂ , vertices in Lk−(p) are all non-negative,
and so p would flow into a positive critical point. There is thus an unmarked vertex
in Lk−(p). If we can choose an unmarked positive vertex p1 in Lk−(p), then p1 does
not belong to W+, and flows into a positive critical point. Repeating this process with
p replaced by p1, we find a strictly decreasing sequence of positive vertices, that
thus has to end. Let pk be its last term. The lower link Lk−(pk) contains no positive
unmarked vertices. But as T conforms to M̂ , vertices in Lk−(pk) are all non-negative.
Since vertices of M̂ are marked, we get a contradiction. �

Note that W is the union of simplices with all their vertices in W . As a result,
we get an intrinsic definition of W , and not only of its vertices. From an algorithmic
point of view, it may be efficient to examine the vertices in increasing order in the
construction of W+. One can for instance maintain the ordered list of vertices neigh-
boring W , always consider the first element of this list for marking, and discard it if it
cannot be marked. Indeed, with this strategy, a vertex that cannot be marked at some
point will never be marked.
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Another consequence of Lemma 9, which will be useful later, goes as follows.
Let c be the minimum of |f̂ (v)|, and hence the minimum of |f (v)| over all critical
points v of f̂ .

Lemma 10 W contains all vertices the image of which under |f | is smaller than c.

Proof Let p be such that |f (p)| < c. Without loss of generality, assume that p is
positive. Any critical point v into which p flows satisfies f (v) < f (p). So it cannot
be positive by definition of c: by Lemma 9, p lies in W+. �

Non conforming case We now drop the assumption that T conforms to M̂ and as-
sume genericity again. From T and M̂ one can build a mesh S that is finer than T ,
conforms to M̂ , and has all its extra vertices on M̂ . Indeed, it suffices to triangulate
the overlay of M̂ and T without adding extra vertices except those of M̂ ∩T . This can
be done as the cells of the overlay are convex. The construction of W described above
can then be applied to S. A positive vertex of T has its lower link in S containing only
vertices of M̂ if and only if its lower link in T contains only negative vertices. Thus,
in order to find the positive vertices of W ∩ T , one can apply the positive watershed
algorithm described above to T , if at the initialization step one marks all negative
vertices having a positive neighbor instead of those of M̂ . Still, note that if a negative
critical point has a positive neighbor, then this neighbor will not be marked by this
modified algorithm, whereas it could have been marked by the standard algorithm
applied to S. However, if we assume that vertices having a neighbor of opposite sign
are regular (condition c), then this does not happen and the result W ′ of the modified
algorithm is equal to W . The negative vertices of W ∩ T are determined similarly. In
our meshing algorithm, we will not build the mesh S, but rather make sure condition c
holds, and apply the modified algorithm.

Updating W ′ The intrinsic definition of W—or W ′—given above yields an effi-
cient way of updating W when T undergoes local transformations. It is sufficient to
describe the algorithm for updating the vertices of W+. Let T1 be a mesh obtained
from T by removing some set of tetrahedra E and remeshing the void left by E.
Call A the set of positive critical points of the linear interpolation of f on T1 that
lie in E. Then the vertex set of the positive watershed W+

1 associated with T1 can
be computed from the vertex set of W+ by performing the following two operations.
To begin with, the set of vertices of T1 that flow into A must be removed from W+
(Lemma 9), which amounts to a graph traversal. The remaining vertices of T1 all be-
long to W+

1 . Then, mark these vertices and apply the positive watershed algorithm
loop to get the other vertices of W+

1 .

Remark The watershed we compute is in general strictly included in the ‘true wa-
tershed’. The ‘true watershed’ seems hard to compute, though, and can intersect a
triangle in a very complicated way. There might be interesting intermediate defin-
itions between ours and the true one, for instance based on the PL analog of the
Morse complex introduced in [10].
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3.2 Main Algorithm

Theorem 3 enables us to build a mesh isotopic to M using two simple predicates,
vanish and vanish’. The predicate vanish (resp. vanish’) takes a triangle or a box
and return true if f (resp. ∇f ) vanishes on that triangle or that box. We actually do
not even need predicates, but rather filters. More precisely, vanish (or vanish’) may
return true even if f does not vanish on the considered element, but not the other way
around. Still, we require that vanish returns the correct answer if the input triangle or
box is sufficiently small. Such filters can be designed using interval analysis.

