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Abstract. This paper completes the classification of the four-dimensional (finite) regular
polyhedra, of which those with planar faces were—in effect—found by Arocha, Bracho
and Montejano. However, the methods employed here are in the same spirit as those used
in the description of all three-dimensional regular polytopes by this author and Schulte,
and the regular polytopes of full rank by this author. The procedure has two stages. First,
the possible dimension vectors (dim R0, dim R1, dim R2) of the mirrors R0, R1, R2 of the
generating reflexions of the symmetry groups are determined. Second, all polyhedra with
a given dimension vector are found. Most of the polyhedra are related to four-dimensional
Coxeter groups, although one class has to be approached using quaternions.

1. Introduction

Regular polyhedra have been a subject of fascination since classical times. Apart from
their intrinsic interest as highly symmetric objects (see, for example, [4]), the so-called
Platonic solids play an important rôle in areas such as isoperimetry (see [11]). In this
paper it is the former aspect, suitably generalized, which concerns us.

In [21] (see also Sections 7E and 7F of [22]), the present author and Schulte classified
completely all the faithfully realized regular polytopes and discrete regular apeirotopes
in dimensions up to three. Further, in [18], this author classified the regular polytopes
and apeirotopes of full (that is, maximal) rank in each higher dimension. This paper
continues that line of investigation, by finding all the four-dimensional (finite) regular
polyhedra.

The context of the paper is that of realized regular polytopes, the general background
of which is described in Chapter 5 of [22]. There are two quite different ways to approach
realizations. The first, for which a fairly complete theory exists (at least, in the finite case),
asks for a description of the space of all realizations of a given abstract regular polytope
or apeirotope, with rank playing only a minor rôle (see Sections 5B and 5C of [22] for
further details). The second, about which much less is known in general terms, asks for
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a classification of the realizations of all these polytopes and apeirotopes in a euclidean
space of given dimension (in this case, it is usual to impose conditions such as faithfulness
and discreteness).

The latter problem is solved in up to three dimensions. The finite regular polyhedra
have long been known; adding to the Petrie–Coxeter apeirohedra of [3], Grünbaum [13]
found all but one of the remaining regular apeirohedra, while Dress [8], [9] found the
missing example, and proved that the classification was then complete. (For polyhedra
which are “regular” in a more general sense, see [14].) We refer the reader to [21] for
a quick method of arriving at the full characterization, including a discussion of the
geometry of the regular apeirohedra and presentations of their symmetry groups, as well
as for the enumeration of the regular 4-apeirotopes in three dimensions. In addition, the
regular polytopes and apeirotopes of full (that is, maximal) rank in each dimension were
classified in [18], using a refinement of earlier techniques.

In four dimensions, the currently open problems are those of classifying the finite
regular polyhedra, and the regular apeirohedra and 4-apeirotopes; [18] solves the prob-
lems of the regular 4-polytopes and 5-apeirotopes. The present paper settles the first
of these problems (the polyhedra with planar faces were—in effect—classified in [1]
and [2]), again using similar techniques. The core of the argument consists of determin-
ing the possible sequences (dim R0, dim R1, dim R2)—the dimension vectors—of the
mirrors of the reflexions R0, R1, R2 which generate the symmetry groups of the regular
polyhedra. The rest consists of finding each polyhedron with a given dimension vector.

A brief outline of the contents of this paper appeared in Section 7 of [23]; mistakes
and omissions made there have been corrected here.

The problem of classifying four-dimensional chirol polyhedra (which have only “ro-
tational” symmetry) is also open; for their three-dimensional (infinite) analogues, see
[25] and [26].

2. Regular Polytopes

For the general background on abstract regular polytopes, we refer the reader to the mono-
graph [22]; for the most part, we shall not cite original papers on the theory of abstract
regular polytopes directly. In this paper, we largely concentrate on the geometric aspects
of the theory, that is, on realizations of regular polytopes.

There are many candidates for spaces in which regular polytopesP might be realized
geometrically. The usual (and generally most useful) context of realizations is of those in
euclidean spaces, because it is in these that we obtain the richest structure. (Note, however,
that some basic results have a common statement if they are posed for realizations in
spherical or hyperbolic spaces as well; see Section 3 of [18].) In fact, since we consider
realizations in E4 of (finite) regular polyhedra (3-polytopes) alone here, we later tailor
our description accordingly.

It is a familiar fact (see Theorem 2E11 of [22]) that an abstract regular n-polytope
P can be identified with its automorphism group, which is a string C-group Γ =
〈ρ0, . . . , ρn−1〉 generated by n involutions ρj (the distinguished generators), such that
ρj and ρk commute if 0 � j � k − 2 � n − 3, and

〈ρi | i ∈ J〉 ∩ 〈ρi | i ∈ K〉 = 〈ρi | i ∈ J ∩ K〉 (2.1)
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for any J,K ⊆ N := {0, . . . , n − 1}; the last is the intersection property. The j -faces of
P are then the right cosets Γjσ of the distinguished subgroup

Γj := 〈ρi | i �= j 〉

for each j ∈ N, and two faces are incident just when they intersect (as cosets). In fact,
incidence actually induces an order relation:

Γjσ � Γkτ ⇔ Γjσ ∩ Γkτ �= ∅ and j � k.

Formally, we also adjoin two copies of Γ itself, labelled Γ−1 and Γn , as the (unique)
(−1)- and n-faces of P .

