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Abstract. In this paper we prove a special case of the transversal conjecture of Tverberg
and Vrećica. We consider the case when the numbers of parts ri in this conjecture are powers
of the same prime. We also prove some results on common transversals that generalize the
classical nonembeddability theorems.

We also prove an analogue of the colored Tverberg’s theorem by Živaljević and Vrećica.
Instead of multicolor simplices with a common point it gives multicolor simplices with a
common m-transversal.

1. Tverberg’s Transversal Conjecture

In this paper we prove a special case of the transversal conjecture of Tverberg and
Vrećica.

Conjecture 1. Let 0 ≤ m ≤ d − 1 and let S0, S1, . . . , Sm be m + 1 finite sets in Rd .
Let |Si | = (ri − 1)(d − m + 1) + 1. Then every set Si can be partitioned into ri parts
Si1, Si2, . . . , Siri so that all the sets conv Si j can be met by a single m-flat.

This conjecture was formulated by Tverberg at the 1989 Symposium on Combina-
torics and Geometry in Stockholm. In print it was first formulated by Tverberg and
Vrećica in [8], where a special case of this conjecture was proved.

In [15] and [11] Živaljević and Vrećica established the case of this conjecture when
all ri are equal to the same prime p, if p is odd then d and m were also required to be
odd.
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by the President of the Russian Federation, Grant No. MK-5724.2006.1.
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Here we prove the theorem that generalizes the results of Živaljević and Vrećica to
prime powers and show that the condition that d is odd is not necessary. Our proof is
quite short because we use the multiplicative rule for the Euler class. We prove that this
conjecture is true when the numbers ri are powers of the same prime ri = pki , and for
odd p, we also need d − m to be even. Similarly to what was done by Živaljević and
Vrećica, we prove a more general topological version of this conjecture.

Theorem 1. Let 0 ≤ m ≤ d − 1, let ri (i = 0, . . . ,m) be powers of the same prime
ri = pki . If p is odd, let d −m be even. Let, for each i = 0, . . . ,m, fi map continuously
an (ri − 1)(d − m + 1)-dimensional simplex �i = �(ri−1)(d−m+1) to Rd . Then every
simplex �i has ri points xi1, xi2, . . . , xiri ∈ �i with pairwise disjoint supports so that
all the points fi (xi j ) are contained in a single m-flat.

2. Transversal Analogues of Nonembeddability Theorems

In this paper we generalize some results of [15] that give transversal analogues of nonem-
beddability theorems. We have to recall some basic concepts in equivariant topology, for
a detailed explanation see Chapters III and IV of [5].

Let us take the classifying G-space EG and define the G-equivariant cohomology of
a G-space X as

H∗G(X, K ) = H∗((X × EG)/G, K ).

Now consider the case G = Z2. The cohomology ring of the one-point space � =
H∗Z2

(pt, Z2) can be represented as � = Z2[u], where dim u = 1. If Z2 acts on Rn by
sending x to −x , then the equivariant Euler class of this representation is

e(Rn) = un ∈ H n
Z2
(pt, Z2).

For any space Y with a Z2 action the equivariant map Y → pt gives the canonical map
�→ H∗Z2

(Y, Z2). If this does not lead to confusion, we denote the images of uk under
this map by uk .

Definition. Let Y be a Z2-space. The maximal n such that un 
= 0 ∈ H n
Z2
(Y, Z2) (it

may be +∞) is called the homological index of Y . We denote it hind Y .

For any topological space we denote X2
� = X×X\�(X) as the deleted product of X ,

i.e. the square of X without the diagonal.
For a simplicial complex K it is useful to define the deleted join K ∗2� in the following

way. Let the vertex set of K be V . Then the vertex set of K ∗2� is V1  V2, the disjoint
union of two copies of V . The simplices of K ∗2� are pairs of simplices of K , σ1 ⊆ V1,
σ2 ⊆ V2, such that, considered as subsets of V , they have σ1 ∩ σ2 = ∅.