Our algorithm also requires to build a refinable triangulation of space such that f̂

(resp. ∇f̂ ) converges to f (resp. ∇f ) when the size of the elements tends to 0. As no-
ticed by Shewchuk [23], this is guaranteed provided all tetrahedra have dihedral and
planar angles bounded away from π . In [3], Bern, Eppstein and Gilbert described
an octree-based algorithm yielding meshes the angles of which are bounded away
from 0. In our case, which is much easier, the desired triangulation can simply be
obtained by adding a vertex at the center of each square and each cube of the oc-
tree, triangulating the squares radially from their center, and doing the same with the
cubes. Indeed, resulting planar and dihedral angles are all bounded away from π .
One can expect that this scheme does not produce too many elements upon refine-
ment, because the size of elements is allowed to change rapidly as we do not require
that these have a bounded aspect ratio (see Fig. 10). The main algorithm uses an oc-
tree O , the associated triangulation T , and the watershed W ′. We will say that two
(closed) boxes of O are neighbors if they intersect. O is initialized to a bounding
box � of M . Such a bounding box can be found by computing the critical points of
the coordinate functions restricted to M , if possible, or by using interval analysis. Be-
sides, we maintain five sets of boxes ordered by decreasing size. Critical1 is a certain
set of boxes obtained by interval analysis (see below). This set has the property that
the union of its boxes, which we call the critical set, encloses all critical points of f

but does not intersect M . Critical2 contains all boxes containing a critical point of f̂

that is not in a box belonging to Critical1. Index contains all boxes neighboring a box
b in Critical1 such that f and f̂ have different indices on the connected component of
the critical set that contains b. We defer the description of a method that computes the

Fig. 10 Octree and
triangulation used in the
algorithm. In this 2D example,
only the edges of the
triangulation of the box on the
right are shown (dashed)
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index of f on a box in a certified way to the appendix. Boundary1 contains all boxes
containing two neighboring vertices of opposite signs one of which is critical for f̂

(condition c, see paragraph Non conforming case). Boundary2 contains all boxes
that are not included in W ′, and that contain a triangle t of ∂W ′ such that vanish(t)

is true. Finally, for our algorithm to work, we need to introduce a slight modification
of the watershed W ′, which we call W ′′. The modification consists of taking as W ′′+
vertices—and the same for W ′′−—the positive vertices that do not flow into positive
critical points of f̂ nor into vertices lying in a box containing a positive critical point
of f . With this modification, Lemma 8 still holds and Lemma 10 holds if one replaces
c by the minimum c′ of c and the minimum of |f | on the boxes containing a critical
point of f . Also, c′ is positive as f does not vanish on these boxes.

Main Algorithm

Initialization Refine O until all boxes b satisfy either vanish(b) is false or
vanish’(b) is false. Insert all boxes b such that vanish’(b) is true in Critical1.
compute T and W ′′, and the four sets Critical2, Boundary1,
Boundary2, and Index.
while (true) do

update T , W ′′, and the four sets.
if Critical2 �= ∅ then

split its first element.
else if Boundary1 �= ∅ then

split its first element.
else if Boundary2 �= ∅ then

split its first element.
else if f and f̂ have different indices on some component of the critical set then

split the first element of Index.
else

return M̂

end if
end while

Thanks to Theorem 3 applied to W ′′, the correctness of this algorithm amounts
to its termination. We now show that the main algorithm terminates. First note that
after the initialization step, no box containing a critical point of f is split, because
such boxes belong to Critical1. The magnitude of ∇f is thus larger than a certain
constant gmin on the complement C of the union of these boxes. Let us show that
the size of the boxes of Critical2 that are split at some point is bounded from below.
As ∇f̂ converges to ∇f , there is a number s1 such that for each tetrahedron with
diameter smaller than s1, ‖∇f − ∇f̂ ‖ is smaller than gmin/2 on the interior of that
tetrahedron. If the tetrahedron is included in C, ‖∇f ‖ > gmin, which implies that ∇f̂

and ∇f make an angle smaller than π/6.

Lemma 11 Let A ⊂ R
3 be such that ∂A is a manifold included in C and containing

no vertex of T . Suppose that all boxes meeting ∂A are smaller than s1. Then f and
f̂ have the same index on A.
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Fig. 11 Proof of Lemma 11

The proof of Lemma 11 resorts to stratified Morse theory, which is an extension
of both the smooth and PL Morse theory to the case of piecewise smooth functions.
We refer to [11] for a complete exposition of this subject.

