
DOI: 10.1007/s00454-007-1353-4

Discrete Comput Geom 38:615–637 (2007) Discrete & Computational

Geometry
© 2007 Springer Science+Business Media, Inc.

Plane Embeddings of Planar Graph Metrics∗

MohammadHossein Bateni,1 Erik D. Demaine,2 MohammadTaghi Hajiaghayi,2,3

and Mohammad Moharrami1

1Department of Computer Engineering, Sharif University of Technology,
Azadi St., Tehren, Iran
{bateni,mmoharrami}@gmail.com

2Computer Science and Artificial Intelligence Laboratory, MIT,
32 Vassar St., Cambridge, MA 02139, USA
{edemaine,hajiagha}@mit.edu

3Department of Computer Science, Carnegie Mellon University,
4109 Wean Hall, Pittsburgh, PA 15213, USA

Abstract. Embedding metrics into constant-dimensional geometric spaces, such as the
Euclidean plane, is relatively poorly understood. Motivated by applications in visualiza-
tion, ad-hoc networks, and molecular reconstruction, we consider the natural problem of
embedding shortest-path metrics of unweighted planar graphs (planar graph metrics) into
the Euclidean plane. It is known that, in the special case of shortest-path metrics of trees,
embedding into the plane requires�(

√
n) distortion in the worst case [M1], [BMMV], and

surprisingly, this worst-case upper bound provides the best known approximation algorithm
for minimizing distortion. We answer an open question posed in this work and highlighted
by Matoušek [M3] by proving that some planar graph metrics require �(n2/3) distortion
in any embedding into the plane, proving the first separation between these two types of
graph metrics. We also prove that some planar graph metrics require�(n) distortion in any
crossing-free straight-line embedding into the plane, suggesting a separation between low-
distortion plane embedding and the well-studied notion of crossing-free straight-line planar
drawings. Finally, on the upper-bound side, we prove that all outerplanar graph metrics can
be embedded into the plane with O(

√
n) distortion, generalizing the previous results on

trees (both the worst-case bound and the approximation algorithm) and building techniques
for handling cycles in plane embeddings of graph metrics.
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the NSF under Grant Number ITR ANI-0205445. The third author was also supported in part by the Institute
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1. Introduction

Metric embedding is a mathematical study arising out of the classic field of multidi-
mensional scaling, originally motivated by such applications as visualization, compres-
sion, clustering, and nearest-neighbor searching [S1], [S2], [K1], [K2], [W], and more
recently finding applications in geometric reconstruction of ad-hoc wireless sensor net-
works [ČHH], [SRB], [PCB] and molecular structure of proteins [BKL], [CH], [H].
Roughly speaking, the goal is to embed a given metric (matrix of pairwise distances
among n points) into a target space while minimizing the maximum additive or multi-
plicative error, called distortion, introduced in the distances.1 Of particular interest in
many of these applications is embedding into low-dimensional geometric spaces, typ-
ically Euclidean. For example, in visualization, the natural target spaces are two- and
three-dimensional Euclidean space, for display on an LCD panel or a holographic dis-
play. Similarly, in ad-hoc wireless sensor networks and molecule structure of proteins,
two- and three-dimensional Euclidean spaces are the natural spaces inhabited by these
objects, so embedding into these spaces corresponds to reconstructing the original object.

Yet despite persistent efforts by many researchers leading to many recent results
about embedding—see, e.g., [IM] for a survey—we remain in the dark about most
aspects of embedding into low-dimensional geometric spaces. Even when the target
space is the one-dimensional line, little is known. For example, when the given metric
is the shortest-path metric of an (unweighted) tree, the best known approximation factor
for multiplicative distortion is Õ(n1/3) (improving on the O(n1/2)-approximation for
general graphs) [BDG+], and it is unknown whether it is possible to achieve a factor of
no(1); see [BCIS]. (On the other hand, additive distortion is less interesting in this context:
there is an O(1)-approximation for embedding a general metric into the line [HIL].)

Even less is known about embedding into the two-dimensional plane. For addi-
tive distortion and the Euclidean plane, the only o(n)-approximation algorithm runs
in pseudo-quasipolynomial time [BDHI]. For additive distortion and the �1 plane, there
is a polynomial-time O(1)-approximation [Bă]. However, for the most natural case of
multiplicative distortion, nothing beyond a trivial O(n)-approximation is known for
embedding general metrics into any �s plane. (The trivial O(n)-approximation follows
because any metric can be embedded with O(n) distortion even into the line [M1].)
Essentially the only result is by Babilon et al. [BMMV]: an O(

√
n)-approximation for

embedding the shortest-path metric of an (unweighted) tree into the Euclidean plane.
In fact, this approximation result comes trivially from a worst-case bound: all such
metrics can be embedded into the Euclidean plane with multiplicative distortion O(

√
n)

(improving on an earlier bound by Gupta [G]), and thus such an embedding is an O(
√

n)-
approximation on the optimal multiplicative distortion. This bound is tight in the worst
case for trees (or even stars), but can we generalize beyond trees?

One of the major open questions about embedding into the Euclidean plane, posed in
[M3] and [BMMV] and addressed in this paper, is whether there is a worst-case bound on

1 More precisely, given a metric M on a point set V and a target space of d-dimensional �s space, the goal
is to find a mapping f : V → R

d to either approximately minimize additive distortion maxv,w∈V | ‖ f (v) −
f (w)‖s−M[v,w] |, or approximately minimize multiplicative distortion maxv,w∈V ‖ f (v)− f (w)‖s/M[v,w]
subject to ‖ f (v)− f (w)‖s ≥ M[v,w] (noncontractiveness). (In d-dimensional �s space, distances and lengths
are measured according to the �s norm ‖(x1, . . . , xd )‖s = s

√
xs

1 + · · · + xs
d .)
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distortion better than O(n) for shortest-path metrics of all (unweighted) planar graphs,
in particular whether there is an O(

√
n) bound like trees. It has been known for over 15

years that the shortest-path metrics of some nonplanar graphs, such as K5 with each edge
subdivided n/10 times, requires multiplicative distortion�(n) [M1], [IM]. However, for
shortest-path metrics of (unweighted) planar graphs, which we call planar graph metrics,
no worst-case lower bound better than�(

√
n) is known. One of the results of this paper

is a stronger, more complicated lower bound of �(n2/3) for the shortest-path metrics
of a family of planar graphs called “globe graphs”. Interestingly, this graph family has
not been considered before (at least in the context of embedding) and the lower-bound
argument uses topological graph theory, in contrast to the standard packing arguments
in some embedding lower bounds.

Planar graph metrics are a natural family of metrics to embed: many structures of
interest, such as communication networks and traffic networks, are planar (or nearly
planar) graphs, and low-distortion embedding of such structures is important, e.g., for
visualization. There is also a wealth of knowledge about crossing-free straight-line draw-
ings of planar graphs into the plane, originating with Tutte’s embedding theorem [T] and
studied more recently in the context of graph drawing (see, e.g., [TBET]). It is natural
to consider to what extent such embeddings can preserve approximate distances as well.
Another result of this paper is that, in fact,�(n) distortion can be required if we restrict
attention to crossing-free straight-line embeddings of planar graph metrics, even when
the graph has bounded treewidth.