Deleted squares and joins have a natural Z2 action by permutation. As is discussed
in [6], the simplest way to prove that some topological space X cannot be embedded into
R

n is to show that hind X2
� ≥ n. Similarly, for a simplicial complex K it is sufficient to

show that hind K ∗2� ≥ n + 1.
Now we can formulate the transversal analogues of nonembeddability theorems.
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Theorem 2. Let X0, X1, . . . , Xm be topological spaces such that for any i = 0, . . . ,m,
hind(Xi )

2
� ≥ d−m. Suppose for each i = 0, . . . ,m we have a continuous map fi : Xi →

R
d . Then there exist m + 1 pairs of distinct points xi , yi ∈ Xi such that their images
{ fi (xi ), fi (yi )}mi=0 are met by some m-flat in Rd .

Theorem 3. Let K0, K1, . . . , Km be simplicial complexes such that, for any i =
0, . . . ,m, hind(Ki )

∗2
� ≥ d−m+1. Suppose for each i = 0, . . . ,m we have a continuous

map fi : Ki → R
d . Then there exist m+1 pairs of points xi , yi ∈ Ki with disjoint support

simplices such that their images { fi (xi ), fi (yi )}mi=0 are met by some m-flat in Rd .

For example, if we consider the d-skeleton of a (2d + 2)-dimensional simplex K =
�d

2d+2, then hind(K ∗2� ) = 2d+1. This is shown in [6] for another definition of the index,
but in fact the reasoning is the same as for the homological index.

Using this fact we can formulate the following corollary that generalizes the Van Kam-
pen–Flores theorem from [9] and [3], which is the case m = 0 of the following statement.

Corollary 4. If we have m + 1 continuous maps fi : �d
2d+2 → R

2d+m , then there exist
m + 1 pairs of points xi , yi ∈ �d

2d+2 with disjoint supports in each pair such that their
images { fi (xi ), fi (yi )}mi=0 are met by some m-flat in R2d+m .

3. Colored Version of Tverberg’s Transversal Conjecture

Denote [n] = {1, 2, . . . , n}.

Definition. Let set S be colored into n colors (i.e. mapped to [n]). Call a nonempty
subset σ ⊆ S multicolored if each color occurs in σ no more than once.

Theorem 5. Let 0 ≤ m ≤ d−1 and let S0, S1, . . . , Sm be m+1 finite sets inRd . Let ri

(i = 0, . . . ,m) be powers of the same prime p. Let k be the number of colors and either
k = d−m+1 or k < d−m+1 and, for each i = 0, . . . ,m, ri ≤ (d−m)/(d−m+1−k).
If p 
= 2 we require that d−m is even. Let ti = 2ri − 1. Let |Si | = ti k and let each Si be
colored in k colors so that each color is used in Si ti times. Then we can find ri disjoint
multicolored subsets for each i ,

Pi1, Pi2, . . . , Piri ⊆ Si ,

so that all the sets conv Pi j (i = 0, . . . ,m, j = 1, . . . , ri ) can be met by a single m-flat.

We also formulate another version of this theorem

Theorem 6. Theorem 5 is also true when k = d + 1−m and for those of ri that equal
2 we take ti = 2 instead of 3.

Theorems 5 and 6 are straightforward generalizations of the colored Tverberg’s the-
orem from [12]–[14]. They generalize the colored Tverberg’s theorem in the same way
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as the results from [15] and [11] and Theorem 1 generalize the noncolored Tverberg’s
theorem to m-transversals.

It will be seen from the proof that the sets Si can be replaced by continuous maps
of simplicial complexes Ki (defined below) to Rd and conv Pi j can be replaced by the
images of pairwise disjoint simplices of Ki . That means that in fact we prove some
stronger topological versions of Theorems 5 and 6.

Similar to the colored Tverberg’s conjecture, it is natural to ask whether the number
t = 2r − 1 in Theorem 5 can be made less, or even whether it can be t = r when r 
= 2.
The colored Tverberg’s conjecture for t = r 
= 2 is only proved in [1] for d = 2 by a
nontopological method, so making t less in Theorem 5 seems to be quite a hard problem.

4. Constructions with Vector Spaces

We use constructions from the topological proof of Tverberg’s theorem [7] as they are
used in [6]. We use them for the case of prime powers, following the ideas from [10].

Consider a vector space V and an integer n > 0. Let us make a definition.

Definition. TakeRn with coordinates (t1, . . . , tn) and consider the hyperplane An given
by the equation

t1 + t2 + · · · + tn = 1.

If we want to treat An as a vector space, we put its origin to (1/n, 1/n, . . . , 1/n).