Proof For p ∈ ∂A, let d(p) denote the largest number such that the simplices of
T that meet the open ball centered at p of radius d(p) all share a vertex, v(p). The
quantity d(p) is the 3-dimensional analog of the local feature size function introduced
by Ruppert [21]. We call dmin the minimum of d , which is known to be positive, and
set k equal to the minimum of dmin and e, where e is half the distance from ∂A to the
closest box that does not meet ∂A.

Let us now consider a smooth nonnegative function φ : R
3 → R with support in-

cluded in the open ball centered at 0 of radius k. The convolution of f̂ and φ is a
smooth function f̃ . Let p be a point at distance less than e from ∂A. The gradient of
f̃ at p is a weighted average of the gradients of f̂ at points lying in the open ball cen-
tered at p and with radius k. All gradients involved in this average are gradients of f̂

on tetrahedra incident on v(p). Moreover, the size of these tetrahedra is smaller than
s1 because k ≤ e. As a consequence, all gradients considered make an angle smaller
than π/6 with the gradient of f at v(p). As the weights in the average are nonnega-
tive, we have that the angle between ∇f̃ (p) and ∇f (v(p)) is smaller than π/6. Also,
the angle between ∇f (v(p)) and ∇f (p) is less than π/3 since both vectors make
an angle smaller than π/6 with the gradient of f̂ on some tetrahedron containing p

and v(p). Finally, we get that ∇f̃ (p) and ∇f (p) have a positive inner product.
Let now U1 be a neighborhood of ∂A whose closure does not contain any vertex

of T and let U2 be an open set such that U1 ∪U2 = R
3. We also require that the Haus-

dorff distance between U1 and ∂A is smaller than e and that U2 ∩ ∂A = ∅. Denote by
{u1, u2} a partition of unity subordinate to the covering {U1,U2}. This means that u1
and u2 are nonnegative smooth function defined on R

3, with support in U1 and U2
respectively, and such that u1 + u2 = 1. In particular, u2 equals 1 on the complement
of U1, and u1 equals 1 on the complement of U2. So the function g = u2f̂ + u1f̃

coincide with f̂ on R
3 \U1 and with f̃ on R

3 \U2. Now recall that ∇f̃ and ∇f have
a positive inner product on ∂A, which is contained in the complement of U2. Hence
the linear homotopy between both vector fields does not vanish on ∂A: by normaliza-
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tion, one gets a homotopy between ∇f̃ /‖∇f̃ ‖ and ∇f/‖∇f ‖, considered as maps
from ∂A to the unit sphere. Because the degree (see [13] p. 134 for a definition) is
invariant under homotopy, we deduce that these maps have the same degree, which
shows that f and f̃ have the same index on A. Now as g and f̃ coincide in a neigh-
borhood of ∂A, f and g have the same index on A. To complete the proof, it thus
suffices to show that g and f̂ also have the same index on A. Now the critical points
of f̂ are critical for g, with the same index, as U1 contains no such point. Potential
other critical points of g can only lie in U1. But the gradient of g at any point p of
U1 where it is defined is a convex combination of ∇f̃ (p) and ∇f̂ (p): it thus has a
positive inner product with ∇f (p). By the result of [1] which we mentioned when we
stated Lemma 2, this implies that the index of p is 0. We thus proved the announced
claim. �

Suppose that some box b of Critical2 of size smaller than s1 is split. Let v be a
critical point of f̂ included in b. All the boxes containing v are in Critical2 and their
size is smaller than s1 since we consider boxes in decreasing order. Now the gradi-
ents of f̂ on tetrahedra incident on v all have a positive inner product with ∇f (v)

(recall ∇f and ∇f̂ make an angle less than π/6), which is a contradicts Lemma 2,
implying that v is not critical. So the conclusion is that Critical2 becomes—at least
temporarily—empty after a finite number of consecutive splittings of boxes in Criti-
cal2.

Now if the algorithm splits a box b in Boundary1, then b contains a critical point
of f̂ . This critical point, which we assume to be positive, belongs to a box containing
a critical point of f as Critical2 is empty. So the maximum of |f | on b is larger than
the minimum of |f | on the boxes containing a critical point of f (i.e. c′). On the
other hand, f vanishes on b since b contains a negative vertex. This cannot happen
if the size of b is below a certain value, so that boxes in Boundary1 cannot be split
indefinitely.