One intriguing aspect of the problem of embedding planar graph metrics into the plane
is that, in the context of embeddings, planar graphs usually behave the same as graphs
excluding any fixed minor. For example, the same upper bound of O(

√
log n) distortion

is known for embedding into Euclidean space [R], [M2], the same upper bound of O(1)
distortion is known for embedding into O(log n)-dimensional �∞ space [KLMN], and the
same upper bound of O(1) distortion is conjectured for embedding into �1 space [GNRS].
(All of these bounds require a superconstant number of dimensions.) While we prove
in this paper an �(n2/3) lower bound on the distortion required to embed a planar
graph metric into a plane, a sublinear upper bound is still quite possible. In contrast,
the subdivided K5 graph mentioned above excludes a fixed minor (e.g., K3,3), yet its
shortest-path metric requires�(n) distortion when embedded into the plane. Therefore,
any sublinear upper bound on distortion for planar graph metrics will need substantially
different techniques compared with previous approaches, which seem to apply equally
well to planar graphs and graphs excluding a fixed minor.

Toward this goal, we develop new techniques for embedding into the plane with
sublinear distortion. Specifically, we prove an O(

√
n) upper bound on distortion for the

shortest-path metrics of (unweighted) outerplanar graphs, i.e., graphs that can be drawn
in the plane without crossings and with all vertices on the outer face. Interestingly, this
result does not take the obvious approach of embedding the dual tree of an outerplanar
graph; rather, it uses a breadth-first-search tree. The main challenge is in handling the
cycles in the graph.

Our Results. In more detail, the main results of this paper are as follows.
On the lower-bound side, we prove that some planar graph metrics require �(n2/3)

distortion in any embedding into the plane, and prove that some planar graph metrics
require�(n) distortion in any crossing-free straight-line embedding into the plane. These
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results imply that embedding planar graph metrics into the plane with sublinear distortion
is different from planar drawings of planar graphs, suggesting that we cannot apply the
well-studied tools from that domain. In fact, our �(n2/3) lower bound builds on the
�(n) crossing-free lower bound, extending the structure of the underlying planar graph
substantially to force a “planar-like” drawing. We use topological graph theory to reason
about which vertices must be embedded “interior” to cycles in the graph, even though
these cycles may embed as curves with many self-crossings and crossings of each other.
To help cope with this difficulty, we use a combinatorial approach to eliminate some of
the crossings.

On the upper-bound side, we prove that every outerplanar graph metric can be em-
bedded into the plane with O(

√
n) distortion. In particular, this result improves the best

approximation factor for minimum-distortion embedding of outerplanar graph metrics
from O(n) to O(

√
n), which is the only nontrivial such result for multiplicative dis-

tortion into the Euclidean plane other than trees. The result uses the following ideas.
First, we decompose the graph into a “tree of cycles”, cutting apart faces so that they do
not share edges. We cannot use the dual tree itself: the main challenge is to handle the
cycles in the graph correctly. Second, we perform a breadth-first search (BFS) in this
graph, partitioning the graph into a BFS tree and several nontree edges. Third, we use a
modification of the O(

√
n)-distortion embedding for trees so as to embed the BFS tree

without stretching the nontree edges too much. We modify the input to the algorithm,
augmenting the BFS tree with extra paths in key locations to force desired gaps in the
output, and we modify the output of the algorithm, shifting vertices to close unwanted
gaps in the output.

2. Lower Bound for Planar Graph Embedding

In this section we prove a separation between embedding trees and embedding planar
graphs into the plane. Namely, we prove that embedding some planar graphs with n
vertices into the plane requires distortion �(n2/3), whereas trees can be embedded into
the plane with distortion O(n1/2). Along the way, we prove that every crossing-free
straight-line embedding of some planar graphs with n vertices into the plane has distor-
tion �(n).

Throughout this section, we use the odd-even notion of “inside” and “outside” of
self-crossing polygons. Namely, for a point v not on the boundary of a (potentially
self-crossing) polygon P , we count the number of times that an arbitrary half-infinite
ray emanating from v properly crosses the polygon P; we do not count when the ray
“grazes” the polygon (with the polygon locally on one side of the ray). If this count is
odd, the point v is inside the polygon P; otherwise, v is outside P . Also, let |P| denote
the number of vertices of polygon P .

Lemma 1. For any point v inside a (potentially self-crossing) polygon P in the plane,
if the distance from v to every vertex of P is at least r , then there is an edge of P of
length �(r/|P|).

Proof. Let u1, u2, . . . , u|P| be the vertices of P in counterclockwise order. For each
edge of P , we consider the absolute subtended angle of this edge at v, as shown in Fig. 1.
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Fig. 1. The subtended angles of an edge at a point.

In any polygon, these subtended angles sum to at least 360◦ (larger because of taking
absolute values, and if the winding number of P is larger than 1). Thus, at least one edge
(ui , ui+1) has subtended angle at least 360◦/|P| (and at most 180◦ by definition). In the
triangle v, ui , ui+1, because ‖ui − v‖ and ‖ui+1 − v‖ are both at least r , and the angle
between vui and vui+1 is at least 360◦/|P|, ‖ui − ui+1‖ is �(r/|P|).

Lemma 2. Any crossing-free topological embedding of K4 into the plane (drawing
each edge as a curve) places one vertex inside the closed-curve embedding of the cycle
induced by the other three vertices.

Proof. The class of graphs excluding K4 as a minor is the class of series–parallel
graphs, i.e., graphs of treewidth at most 2; see Theorem 17 of [Bo]. This graph class
includes as a subclass all outerplanar graphs. Thus K4 is not outerplanar, so any crossing-
free topological embedding into the plane must place some vertex not on the outside
face. The shortest cycle in K4 is of length 3, so in fact three of the vertices must form
the outside face, and the remaining fourth vertex must be interior to this face.

Our result about crossing-free straight-line planar embeddings is based on graphs that
inspire our main result later.

Theorem 3. There are planar graphs for which every crossing-free straight-line em-
bedding into the plane has distortion �(n).

Proof. Consider the graph G obtained by starting with K4 and attaching a path of length
n to each vertex of K4. Any crossing-free straight-line embedding of G in particular
embeds K4 without crossings, so by Lemma 2, one vertex v of K4 is inside the cycle
C connecting the other three vertices of K4. Any crossing-free straight-line embedding
of G must therefore place the path attached to v completely inside C . Let u denote the
endpoint of this path (other than v). The graph distance from u to every vertex of C is
at least n, so in any expansive embedding of G, the Euclidean distance between u and
every vertex of C is at least n. By Lemma 1 with P = C , an edge of C (which is an
edge of K4) has length�(n/|C |) = �(n). Therefore, the distortion of any crossing-free
straight-line embedding of G is �(n).