Definition. For a vector space V and an integer n > 0 put

J n
A(V ) = nV ⊕ An,

here nV is the direct sum of n copies of V . The space V can be embedded into J n
A(V )

with the map

v �→ v ⊕ v ⊕ · · · ⊕ v ⊕ (1/n, . . . , 1/n),

and this gives the orthogonal decomposition

J n
A(V ) = V ⊕ Dn

A(V ).

In fact it can be easily seen that J n
A(V ) is the affine hull of the n-fold join V ∗V ∗· · ·∗V .

Action of any group G on the index set [n] gives an action on nV by permutations
of the summands, it also gives an action on An . The summand V in the decomposition
J n

A(V ) = V ⊕ Dn
A(V ) is stable under this action. If G acts transitively on [n], then its

representation on Dn
A(V ) has no trivial summands.

In what follows we consider G = (Zp)
k (p is a prime) and choose some bijection

betweeN [n] (n = pk) and G. Thus G acts on [n] by shifts.
In this case the representation Dn

A(V ) has no trivial summands and (see Section 1
in Chapter IV of [5] for description of H∗G(pt, Zp)) its Euler class e(Dn

A(V )) 
= 0 ∈
H∗G(pt, Zp).
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5. Topological Constructions

Let r = pk , let p be a prime, and let G = (Zp)
k . Consider the N -fold join EG N =

[r ] ∗ [r ] ∗ · · · ∗ [r ]. It is known that it is (N − 1)-dimensional and (N − 2)-connected,
see [6] for a very clear explanation of these matters.

The action of G on [r ] induces the free action of G on EG N and the canonical map

H∗G(pt, Zp)→ H∗G(EG N , Zp)

is injective in dimesions ≤ N − 1, similar to what is done in [10].
In the proof of Theorem 1 it is crucial that the simplicial complex EG N is G-

equivariantly isomorphic to the r -fold deleted join of the (N − 1)-dimensional simplex,
i.e.

EG N = (�N−1)∗r� .

The space of the deleted join is the subset of the ordinary join (�N−1)∗r consisting of
affine combinations of r points of �N−1,

c1x1 ⊕ c2x2 ⊕ · · · ⊕ cr xr ,

with pairwise disjoint supports.
In the proof of Theorem 5 we have another configuration space. Consider the following

simplicial complex K . Let its vertex set be S = [k]× [t] and let the first factor [k] denote
the color of the vertex. Let the simplices of K be all multicolored subsets σ ⊆ S.

Let us describe the r -fold deleted join L = K ∗r� . Its vertex set is [r ]×S, every simplex
σ ⊆ L can considered as a union

σ = 1× σ1 ∪ 2× σ2 ∪ · · · ∪ r × σr ,

where {σ1, . . . , σr } are the disjoint simplices of K . In [12] and [13] it is shown that the
complex L is (rk − 2)-connected.

The action of G on [r ] induces the free action of G on L and the canonical map

H∗G(pt, Zp)→ H∗G(L , Zp)

is injective in dimesions ≤ rk − 1, this fact can be deduced from the Serre spectral
sequence of the fibration (EG × L) /G → BG, see Section 1 in Chapter III of [5].

Next we recall Künneth’s formula (see [4]) for cohomology with coefficients in some
field F :

H n(X × Y, F) =
n⊕

k=0

H k(X, F)⊗ H n−k(Y, F),

where the map from H k(X, F)×H n−k(Y, F) to H n(X×Y, F) is given by the×-product.
We formulate the following simple statement as a separate lemma, which will be

required in the proofs below.
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Lemma 7. If the space Y is connected then some inclusion i : X = X×{y0} → X×Y
gives the map

i∗:
n⊕

k=0

H k(X, F)⊗ H n−k(Y, F)→ H n(X, F),

which is the projection onto the nth summand of
⊕n

k=0 H k(X, F)⊗H n−k(Y, F), having
in mind that H 0(Y, F) = F .

The definition of equivariant cohomology immediately gives for G1-space X and
G2-space Y the equivariant Künneth’s formula:

H n
G1×G2

(X × Y, F) =
n⊕

k=0

H k
G1
(X, F)⊗ H n−k

G2
(Y, F).