Suppose that the algorithm splits arbitrarily small boxes in Boundary2. If a small
enough box b is split, then b contains a triangle t of W ′′ on which f vanishes. So, if
the size of b is small enough, the maximum of |f | on b will be smaller than c′. By
Lemma 10, all vertices of b will then belong to W ′′ so b ⊂ W ′′ which is a contradic-
tion. Thus the size of split boxes in Boundary2 is also bounded from below.

To complete the proof of termination, we need to prove that Index does not contain
boxes that are too small. This is true by applying Lemma 11 to smooth neighborhoods
of each connected component of the critical set. Finally:

Theorem 12 The main algorithm returns an isotopic piecewise linear approximation
of M .

If one wishes to guarantee in addition that the Hausdorff distance between M

and its approximation is less than say ε, by Theorem 3 it is sufficient to modify the
positive watershed algorithm so as to control that the width of W is smaller than ε.
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4 Conclusion

We have given an algorithm that approximates regular level sets of a given function
with piecewise linear manifolds having the same topology. Though no implemen-
tation has been carried out, we believe that it should be rather efficient due to the
simplicity of the involved predicates and the relative coarseness of the required space
decomposition.

Appendix

We now briefly explain how to compute the index of a generic smooth function f :
R

3 → R on a box B ⊂ R
3 in a certified way. Without loss of generality, we assume

that B = [0,1]3. Our approach is based on a recursive definition of the index of a
vector field introduced in [12]. The central formula in this work is the following (see
Fig. 12). If V denotes a vector field (in our case, V = ∇f ) defined on a compact
smooth n-manifold M and not vanishing on ∂M , then the index of V satisfies:

Ind(V ) = χ(M) − Ind(∂−V ).

Here ∂−V is a vector field defined on ∂−M , which is the set of boundary points where
V points inwards. On ∂−M , ∂−V coincides with the projection of V on the tangent
space of ∂M . Now suppose we can find a (n − 1)-submanifold M1 ⊂ ∂−M that con-
tains all zeroes of ∂−V . Then, to compute the index of V on M , it is sufficient to
compute the index of ∂−V on M1 (and the Euler characteristic of M1). By repeated
application of this principle, we can express the index of V as a sum of Euler char-
acteristics and indices of vector fields defined over 1-manifolds, which are trivial to
compute.

To apply this strategy to our case, in which M = B has edges and corners, we
conceptually consider offsets of M , which are smooth, and let the offset parameter
go to 0. Almost by definition, in this setting the zeros of ∂−V are the points where
V belongs to the normal cone and points inwards. Using interval analysis, it is not
difficult to find a subset B1 of ∂−B that contains all such points, and such that ∂−V

Fig. 12 An index 2 vector
field V on a square C

represented by a few flow lines.
∂−C is in bold. The dot on ∂−C

represents the unique zero
of ∂−V , which has index −1
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does not vanish on ∂B1. To do this, we recursively subdivide the faces of the cube
until all cells satisfy one of the two following conditions: either the cell does not
contain a zero of ∂−V , or it is included in ∂−B . The union of the cells of the latter
type will then provide a suitable B1. For a square C lying on the face supported by,
say, the plane z = 1, sufficient conditions ensuring that C does not contain any zero
of ∂−V are

(Vz(C) > 0) or (0 /∈ Vx(C)) or (0 /∈ Vy(C)).

Here Vz(C) > 0 for instance means that the z-coordinate of V is positive on C. The
condition under which C is included in ∂−B is obviously Vz(C) < 0. Edges of the
cube might also have to be subdivided. Without loss of generality we assume that
edge E is supported by the line with equation x = y = 1. Then sufficient conditions
under which E cannot contain a zero are as follows:

(Vx(E) > 0) or (Vy(E) > 0) or (0 /∈ Vz(E)).

Also, the condition under which E is included in ∂−B is (Vx(E) < 0) and
(Vy(E) < 0). It can be checked that this subdivision process terminates if V has
no zeroes on the surface of the cube, which is a generic condition. Upon termination
of the subdivision process, we obtain a set B1 to which the formula can be applied. It
thus remains to recursively subdivide the boundary edges of B1 in a similar way as
above to complete the computation of the index of V .
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