Our main result is based on the globe graph, defined as follows; see Fig. 2. On a sphere
(the globe), draw n1/3 longitude and n1/3 latitude lines. These lines define a preliminary
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Fig. 2. The globe graph Gn .

graph, whose vertices are the intersections of the lines (including the two poles) and
whose edges are portions of the lines. We subdivide each of these edges into a path of
n1/3 edges. We attach a path of length n to each of the two poles vN and vS, and to each
of two antipodal points vW and vE on the equator. The resulting globe graph Gn is planar
and has �(n) vertices.

In the spherical embedding of the globe graph shown in Fig. 2, each face is called a
country.2 Thus each country is a cycle of length �(n1/3).

The four vertices vN, vS, vW, and vE, together with the three longitudes at 0◦ and
±90◦ and the rear half of the equator, define a subdivided K4 as a subgraph of Gn . This
subgraph is shown in Fig. 2 with heavy edges. The distance between any two vertices in
the subdivided K4 is within a constant factor of the distance between those vertices in
the globe graph Gn .

Lemma 4. If two graph edges cross in a straight-line embedding of a graph into the
plane, and the graph distance between each endpoint of the first edge and each endpoint
of the second edge (four pairs) is at least s, then the distortion of the embedding is�(s).

Proof. Consider the quadrilateral formed by the endpoints of the two edges. In any
expansive embedding of the graph into the plane, the Euclidean length of each side of
the quadrilateral is at least s (the graph distance between the two edge endpoints). By the
triangle inequality, at least one diagonal of the quadrilateral (i.e., one of the two edges)
also has Euclidean length at least s. Therefore, the distortion of any such embedding
is �(s).

2 We use the term “country” instead of “face” in order to refer to the same cycles when considering
not-necessarily-planar embeddings of the globe graph.
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Lemma 5. Any o(n2/3)-distortion straight-line embedding of the subdivided K4 into
the plane puts one vertex of K4 inside the cycle (polygon) connecting the other three
vertices of K4.

Proof. Call a vertex of K4 good if it is inside the cycle connecting the other three
vertices of K4. If the straight-line embedding of the subdivided K4 is crossing-free,
then by Lemma 2, there must be a good vertex. Otherwise, we show how to modify the
embedding into an embedding of K4, drawing each edge as a curve, in such a way that
eliminates all crossings while preserving the parity of the number of good vertices of K4.
Thus, if there is an odd number of good vertices in the new embedding, then there was
a good vertex in the original embedding too.

Throughout the modification of the embedding, we maintain a labeling of some
portions of these curves. Namely, in the original embedding, we label every edge of the
subdivided K4 whose endpoints have shortest-path distance at most 1

3 n2/3 from vertex vd ,
d ∈ {N,S,E,W}, with label d . (Every point has at most one label.) As we modify the
embedding of K4, every point of a curve that remains in the embedding keeps the same
label that we originally assigned it.

This labeling has several properties with respect to the original straight-line embed-
ding, and as we shall see, with respect to the modified embeddings we create. The first
property is simple, while the latter three are implications of Lemma 4, which tells us
that, in the original straight-line embedding of the subdivided K4 with distortion o(n2/3),
two endpoints of two crossing edges must have graph distance o(n2/3). The four prop-
erties are as follows. First, for any point x labeled a along the curve representing an
edge {va, vb} of K4, the subcurve from va to x is entirely labeled a. Second, for any
three distinct vertices va, vb, vc of K4, the edge {va, vb} embeds to a curve that does not
cross any portion of a curve labeled c. Third, two nonincident edges of K4 cannot cross.
Fourth, two incident edges of K4 sharing an endpoint va can intersect only along the
portions labeled a. Because we only remove portions of curves and/or change curves
locally around removed crossings, we maintain all four of these properties as invariants
of the modified embedding.

Whenever an edge of K4, say {vN, vS}, is embedded as a self-crossing curve, we
remove a self-crossing as follows; see Fig. 3. Consider starting from one endpoint vN of

(a) Before (b) After

Fig. 3. Eliminating self-intersections. Bold lines indicate a hypothetical labeling of part of the curve.
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vN

(a) Before

vN

(b) After

Fig. 4. Eliminating edge intersections. Bold lines indicate portions of the curve labeled vN.

the curve and following the curve until reaching a point q that has already been visited.
Thus q decomposes the curve into three pieces: a curve from vN to q, a closed curve
starting and ending at q , and a curve from q to vS. We remove the closed curve from the
embedding of K4. This removal affects only the embedding of the edge {vN, vS} of K4,
which is not involved in the definition of whether vN or vS is good, so the goodness of
vN and vS is preserved. On the other hand, the nonincident edge {vW, vE} of K4 cannot
cross the edge {vN, vS} (before or after the removal), so vW is inside the removed closed
curve if and only if vE is inside the removed closed curve. Thus, the goodness of vW and
vE either both remain the same or both change as a result of the removal. Hence, the
removal preserves the parity of the number of good vertices of K4.

Whenever the edges of K4 do not have self-intersections (i.e., the previous modifica-
tion has been applied fully), yet two (incident) edges, say {vN, vS} and {vN, vW}, embed
to curves that cross each other at a point x , then we remove the crossing as follows; see
Fig. 4. The point x divides the edge {vN, vS} into two curves, one of which connects vN

to x . Similarly, the edge {vN, vW} gives us a curve from vN to x . We swap these two
curves from vN to x , switching the identity of to which edge each curve belongs. This
change affects the embedding of only these two edges, which are not involved in the
definition of whether vN is good, so the goodness of vN is preserved. Also, because we did
not remove any portions of curves connecting vN, vS, and vW from the embedding—we
only changed how they were connected—we preserve the number of crossings with a
ray emanating from vE, and thus we preserve its parity and whether vE is good. Finally,
we claim that the goodness of vS and vW either both change or both stay the same. By
our invariants, the point x is labeled N on both curves from vN to x , and therefore the
entire curves from vN to x are labeled N . Therefore, the edge {vS, vW} must embed to a
curve that does not cross either of these curves, so vS and vW must both be either inside
or outside of the closed curve formed by the two curves from vN to x . In the former
case the goodness of vS and vW both change, and in the latter case they both stay the
same.

By repeatedly applying each of the two rules above for removing crossings, giving
preference to the removal of self-crossings, we eventually remove all crossings in the
embedding of K4. Removing a crossing between two different edges of K4 can introduce
new self-crossings, but every operation decreases the total number of crossings, so the
process terminates. As we have argued, the parity of the number of good vertices of K4
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has remained the same, any crossing-free straight-line embedding has a good vertex, and
therefore we obtain the desired good vertex in the original embedding.

By symmetry, assume that vertex vN is embedded inside the cycle (polygon) C in
the subdivided K4 connecting vS, vW, vE. Let u denote the endpoint of the path attached
to vN (other than vN itself). By Lemma 4, u must also be inside the cycle connecting
vS, vW, vE in any o(n2/3)-distortion embedding, because every edge of the chain attached
to vN has distance �(n2/3) to every edge of the cycle.

Lemma 6. In any o(n2/3)-distortion embedding of the globe graph, the endpoint u is
embedded inside a country of the globe graph.