If we consider two (equivariant) oriented vector bundles ξ → X and η → Y , then
the space ξ × η is a vector bundle over X × Y and we have the multiplicative rule for
the Euler class

e(ξ × η) = e(ξ)× e(η).

When the bundles are over the same space and we take their fiberwise direct sum we
have (we use simple multiplicative notation for the cup product)

e(ξ ⊕ η) = e(ξ)e(η).

6. Lemma about the Grassmann Variety

Consider the canonical bundle over the Grassmann variety γ → Gd−m
d . In the case p = 2

we consider the variety of nonoriented (d−m)-subspaces, and for odd p we consider the
variety of oriented subspaces. If we have to distinguish between these cases we denote
the oriented Grassmann variety by G+d−m

d .

Lemma 8. For the Euler class e(γ ) modulo p the following holds:

e(γ )m 
= 0 ∈ H m(d−m)(Gd−m
d , Zp),

if p = 2 or d − m is even.

The case of this lemma for p = 2 is proved in [2]. The case for p odd and d odd is
proved in [15].

Proof. Here we give the proof for the case of odd p and the oriented Grassmann variety
G+d−m

d . Denote l = d − m.
We use the method of test sections. That means that to prove that an N -dimensional

oriented vector bundle η over an N -dimensional oriented manifold M has nonzero Euler
class we should do the following. Take some section of this bundle and consider its zero
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points. At each zero point consider some of its vicinity with properly oriented coordinates
x1, . . . , xN , the bundle here can be considered trivial with properly oriented coordinates
u1, . . . , uN . The section is locally given by

u1 = h1(x1, . . . , xN )

...

uN = hN (x1, . . . , xN ),

and the index of this zero point is sgn det(∂hi/∂xj ). If all zero points of the section
are transversal (i.e. their indices are nonzero) the Poincaré duality (see [4]) shows that
e(η) = sw(M), where s is the sum of indices of all zero points and w(M) is the
fundamental N -dimensional class of M .

Now we have an ml-dimensional manifold G+l
d and an ml-dimensional bundle γ ⊕

· · · ⊕ γ = mγ (m-fold direct sum of γ ).
Take m orthonormal vectors f1, f2, . . . , fm ∈ Rd and consider the sections of γ

that are formed by orthogonal projections of fi to the corresponding l-subspace L ∈
G+l

d . We denote these sections by f1, . . . , fm too. Together they form a section f =
( f1, f2, . . . , fm) of mγ . As is easily seen, f has two zero points in G+l

d . They correspond
to the l-subspace L that is orthogonal to vectors fi with two possible orientations.

Choose the orthonormal base e1, . . . , el ∈ L . Consider the case when e1 ∧ · · · ∧ el ∧
f1 ∧ · · · ∧ fm is positive. The elements of G+l

d close to L can be uniquely described by
the base of form

e′1 = e1 + x11 f1 + · · · + x1m fm

...

e′l = el + xl1 f1 + · · · + xlm fm,

and the orientation of G+l
d is given by (row-wise product)

ω = dx11 ∧ dx12 ∧ · · · ∧ dx1m ∧ · · · ∧ dxl1 ∧ · · · ∧ dxlm .

The section f of γ locally has the form as a map G+l
d → R

lm (columnwise order),

(x11, x21, . . . , xl1)⊕ · · · ⊕ (x1m, x2m, . . . , xlm).

We see that this is a transversal zero point and its index equals the sign of permutation
that is induced by the change of row-wise to columnwise order, denote it by I = ±1.

Now if we consider the base of L with a different orientation, we have the same
index for section f ′ = ( f2, f1, . . . , fm). Then transposing f1 and f2 does not change
the index, since l is even. Thus the second point has the same index I .

Finally we have that e(mγ ) = e(γ )m = I [G+l
d ] = ±2[G+l

d ], which is not zero
modulo odd primes.
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7. Proof of Theorem 1

Put, for all i = 0, . . . ,m Gi = (Zp)
ki , Ni = (ri −1)(d−m+1)+1. Denote l = d−m.