Proof. If we draw the globe graph on a sphere as in Fig. 2, then the cycle C divides the
sphere into two regions: inside and outside. We define the inside region to be the region
containing vN, which is roughly three-quarters of the sphere; the outside region is the
other region, the back lower quarter of the sphere. We define an inside country to be a
country (face) of the globe graph that is within the inside region (viewed on the sphere).
An edge of an inside country is boundary if it is an edge of the cycle C .

By the definition of u being inside C , a half-infinite ray emanating from u properly
crosses C an odd number of times. Let S denote the sum, over all inside countries,
of the number of times that the ray properly crosses that country in the embedding.
This sum decomposes into two parts: the number of crossed boundary edges of inside
countries and the number of crossed nonboundary edges of inside countries. Every
crossed nonboundary edge is shared by exactly two inside countries and therefore is
counted exactly twice in the sum S. Hence, the parity of S is the same as the parity of
the number of crossed nonboundary edges (i.e., crossed edges of C), which we know
to be odd. Thus, at least one term in the sum S is odd, i.e., at least one inside country
is crossed an odd number of times by the ray. Therefore, u is embedded inside this
country.

Theorem 7. Every embedding of the globe graph into the plane has distortion�(n2/3).

Proof. If there were an embedding with distortion o(n2/3), then by Lemma 6, the
endpoint u of one of the attached paths would be embedded inside a country of the globe
graph. The distance of u to the vertices of the country is at least n, while the country
is a cycle of �(n1/3) vertices. By Lemma 1, the distortion of the embedding must be
�(n2/3), a contradiction.

The same result as Theorem 7 can be proved with a mathematically more natural
graph instead of the cartographically natural globe graph. Namely, take a tetrahedron and
repeatedly refine each triangle into four subtriangles until each edge of the tetrahedron
is refined into�(n1/3) edges. Then we refine each edge further into a path of n1/3 edges,
and attach a path of length n to each corner of the tetrahedron.
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3. Outerplanar Embedding

In this section we give an algorithm for embedding outerplanar graph metrics into the
plane with O(

√
n) distortion. Our algorithm consists of five main steps:

1. Modify the graph so that no two faces3 share an edge, and so that the number of
vertices of every face is congruent to 1 modulo 4, at the expense of O(1) distortion.

2. Build the BFS tree rooted at an arbitrary vertex r , conceptually removing the
nontree edges.

3. Add extra “branches” (paths) in between subtrees of the tree in order to change
the shape of the embedding of the BFS tree (to come in Step 4) to have a desired
horizontal gap between the two subtrees.

4. Embed the resulting tree using Babilon et al.’s tree embedding algorithm.
5. Shift the upper half of the left side of each face to the right to compensate (if

needed) for the nontree edges’ improvements to shortest paths.

Step 1. We begin with the transformation of the graph into a “tree of cycles”:

Lemma 8. Given an outerplanar graph G, we can compute an outerplanar graph G ′

such that V (G ′) ⊇ V (G), no two faces of G ′ share an edge, the number of vertices on
every face of G ′ is congruent to 1 modulo 4, and any embedding of the shortest-path
metric of G ′ into the plane induces an embedding of the shortest-path metric of G with
an extra multiplicative factor of O(1) in distortion. Also, G ′ has O(n) vertices.

Proof. To satisfy the distortion constraint, it suffices to construct a suitable graph G ′

such that, for any two vertices u, v of G, the shortest-path distance between u and v in
G ′ is within a factor of O(1) of their distance in G. The dual of G is a forest consisting of
one tree for every biconnected component of G. It suffices to consider each biconnected
component separately, and then glue the modified components together at the vertices
with common labels.

The modification of a biconnected component proceeds recursively. To initialize, we
set e to any edge of G incident to only one face, and we color the edge e and its endpoints
red. (Throughout this proof, we use an edge to represent its embedded open curve; thus
we are in fact coloring all points along this curve.) In general, we proceed as follows. Let
f be the unique face incident to e. For each edge e′ �= e of face f , we double the edge e′

and duplicate one of its nonred endpoints u, as shown in Fig. 5. More precisely, the edge
e′ splits the outer face into two pieces, and the edges incident to u get split accordingly
into two pieces, one for each copy of u. Because e′ �= e, at least one of the endpoints u
of e′ is different from the red endpoints of e; we split u into two vertices, one with the
same label u, and the other with duplicate label u′. We color each of the duplicated edges
and their endpoints red. Afterward, we conceptually remove the face f , and we recurse
in each biconnected component that has more than one face. Note that, inductively, each
biconnected component has exactly one red edge, incident to exactly one face.

3 Throughout this section we use the term “face” to refer to bounded faces only, excluding the outside face.
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(a) Before
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u
0

(b) After

Fig. 5. Eliminating edge neighborings.

Because every duplicated vertex is immediately colored red, and no red vertices are
duplicated, the number of vertices in the resulting graph G ′ is O(n). Also, the shortest-
path distance between any vertex u of G and its duplicate u′ is exactly 2 in G ′. Thus,
any shortest path in G ′ between distinct vertices in G is at most a constant factor longer
than the shortest path in G, so we obtain the desired distortion bound.

Finally, we can modify G ′ to guarantee that every face has length congruent to 1
modulo 4. For each face in G ′ of length congruent to j �= 1 modulo 4, 2 ≤ j ≤ 4,
we subdivide one of the edges into a path of 6 − j edges. Now every face has length
congruent to 1 modulo 4. Each edge is subdivided O(1) times, so the total length of any
path, and the size of the whole graph, increases by at most a constant factor.

From now on, we work on G ′ instead of G. We fix a combinatorial outerplanar
embedding of G ′, so that cycles correspond to faces.

Step 2. Next we compute a BFS tree of G ′ (in the primal). For simplicity, we assign the
root of the breadth-first search to be a degree-2 vertex of G ′. We view this root vertex as
being at the bottom of the embedding. Define the height of a vertex to be its level in the
BFS tree, i.e., its tree distance to the root. We view the y coordinates of the embedding
as being proportional to height; together with the combinatorial planar embedding of G ′,
this view defines a notion of “left” and “right” between vertices at the same height. See
Fig. 6.

The BFS tree decomposes the edges of G ′ into tree edges and nontree edges. Each
nontree edge completes a face of the outerplanar graph G ′ together with only tree edges,
because the faces of G ′ are the biconnected components of G ′. Indeed, there is exactly
one nontree edge per face f . Because faces of G ′ have odd length by Lemma 8, the
endpoints of the nontree edge of f have equal height, namely, the maximum height
among all vertices on the face f . In Fig. 6 we draw the nontree edge as an apex at the
top of each face. On the other hand, the base vertex of a face is the vertex of minimum
height, which is where the breadth-first search first enters the face. The base vertex and
the nontree edge divide the tree edges of the face into a left side and a right side, of
equal size, each starting at the base vertex and ending at an endpoint of the nontree edge.
We consider the base vertex to belong to both the left and right sides unless specified
otherwise.

At the end, the endpoints of each nontree edge will need to be brought closer together.
Intuitively, no vertex is pulled in two directions by two different nontree edges: every
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Fig. 6. The graph G ′′ with extra branches, before trimming (dotted) and after trimming (dashed).

vertex is incident to at most one nontree edge, because a vertex is the base of all but
at most one incident face, and the endpoints of the nontree edge of a face have strictly
larger height than the base of the face.

Step 3. We now define a further modification G ′′ of the graph. The modification is
based on attaching new child paths, called extra branches, of certain lengths to certain
nodes of the BFS tree. Extra branches are always added in pairs, and each pair of extra
branches is effectively treated as a unit. There are three types of pairs of extra branches
that we add.

Extra branches of the first and second types are created as follows. For each vertex u
with k ≥ 2 children in the BFS tree, we attach k − 1 pairs of extra branches, one pair
between every two consecutive children of u in the BFS tree. We first try attaching the
pair of branches at u, and embedding the branches to enter the region between the two
children. However, if this would cause the branches to enter a face f of the graph G ′, then
we instead attach the two branches at the two endpoints of the nontree edge of f , one
branch at each endpoint, embedded between any children of the two endpoints. Branches
attached to u are of the first type; branches attached to the nontree edge of f are of the
second type. In either case the origin of each branch is the vertex u (even though the
branch may not be attached to u).

Next we define the height of the extra branches of the first and second types, i.e., the
height of the top vertex of each such branch. Initially, we set all of the heights to be n;
then we trim some of the branches in order to guarantee that the number of vertices in
G ′′ is only a constant factor larger than the number of vertices in G ′. We also preserve
the property that there is at least one extra vertex between any two nonextra vertices at
the same height not belonging to the same face. The trimming algorithm proceeds as
follows: while there are two extra vertices at the same height and of the same type, with
no original vertices or extra vertices of the same type in between, and not coming from
the same pair of extra branches, remove the extra vertex that originates from a higher
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vertex, breaking ties according to horizontal order with left having the highest priority.
Note that extra branches of the second type are given priority according to the height
of their origin at the bottom of the face, not the height of the endpoints of the nontree
edge.

We add pairs of extra branches of the third type wherever a vertex u is on the left side
of a face f (excluding the base vertex) and has at least one child strictly left of f . In
this case, we attach a pair of extra branches to u in between the face f and the children
of u strictly left of f . The height of these branches is defined to be the minimum of two
heights: (1) the maximum height among descendants of the children of u strictly left
of f , and (2) the maximum height among vertices strictly right of f that are descendants
of vertices on the right half of the face f . One vertex may have attached to it pairs of extra
branches of multiple types; in this case, we arbitrarily assign the left-to-right ordering
of the pairs in the combinatorial embedding. (In fact, we could also simply remove the
shorter pairs of extra branches.)

Figure 6 shows an example with six faces. The extra branches after trimming are drawn
as dashed lines; the dotted extensions show the original branches before trimming. For
instance, there are two pairs of extra branches originating from the junction between f1

and f3. As drawn, the left extra branch is of the third type, and the right extra branch is
of the first type (and has been trimmed).

The extra branches preserve many aspects of the graph. We never add a branch inside
a face, so the faces are preserved. The extra branches do not change the distances between
vertices in G ′. Furthermore, the resulting graph G ′′ is not much larger than G ′:

Lemma 9. The graph G ′′ with extra branches has size O(n).

Proof. We prove that the number of extra vertices is linear separately for each type.
For extra branches of the first or second type separately, if we remove one branch from
each pair of extra branches, then by the definition of trimming, each extra vertex is either
the leftmost at its height or it has a unique nonextra vertex immediately to its left. Thus
we can charge the two vertices from a pair of extra branches either to the height or
to the unique nonextra vertex. For extra branches of the third type, if we remove one
branch from each pair of extra branches, then we claim that each extra vertex has a
unique nonextra vertex immediately to its left. This claim follows from the definition
of the height of an extra branch of the third type: any potentially conflicting horizon-
tally adjacent branches of the third type must be above one of the two heights whose
minimum we take. Thus we can charge to the nonextra vertex. Because the maximum
height and the number of nonextra vertices is O(n), the total number of extra vertices
is O(n).

Step 4. We apply the Babilon et al. tree embedding algorithm [BMMV] to the BFS tree
of the graph G ′′ (i.e., the BFS tree of G ′ augmented with the extra branches). Intuitively,
the algorithm assigns an angular wedge to each subtree proportionally according to the
number of vertices in the subtree, and assigns y coordinates according to the height
of each node plus a complicated perturbation. In particular, the algorithm preserves
the specified combinatorial embedding of the BFS tree of G ′′. Precisely, the algorithm
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assigns to each vertex v the coordinates (x ′(v), y(v)) as follows:

y(v) = 2
√

n h(v)+ [�(v)mod
√

n],

x ′(v) = k(v)√
n
.

The functions h(v), �(v), and k(v) are defined as follows. First, h(v) denotes the height
of v. Let πv denote the BFS path from the root to v, i.e., the path of ancestors of v. These
paths define a partial order on the vertices: u ≺ v if u /∈ πv , v /∈ πu , and πu goes to
the left of πv at the vertex at which πu and πv branch. Now �(v) denotes the number of
predecessors of v in this partial order: �(v) = |{u ∈ V | u ≺ v}|. Define sgnv(u) to be
0 if u ∈ πv or v ∈ πu , +1 if u ≺ v, and −1 if v ≺ u. Let av(u) denote the tree distance
from v to the nearest common ancestor of u and v, i.e., the vertex at which πu and πv
branch. Finally, k(v) =∑

u∈V sgnv(u)av(u).

Theorem 10 [BMMV, Theorem 1]. Babilon et al.’s tree embedding (x ′(v), y(v)) em-
beds the BFS tree with O(

√
n) distortion: for a constant c0 > 0, the Euclidean distance

between any two vertices is between (a) c0 times their tree distance and (b) O(
√

n) times
their tree distance.

Before we describe our modifications to this embedding, we prove a few basic facts
about it:

Lemma 11. If p is the parent of node w in the BFS tree, then k(w) − k(p) = g(w),
where g(v) = ∑

u∈V sgnv(u) is the number of vertices to v’s left minus the number of
vertices to v’s right.

Proof. Let c(v) = |{u | v ∈ πu}| be the number of descendants of v (including v itself).
By the definition of k(v), there are two ways in which k(w) differs from k(p). First,
for every vertex u with sgnp(u) �= 0, aw(u) = ap(u)+ 1, for an overall increase in the
summation by g(p). Second, the c(p)− c(w) descendants of p that are not descendants
of w are newly counted in the summation; each such descendant u has lowest common
ancestor p with w, so aw(u) = 1, leading to a contribution of −1 if u ≺ w and +1 if
w ≺ u. Thus the total such contribution is g(w)− g(p), i.e., the number of descendants
of p left of w minus the number of descendants of p right of w. Therefore the overall
difference k(w)− k(p) is g(w).

Lemma 12. In Babilon et al.’s tree embedding algorithm, the difference in x coordi-
nates between two vertices of the same height is no less than the difference in x between
their parents.