The Grassmann variety will be oriented for odd p.
In this theorem we need ri -tuples of points in each �i with pairwise disjoint sup-

ports, so it is natural to consider the ri -fold deleted joins EG Ni = (�Ni−1)
∗ri
� as proper

configuration spaces, as it is frequently done in [6].
For any l-dimensional linear subspace V ⊆ Rd consider the deleted join map

hi,V : EG Ni → Jri
A (V ),

note that the space to the right contains the ri -fold join of V .
The maps hi,V are equivariant under the actions of Gi . Take the cartesian product of

these maps to get the (G = G0 × · · · × Gm)-equivariant map

h0,V × · · · × hm,V : EG N0 × · · · × EG Nm → Jr0
A (V )⊕ · · · ⊕ Jrm

A (V ).

Considering the dependence of this map on V ∈ Gl
d we get an equivariant section of the

bundle

ξ = Jr0
A (γ )⊕ · · · ⊕ Jrm

A (γ )→ EG N0 × · · · × EG Nm × Gl
d .

Now consider the decomposition

ξ = Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ )⊕ (m + 1)γ

and with the diagonal embedding γ → (m + 1)γ we also have the decomposition
(m + 1)γ = γ� ⊕ η. From here on we choose some isomorphism between η and mγ ,
in matrix form it may be given by some orthogonal basis in the orthogonal complement
of the vector (1, . . . , 1) in Rm+1. Thus denote

ζ = Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ )⊕ η→ EG N0 × · · · × EG Nm × Gl
d .

Note that if the section constructed above in projection to ζ has a zero, then we are
done. Indeed, in this case we have some V and m+1 points yi ∈ EG Ni . Now remember
that every EG Ni is a deleted join, that means that, for all i = 0, . . . ,m, yi is an affine
combination

yi = ci1xi1 ⊕ · · · ⊕ ciri xiri

of points in �i with disjoint supports. The condition that the section has a zero means
that, for all i and j , ci j = 1/ri and the projections of fi (xi j ) to V coincide and give a
point v. Taking the affine m-subspace of Rd orthogonal to V and passing through v we
get what we need.

Finally, we have to show that the equivariant Euler class

e(ζ ) ∈ H∗G(EG N0 × · · · × EG Nm × Gl
d , Zp)

is nonzero. Note that by Lemma 8 we have e(η) 
= 0 ∈ H∗(Gl
d , Zp). Also note that any

embedding with fixed V ∈ Gl
d ,

g: EG N0 × · · · × EG Nm → EG N0 × · · · × EG Nm × Gl
d ,
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induces the bundle

β = g∗(Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ ))→ EG N0 × · · · × EG Nm ,

which is the cartesian product of Gi -bundles over EG Ni , arising from the representations
of Gi in Dri

A(V ). Since dim Dri
A(V ) = Ni−1, the construction of EG Ni implies that each

of these bundles has a nonzero Euler class in H∗(EG Ni , Zp) and, by the multiplicative
rule and Künneth’s formula,

e(β) 
= 0 ∈ H∗G(EG N0 × · · · × EG Nm , Zp).

Using Künneth’s formula for (EG N0 ×· · ·× EG Nm )/G×Gl
d and Lemma 7 we see that

e(Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ )) = e(β)× 1+
∑

u × v,

where u ∈ H∗G(EG N0 × · · · × EG Nm , Zp), v ∈ H∗(Gl
d , Zp) and all v have dim v > 0.

Now by the multiplicative rule

e(ζ ) = e(Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ ))e(η) = e(β)× e(η)+
∑

u × ve(η) 
= 0

in the cohomology H∗G(EG N0 × · · · × EG Nm × Gl
d , Zp).

8. Proof of Theorems 2 and 3

In the following proofs we also denote l = d − m.

Proof of Theorem 2. Consider some l-subspace V of Rd and denote the orthogonal
projection to V by πV . For any i = 0, . . . ,m consider the map si,V : (Xi )

2
� → V given

by

si,V (x, y) = πV ( fi (x))− πV ( fi (y)).

This is a Z2-equivariant map if Z2 acts on V antipodally. These maps for i = 0, . . . ,m
form a map

sV : (X0)
2
� × · · · × (Xm)

2
�→ V ⊕ · · · ⊕ V = (m + 1)V .

Also consider the maps ti,V : (Xi )
2
�→ V given by

ti,V (x, y) = πV ( fi (x))+ πV ( fi (y)),

the product of these maps gives a map tV : (X0)
2
� × · · · × (Xm)

2
� → (m + 1)V . The

space (m + 1)V can be decomposed into its diagonal and its orthogonal complement
(m + 1)V = V� ⊕ W . So we consider the composition of tV with the projection to W
and get the map uV : (X0)

2
� × · · · × (Xm)

2
�→ W .