Proof. Suppose two vertices w and z have the same height. Assume by symmetry
that w is to the left of z. Let p be w’s parent and let q be z’s parent. Assume that
p �= q; otherwise, x ′(q)− x ′(p) = 0 and the lemma follows trivially. Thus, p is to the
left of q . We analyze the difference in x coordinates between w and its parent p, i.e.,
x ′(w)− x ′(p) = (k(w)− k(p))/

√
n. It suffices to consider the difference k(w)− k(p),
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ignoring the factor of
√

n. By Lemma 11, k(w)− k(p) = g(w) and k(z)− k(q) = g(z).
Thus [k(z)−k(w)]−[k(q)−k(p)] = [k(z)−k(q)]−[k(w)−k(p)] = g(z)−g(w), which
is nonnegative becausew ≺ z. Therefore k(z)−k(w) ≥ k(q)−k(p), so x ′(z)−x ′(w) =
(k(z)− k(w))/

√
n ≥ (k(q)− k(p))/

√
n = x ′(q)− x ′(p) as desired.

Lemma 13. In Babilon et al.’s tree embedding algorithm, the difference in x coordi-
nates between two vertices of the same height and on the same face of G ′′ is a concave
function of their height.

Proof. Consider two verticesw and z with the same height on face f , withw on the left
branch of f and z on the right branch of f . Let p be w’s parent and let q be z’s parent.
We analyze the change in horizontal distance as we move upward, i.e., from the parents
p and q to the children w and z. Again it suffices to consider the difference in k values,
ignoring the factor of

√
n. By Lemma 11, and as computed in the proof of Lemma 12,

[k(z)− k(w)]− [k(q)− k(p)] = [k(z)− k(q)]− [k(w)− k(p)] = g(z)− g(w). Thus,
the horizontal distance increases by g(z) − g(w) when we go up. Now g(z) decreases
as we move up, because z follows its leftmost child branch, while g(w) increases as
we move up, because w follows its rightmost child branch. Therefore the change in
horizontal distance decreases as we go up, i.e., the horizontal distance has a negative
second derivative and is thus concave.

Step 5. Because of nontree edges, shortest paths in the BFS tree may be much larger
than in G ′′. To compensate for the lack of nontree edges in tree embedding algorithm,
we “shift” part of each face. Intuitively, the tree embedding algorithm pushes apart the
two sides to match the shortest paths in the BFS tree between the vertices of the sides.
On the other hand, the existence of the nontree edge between its endpoints decreases
the shortest path between the vertices in the upper half of the two sides, so much that
the endpoints have distance 1 from each other. Roughly speaking, if the endpoints of
the nontree edge of a face are farther than c1

√
n, for a suitable constant c1, we shift the

upper half of the left side to the right, so that the endpoints have distance �(
√

n) at the
end. Figure 7 shows an example.

More precisely, we put a shift value s(u) on any vertex u in the upper half of the
left side of a face f . Thus, the distance in G ′′ from u to the base vertex of f is at least
�| f |/4� where | f | is the number of vertices on face f . (The face f is well-defined
because a vertex u can be in the upper left part of at most one face.) Let v denote the
vertex on the right side of f with the same height as u, and let p and q be the parents of
u and v, respectively. Let g and t be the vertices midway along the left and right sides,
respectively, of the face f (of distance exactly �| f |/4� from the base vertex of f ). If
x ′(t)− x ′(g) ≤ c1

√
n, we define s(u) = 0. Otherwise, we define

s(u) = [x ′(p)− x ′(u)]− [x ′(q)− x ′(v)]+ x ′(t)− x ′(g)− c1
√

n

�| f |/4� ,

where x ′(v) is the x coordinate assigned to v by Babilon et al.’s algorithm as defined
above. Note that, by Lemma 12, x ′(p)− x ′(u)+ x ′(v)− x ′(q) ≥ 0, and thus s(u) ≥ 0.
For any vertex u that is not on the upper half of the left side of any face, we define
s(u) = 0.
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Fig. 7. The shifting process for a nine-vertex face of the outerplanar graph G ′′, shown on the left, with
nontree edge {u, p}. The tree embedding algorithm places u and v as shown on the right, and the shifting
process moves them to u′′ and v′′, respectively. The idea is first to move the upper-left quarter of the face so
that the distances at each level between the left and right vertices of the face is the same. In this example the
distance between g and t is equal to the distance between u′ and p which is equal to the distance between v′
and q. Second, we move these vertices to the positions u′′ and v′′, respectively, by moving each proportional
to its height, so that the distance at the top of the face (between u′′ and p) becomes c1

√
n.

The shift value s(u) applies to u and all of its descendants. Therefore, our formula
for the embedding is as follows:

y(v) = 2
√

n h(v)+ [�(v)mod
√

n],

x(v) = k(v)√
n
+

∑
u∈πv

s(u).

In other words, we first make the upper half of the left side of the face roughly parallel
to the upper half of the right side of the face, and then slant the left side of the upper half
of the face to the right by having a linear growth in shift amount as we proceed up the
left side.

Lemma 14. For every vertex u, s(u) = O(
√

n).

Proof. By Lemma 11, |k(u) − k(p)| = O(n). Thus, x ′(p) − x ′(u) = (k(p) −
k(u))/

√
n = O(

√
n), and similarly, x ′(v) − x ′(q) = O(

√
n). Because the distance

in the BFS tree between g and t is less than | f |, and, by Theorem 10(b), we have
|x ′(g) − x ′(t)| = O(| f |√n). Therefore, (|x ′(g)− x ′(t)| − c1

√
n)/�| f |/4� = O(

√
n),

so by summing all terms, we obtain that s(u) = O(
√

n).

Distortion Analysis. We prove that the distortion of our embedding is O(
√

n) in two
parts: the least any distance is contracted is�(1), and the most any distance is expanded
is O(
√

n).
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Lemma 15. The shifting process preserves the horizontal ordering of vertices with the
same height. Furthermore, two vertices of the same height that got closer during the
shifting process remain at a horizontal distance of at least c1

√
n.

Proof. Suppose that u and v are at the same height and that u is to the left of v in
the tree. Let p be the nearest ancestor of u with positive shift value s(p), and let f be
the face causing the shift. Let q be the ancestor of v at the same height as p. Assume
that p �= q , because otherwise u is not shifted relative to p and any shifting of v only
separates u and v, so there is nothing to prove. Thus, p is strictly to the left of q. Let
r be the vertex on the right side of face f with the same height as p and q. Thus, r is
strictly right of p and (nonstrictly) left of q in the tree.

We claim that, after shifting, p is to the left of r by a horizontal distance of at
least c1

√
n. Let d denote the graph distance between p and r in G ′′, and suppose that g

and t are the vertices midway along the left and right sides, respectively, of the face f .
Because this face was shifted, x ′(t)− x ′(g) > c1

√
n. Thus,

x(r)− x(p) = x ′(r)− x ′(p)−
∑

r∈ f ∩πp

s(r)

= x ′(r)− x ′(p)− [x ′(g)− x ′(p)]+ [x ′(t)− x ′(r)]

−
∑

r∈ f ∩(πp\πg)

x ′(t)− x ′(g)− c1
√

n

�| f |/4�

= x ′(t)− x ′(g)− (�| f |/4� − d/2)
x ′(t)− x ′(g)− c1

√
n

�| f |/4�

=
[

1− �| f |/4� − d/2

�| f |/4�
]

[x ′(t)− x ′(g)]+ �| f |/4� − d/2

�| f |/4� c1
√

n

= d/2

�| f |/4� [x
′(t)− x ′(g)]+

(
1− d/2

�| f |/4�
)

c1
√

n

≥ d/2

�| f |/4�c1
√

n +
(

1− d/2

�| f |/4�
)

c1
√

n

= c1
√

n.

Observe that r either has a strictly smaller height than u, or it is to the right of p = u.
Thus, we can apply induction to the vertices r and q to conclude that r remains to the left of
q after shifting. Hence, p remains to the left of q (in addition to r ) by a horizontal distance
of at least c1

√
n. By repeated application of Lemma 12, x ′(v)− x ′(u) ≥ x ′(q)− x ′(p).

Because u is shifted the same amount as p and v is shifted at least as much as q,
x(v)− x(u) ≥ x(q)− x(p), which is at least c1

√
n. Therefore, u remains to the left of

v by a horizontal distance of at least c1
√

n.

Lemma 16. For sufficiently large c1, the Euclidean distance between two nonextra
vertices of the same height is at least a constant factor times their graph distance.



632 M. Bateni, E. D. Demaine, M. Hajiaghayi, and M. Moharrami

Proof. Consider any two nonextra vertices u and v of the same height, and assume
by symmetry that u is to the left of v. (By Lemma 15, the notion of “left” is the same
before and after shifting.) Assume without loss of generality that u got closer to v during
the shifting process; otherwise, the lemma follows from Theorem 10(a).

If u and v are on a common face f , then they are in the upper half of a face that
was shifted. Let d denote the graph distance between u and v in G ′′, and suppose that g
and t are the vertices midway along the left and right sides, respectively, of the face f .
By Theorem 10(a), the Euclidean distance between g and t in the tree embedding is at
least c0�| f |/2�. Furthermore, their vertical distance |y(g) − y(t)| is at most

√
n, and

because this face was shifted, by Lemma 15, their horizontal distance x ′(t) − x ′(g) is
at least c1

√
n. Therefore, x ′(t) − x ′(g) ≥ (c1 − 1)c0�| f |/2�. Now we can prove that

x(v) − x(u) = �(d) and therefore that the Euclidean distance between u and v in our
embedding is �(d):

x(v)− x(u) = x ′(v)− x ′(u)−
∑

r∈ f ∩πu

s(r)

= x ′(v)− x ′(u)− [x ′(g)− x ′(u)]+ [x ′(t)− x ′(v)]

−
∑

r∈ f ∩(πu\πg)

x ′(t)− x ′(g)− c1
√

n

�| f |/4�

= x ′(t)− x ′(g)−
∑

r∈ f ∩(πu\πg)

x ′(t)− x ′(g)− c1
√

n

�| f |/4�

≥ x ′(t)− x ′(g)−
∑

r∈ f ∩(πu\πg)

x ′(t)− x ′(g)
�| f |/4�

=
[

1− �| f |/4� − d/2

�| f |/4�
]

[x ′(t)− x ′(g)]

= d/2

�| f |/4� [x
′(t)− x ′(g)]

≥ d/2

�| f |/4� (c1 − 1)c0�| f |/2�

= (c1 − 1)c0d,

which is �(d) for sufficiently large c1.
Now we prove the claim when u and v are not on a common face f . Let p be the

nearest common ancestor of u and v. We distinguish two cases. In Case 1, p is the base
vertex of a face f such that the children of p that are ancestors of u and v are precisely
the two children on the left and right sides, respectively, of f . In Case 2, there is no such
face f .

Case 2 is the easier case. Because the children of p that are ancestors of u and v are
not on the two sides of any face, there is a pair of extra branches of the first type attached
to p in between u and v. Take the leftmost such pair of extra branches (which survives
the longest). The height of these branches is at least h(u) = h(v) because this pair of
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branches is the dominant pair (in terms of priority) among ancestors of p in between
u and v. Let w be a vertex in this pair of branches at the same height as u and v. By
Theorem 10(a), in the tree embedding, the Euclidean distance between w and v is at
least c0 times their tree distance, which equals their graph distance (because the tree is a
BFS tree and w is on its own path from the nearest common ancestor p), which equals
the graph distance from u to v. Because w is not shifted relative to p, and any shifting
of v relative to p brings w and v farther apart, shifting preserves this property that the
Euclidean distance between w and v is at least c0 times the graph distance from u to v.
By Lemma 15, u is to the left of w and thus the horizontal distance between u and v is
at least the horizontal distance between w and v. Hence the Euclidean distance between
u and v is at least the Euclidean distance between w and v minus 2

√
n (to account for

possible vertical variations), which is at least c0 times the graph distance from u to v
minus 2

√
n. By Lemma 15, because u shifted toward v, their horizontal distance is also

at least c1
√

n. By setting c1 large enough, we obtain that the Euclidean distance between
u and v is at least a constant factor times the graph distance from u to v.

Now we consider Case 1. Let q be the highest vertex (on the left side) of the face f
that is an ancestor of u. Because we are in Case 1, q �= p, so there is a pair of extra
branches of the third type attached to q. By construction of the height of branches of the
third type, the height of these branches is at least h(u) = h(v). Let r be a vertex in this
pair of branches that has the same height as u. We distinguish two subcases according
to whether the highest vertex of f is strictly lower than u. In each subcase we argue that
|x(r)−x(v)| = �(µrv)−O(

√
n)whereµrv denotes the graph distance between r and v.

The construction of the branches ensures that µrv = µuv . By Lemma 15, r is between
u and v, so |x(u)− x(v)| ≥ |x(r)− x(v)|. Thus we can conclude that |x(u)− x(v)| =
�(µrv) − O(

√
n) = �(µuv) − O(

√
n). As argued above, |x(u) − x(v)| ≥ c1

√
n.

Therefore, for sufficiently large c1, we obtain that |x(u)− x(v)| = �(µuv) as desired.
In the first subcase the highest vertex of f is not strictly lower than u (intuitively, the

line segment connecting r and v crosses the face f ). Let w and z be the vertices on the
left and right side, respectively, of f with the same height as u and v. Then we have

|x(u)− x(v)| ≥ |x(r)− x(w)| + |x(w)− x(z)| + |x(z)− x(v)|
≥ �(µrw + µwz + µzv)− O(

√
n)

≥ �(µrv)− O(
√

n).

The first inequality follows from the horizontal ordering given by Lemma 15. The second
inequality follows from Theorem 10(a); because r does not shift relative to q, and w
shifting relative to q could only increase |x(r)− x(w)|; by the proof above for the case
of two vertices on the same face; and because similarly z and v can shift only apart from
each other. The third inequality follows from the triangle inequality.