Then we take the map

sV ⊕ uV : (X0)
2
� × · · · × (Xm)

2
�→ (m + 1)V ⊕W,
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this map can be considered as a section of the vector bundle ξ ⊕ η = (m + 1)γ ⊕ mγ
over (X0)

2
�×· · ·× (Xm)

2
�×Gl

d . Here we again choose some isomorphism between the
bundle η arising from spaces W and mγ .

The constructed section is equivariant with respect to the action of G = (Z2)
m+1 on

ξ ⊕ η = (m + 1)γ ⊕ mγ by antipodal maps on the former m + 1 summands.
It is easy to see that if this section has a zero, then the projections of the corresponding

points { fi (xi ), fi (yi )}mi=0 to V coincide and the theorem is proved.
All we have to do is to prove that the Euler class of this bundle is nonzero modulo 2.

By Lemma 8,

e(η) = e(γ )m 
= 0 ∈ H m(d−m)(Gl
d , Z2).

Taking some fixed V ∈ Gl
d we have a map

(X0)
2
� × · · · × (Xm)

2
�→ (X0)

2
� × · · · × (Xm)

2
� × Gl

d

that induces a bundle ξ ′ over (X0)
2
� × · · · × (Xm)

2
�. By Künneth’s formula, the multi-

plicative rule for the Euler class, and the index property of (Xi )
2
� we have

e(ξ ′) = ul × · · · × ul 
= 0 ∈ Hl(m+1)
G ((X0)

2
� × · · · × (Xm)

2
�, Z2).

This means that by Künneth’s formula the Euler class e(ξ) in H∗G((X0)
2
�×· · ·×(Xm)

2
�×

Gl
d , Z2) has the form e(ξ) = e(ξ ′) × 1 +∑ a × b (by Lemma 7), where dim b > 1

always. Then by the multiplicative rule we see that e(ξ⊕η) = e(ξ ′)×e(η)+∑ a×be(η)

= 0.

Proof of Theorem 3. The proof is similar to the previous one, so we only show the
differences.

Instead of maps si,V and ti,V we consider the map ri,V : (Ki )
∗2
� → V ⊕ V ⊕ L , where

L is a one-dimensional linear space. This map is given by

ri,V (t x ⊕ (1− t)y) = tπV ( fi (x))⊕ (1− t)πV ( fi (y))⊕ (t − 1
2 ).

This map is obviously equivariant with respect to the Z2-action on (Ki )
∗2
� and its action

on V ⊕ V ⊕ L that permutes two summands V and acts antipodally on L .
The considered space V ⊕ V ⊕ L may be decomposed into Ui ⊕Wi , where Z2 acts

antipodally on the (l+ 1)-dimensional space Ui and trivially on the l-dimensional space
Wi .

We sum up the maps ri to have the map

rV : (K0)
∗2
� × · · · × (Km)

∗2
� → (U0 ⊕ · · · ⊕Um)⊕ (W0 ⊕ · · · ⊕Wm) = U ⊕W.

Then we decompose W = W ′ ⊕ V� by the diagonal map V → W and project rV to
U⊕W ′. This map can be regarded as the G = (Z2)

m+1 equivariant section of the bundle
ξ ⊕ η, where ξ arises from U and η arises from W ′.

By Lemma 8, e(η) 
= 0 and the rest of the proof is similar to the proof of
Theorem 2.
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9. Proof of Theorems 5 and 6

Proof of Theorem 5. We prove this theorem in the same way as we prove Theorem 1.
Let ri = pki and put, for all i = 0, . . . ,m, Gi = (Zp)

ki . For each of the set Si we take
the simplicial complex of multicolored subsets Ki (as described above) and its ri -fold
deleted join Li = K ∗ri

i� with appropriate Gi -action.
Denote l = d − m. The Grassmann variety will be oriented for odd p.
For any l-dimensional linear subspace V ⊆ Rd consider the natural piecewise linear

(or simply continuous for the topological version) projection Ki → V and its ri -fold
join

hi,V : Li → Jri
A (V ).