In the second subcase the highest vertex of f is strictly lower than u. Consider the pair
of extra branches of the second type attached to the endpoints of the nontree edge of f .
As usual, these branches have height at least h(u) = h(v) because this is a dominant
pair of branches (in terms of priority) among ancestors of p in between u and v. (Thus,
intuitively, the line segment connecting r and v crosses the extra branches attached to
the nontree edge of f .) Let w and z be the vertices of the left and right branches in the
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pair, respectively, with the same height as u. Similar to the previous subcase, we have

|x(u)− x(v)| ≥ |x(r)− x(w)| + |x(z)− x(v)|
≥ �(µrw + µzv)− O(

√
n)

≥ �(µrw + µwv)− O(
√

n)

≥ �(µrv)− O(
√

n).

The first, second, and fourth inequalities follow for the same reasons as the previous
subcase. The third inequality follows because, by the construction of extra branches,
|µzv − µwv| ≤ 1.

Lemma 17. For sufficiently large constants c1 and c2, two vertices at different heights
with graph distance at least c2

√
n have Euclidean distance at least a constant factor

times their graph distance.

Proof. Suppose that vertices u and v have graph distance at least c2
√

n. If the height
difference between u and v is�(

√
n), then the difference in y coordinates is�(n), which

is enough for any graph distance. Therefore, we can assume that |h(u)− h(v)| ≤ ε√n
for any constant ε > 0. Assume by symmetry that h(u) < h(v). Let w be the ancestor
of v at the same height at u.

We claim that the descendants of w (in particular, v) embed to lie within a cone
with apex at v and whose sides are within θ of vertical for a constant θ < 90◦. This
claim is true in the original Babilon et al. embedding: the overall cone for the root node
has a vertical axis and angle of at most 45◦ from this axis, and all subtree cones are
contained in the original [BMMV, proof of Claim 1]. Now we bound the effect of the
shifting process. Consider any two adjacent vertices in the graph with heights differing
by 1. Their vertical distance is �(

√
n), so by the 45◦ cone property of the original tree

embedding, their horizontal distance in the original tree embedding is O(
√

n). Also, by
Lemma 14, every shift value is O(

√
n). Thus, their horizontal distance in our embedding

is O(
√

n), at most a constant factor times the vertical distance. Because this holds for
all edges of the graph that span adjacent heights, the entire subtree of w’s descendants
must lie in a cone with a constant lower bound on the absolute slope of the two sides.

Becausew is an ancestor of v in the BFS tree, the lengthµvw of the shortest path from
v to w is h(v)− h(w), which we assumed to be at most ε

√
n. By the triangle inequality,

µuv ≤ µuw + µvw. The left-hand side is large—µuv ≥ c2
√

n—yet the second term on
the right-hand side is small—µvw ≤ ε

√
n. Thus, µuw ≥ (1− ε)µuv ≥ (1− ε)c2

√
n.

By Lemma 16, the Euclidean distance between u and w is �(µuw), and we have
just shown that µuw ≥ (1 − ε)c2

√
n. By construction, the difference in y coordinates

between u and w is at most
√

n. Thus, by choosing c2 large enough, we obtain that the
horizontal distance between u andw is at least any desired constant times

√
n, while the

vertical distance is at most
√

n. Hence, for c2 sufficiently large, u is outside w’s cone,
and furthermore, the absolute slope of the line segment from u to w is strictly less than
the absolute slope of the sides of the cone. Therefore, the Euclidean distance from u to
any point in the cone is at least a constant factor times the Euclidean length of the line
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segment from u to w, which we showed is �(µuw) = �(µuv). In particular, v is in w’s
cone, so the Euclidean distance from u to v is �(µuv).

Lemma 18. The expansion in our embedding between any pair of nonextra vertices is
O(
√

n).

Proof. First we claim that every edge of the graph G ′ has Euclidean length O(
√

n). Each
graph edge is either a tree edge or a nontree edge. The tree edges had O(

√
n) distortion in

the original tree embedding by Theorem 10(b), and, by Lemma 14, the shifting process
changes the Euclidean length of each edge by at most an additive O(

√
n). Thus, the tree

edges still have Euclidean length O(
√

n).
Now we prove the claim for nontree edges. Letw and z be the left and right endpoints,

respectively, of the nontree edge of face f . If x ′(z) − x ′(w) > 2c1
√

n, then by the
concavity in Lemma 13, the points g and t midway along the left and right sides,
respectively, of the face f satisfy x ′(t) − x ′(g) > c1

√
n. Thus, in this case, the face f

is shifted. After shifting, we have

x(z)− x(w) = x ′(z)− x ′(w)−
∑

r∈ f ∩πw
s(r)

= x ′(z)− x ′(w)− [x ′(g)− x ′(w)]+ [x ′(t)− x ′(z)]

−
∑

r∈ f ∩(πw\πg)

x ′(t)− x ′(g)− c1
√

n

�| f |/4�

= x ′(t)− x ′(g)− (�| f |/4�) x ′(t)− x ′(g)− c1
√

n

�| f |/4�
= c1
√

n.

Hence, if the nontree edge {w, z} is shifted, which is forced when x ′(z)−x ′(w) > 2c1
√

n,
then x(z)− x(w) = c1

√
n. Otherwise, we have x(z)− x(w) = x ′(z)− x ′(w) ≤ 2c1

√
n.

Also, |y(w)− y(z)| ≤ √n. Therefore, every edge of G ′ has length O(
√

n).
By the triangle inequality, the distortion of the embedding of G ′ is O(

√
n), because

the bound holds for each edge of a shortest path. By Lemma 8, the distortion of the
embedding of the original graph G is O(

√
n).

We conclude with the main result of this section:

Theorem 19. Every outerplanar graph G can be embedded into the plane with distor-
tion O(

√
n).

Proof. We claim that the Euclidean distance between any two vertices u and v in the
constructed embedding is at least a constant factor times their graph distance. If u and
v have the same height, Lemma 16 proves the claim. Otherwise, their graph distance is
either at least c2

√
n or smaller. In the first case, Lemma 17 proves the claim. In the second

case, the Euclidean distance between u and v is at least their distance in y coordinates,
which by construction is at least

√
n, proving the claim.



636 M. Bateni, E. D. Demaine, M. Hajiaghayi, and M. Moharrami

On the other hand, Lemma 18 proves that the Euclidean distance between any two
vertices u and v in the constructed embedding is at most O(

√
n) times their graph

distance. Therefore, scaling the embedding by a constant multiplicative factor yields a
noncontractive embedding with expansion O(

√
n) as desired.

4. Open Problems

The main open problem is to obtain tight worst-case bounds on the distortion required
to embed planar graph metrics into the plane. To this end, it would be a natural step
to consider bounded-outerplanarity graphs (which generalize the notion of outerplanar
graphs), series–parallel graphs (which are slightly more general than outerplanar graphs),
and bounded-treewidth graphs (which generalize both of these classes). Note that the
series–parallel graph known as the diamond graph, used previously in embedding lower
bounds [BC], [LN], [NR], can be embedded into the plane with O(

√
n log n) distortion.

We also emphasize the open problem from [BMMV] and [M1] of embedding the
shortest-path metrics of weighted trees and planar graphs into the plane. Matoušek [M1]
conjectures an upper bound of O(

√
n) for trees, but no o(n) upper bound is known.

It may also be easier to prove an ω(n2/3) worst-case lower bound for weighted planar
graph metrics.
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