The maps hi,V are equivariant under the actions of Gi . Take the cartesian product of
these maps to get the (G = G0 × · · · × Gm)-equivariant map

h0,V × · · · × hm,V : L0 × · · · × Lm → Jr0
A (V )⊕ · · · ⊕ Jrm

A (V ).

Now considering the dependence of this map on V ∈ Gl
d we get an equivariant section

of the bundle

ξ = Jr0
A (γ )⊕ · · · ⊕ Jrm

A (γ )→ L0 × · · · × Lm × Gl
d .

Consider the decomposition

ξ = Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ )⊕ (m + 1)γ

and with the diagonal embedding γ → (m + 1)γ we also have the decomposition
(m + 1)γ = γ� ⊕ η. As in the previous proofs we identify η = mγ .

Thus we denote

ζ = Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ )⊕ η→ L0 × · · · × Lm × Gl
d .

If the section constructed above in projection to ζ has a zero, we are done as in the proof
of Theorem 1.

Finally we have to show that the equivariant Euler class

e(ζ ) ∈ H∗G(L0 × · · · × Lm × Gl
d , Zp)

is nonzero. Note that by Lemma 8 we have e(η) 
= 0 ∈ H∗(Gl
d , Zp), and any embedding

with fixed V ∈ Gl
d

g: L0 × · · · × Lm → L0 × · · · × Lm × Gl
d ,

induces the bundle

β = g∗(Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ ))→ L0 × · · · × Lm,

which is the cartesian product of Gi -bundles over Li , arising from the representation of
Gi in Dri

A(V ). Since dim Dri
A(V ) = (ri − 1)(d −m + 1), the construction of Li and the

conditions of the theorem imply that

ri k − 1 ≥ (ri − 1)(d − m + 1)
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and each of summand bundles has a nonzero Euler class in H∗(Li , Zp). Thus by
Künneth’s formula and the multiplicative rule for the Euler class,

e(β) 
= 0 ∈ H∗G(L0 × · · · × Lm, Zp).

Using Künneth’s formula for (L0 × · · · × Lm) /G × Gl
d and Lemma 7 we see that

e(Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ )) = e(β)× 1+
∑

u × v,

where u ∈ H∗G(L0 × · · · × Lm, Zp), v ∈ H∗(Gl
d , Zp) and all v have dim v > 0.

Now by the multiplicative rule for the Euler class,

e(ζ ) = e(Dr0
A (γ )⊕ · · · ⊕ Drm

A (γ ))e(η) = e(β)× e(η)+
∑

u × ve(η) 
= 0

in the cohomology H∗G(L0 × · · · × Lm × Gl
d , Zp).

Proof of Theorem 6. Here we give only the differences from the previous proof.
Consider ri = ti = 2. In this case Si has a natural Gi -action (Gi = Z2) that exchanges

every two vertices with the same color. This gives free Gi -action on Ki itself, so we can
consider Li = Ki . Also note that Ki is the boundary of the k-dimensional cross-polytope,
so Ki is a (k − 1)-dimensional ((d − m)-dimensional) sphere.

In the case ri = 2 instead of the map

hi,V : Li → J 2
A(V )

we consider the map

hi,V : Ki → V ⊕ V

given by x ∈ Ki �→ π(x) ⊕ π(−x), where by the minus sign we denote the action of
Z2. This is a Z2-equivariant map when Z2 permutes the summands of V ⊕ V .

Instead of the projection J 2
A(V )→ D2

A(V ) we consider the projection V ⊕ V → V
given by v1 ⊕ v2 �→ v1 − v2. The codomain space V here has an antipodal Z2-action
and a point x ∈ Ki maps to zero in V iff the projections of x and −x to V coincide.

The space V has a nonzero equivariant Euler class in H d−m
Z2

(pt, Z2) and in
H d−m

Z2
(Ki , Z2). The rest of the above proof works without change.
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I thank R.T. Živaljević and S.T. Vrećica for useful discussions of these results. I also
thank V.L. Dol’nikov for constant attention to my work and helpful advice.

References

1. Barany, I., and Larman, D.G. A colored version of Tverberg’s theorem. J. London Math. Soc., 45(2) (1992),
314–320



Tverberg’s Transversal Conjecture 525

2. Dol’nikov, V.L. Common transversals for families of sets in Rn and connections between theorems of
Helly and Borsuk. (In Russian.) Dokl. Akad. Nauk USSR, 297(4) (1987), 777–780.
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