The maximal chains (with respect to this ordering) are the flags of P; the group Γ is
then simply transitive on the flags of P . (Note that we do not usually mention the (−1)-
and n-faces in flags.) With appropriate conditions on the poset of faces of an abstract
polytope P (see Section 2A of [22]), this latter condition can be used as a definition of
regularity of P . Calling two flags adjacent if they differ by one face, the distinguished
generator ρj takes the base flagΦ := {Γ0, . . . , Γn−1} into the flagΦ j which differs from
it in Γj .

Note that the distinguished subgroups Γn−1 = 〈ρ0, . . . , ρn−2〉 and Γ0 =
〈ρ1, . . . , ρn−1〉 are themselves string C-groups; the corresponding polytopes are the
facet and vertex-figure of P , respectively.

To avoid cases which, in our context, turn out to be trivial, we usually assume that
adjacent generators ρj−1 and ρj of Γ do not commute (this is justified almost immedi-
ately). In other words, the period pj of the product ρj−1ρj satisfies pj > 2 (our polytopes
are finite, and so pj = ∞ does not occur). We call {p1, . . . , pn−1} the Schläfli type of the
polytope. If the polytope is determined just by the pj , then we have the universal regular
polytope (of that Schläfli type), for which we use the same symbol {p1, . . . , pn−1} (but
without qualification); we write [p1, . . . , pn−1] for the corresponding Coxeter group.
Generally, however, the group Γ will satisfy additional relations as well, for some of
which we shall introduce special notation later.

In the geometric context (that is, of realizations, for the general background to which
see [15], [19] or Chapter 5 of [22]), each ρj is represented (under some homomorphism)
by a reflexion Rj —an involutory isometry—which we identify with its mirror of fixed
points

{x | x Rj = x}.
We write G := 〈R0, . . . , Rn−1〉 for the corresponding symmetry group. The intersection
property (2.1) translates directly into

〈Ri | i ∈ J〉 ∩ 〈Ri | i ∈ K〉 = 〈Ri | i ∈ J ∩ K〉.

The structure of the realization P is then given by Wythoff’s construction, namely, the
initial vertex is F0 := v ∈ R1 ∩ · · · ∩ Rn−1 (the latter is called the Wythoff space) and,
recursively, the initial j -face is

Fj := {Fj−1G | G ∈ 〈R0, . . . , Rj−1〉}
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for j = 1, . . . , n − 1; all other (proper) faces are images of the initial faces under G.
Further, Γ−1 and Γn are represented by F−1 := ∅ and Fn := P . The partial ordering of
the faces is induced by iterated membership. The (affine) subspace

E := aff{vG | G ∈ G}

spanned by the vertices of P is called the ambient space of P; we lose no generality in
thinking of this as the whole space in which we work. We then write dim P := dim E ,
which is the dimension of P . Finally, the realization is faithful if P (as a poset) is
isomorphic to P; it cannot be faithful if any pj = 2 (see [15] or Theorem 5A7 of [22]).

In the finite case, we can assume thatG is an orthogonal group, and (to avoid trivialities)
that v �= o, the origin of coordinates.

There is no harm in adopting the view that an edge is the (line-)segment joining its
two vertices, and that a 2-face is the polygon determined by its constituent (vertices and)
edges (we shall not need more than that here).

A realization of an abstract regular polytope P determines a realization of each of
its faces or vertex-figures. In particular, Fn−1 (and its induced structure, with the same
initial vertex v) gives a realization of the facet of P; its symmetry group is the image
Gn−1 of Γn−1. If we write w for the mid-point of the edge between v and vR0, then
w is the initial vertex of a realization of the vertex-figure of P , with symmetry group
the image G0 of Γ0. Faithfulness is hereditary; that is, if the original realization of P is
faithful, then the realizations of the facet and vertex-figure of P are also faithful.

We often find it more convenient to use vR0 rather than w as the initial vertex of the
vertex-figure; for most purposes, this makes little difference, since the combinatorics are
not altered.

There are important restrictions on faithful realizations, which we state only for the
finite case (but in general terms); we refer to Sections 5B and 5C of [22] for proofs.

Theorem 2.1. Let P be a faithful realization of a finite abstract regular polytope P ,
whose ambient space E is euclidean. Then dim P � rankP .

Theorem 2.2. Let P be a faithful realization of a finite abstract regular n-polytope
in a euclidean space E , with group G = 〈R0, . . . , Rn−1〉. Then dim Rj � j + 1 for
j = 0, . . . , n − 2, and dim Rn−1 � n − 1.

The sequence (dim R0, dim R1, . . . , dim Rn−1) is called the dimension vector of the
realization. The first step in the classification of the faithfully realized regular polytopes
of a fixed rank n in a fixed dimension d is to determine which dimension vectors can
occur.

If we have (not necessarily faithful) realizations of the abstract regular polytope (or
apeirotope) P in two euclidean spaces, say P with mirrors S0, . . . , Sn−1 in L and Q
with mirrors T0, . . . , Tn−1 in M (possibly some Sj = L or Tj = M), then their blend
has mirrors Sj × Tj in L × M for j = 0, . . . , n − 1. Indeed, if v ∈ S1 ∩ · · · ∩ Sn−1 and
w ∈ T1 ∩ · · · ∩ Tn−1 are the initial vertices of the two realizations, then (v,w) can be
chosen as the initial vertex of the blend, which we then write P#Q. A realization which
cannot be expressed as a blend in a non-trivial way is called pure.
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We end the section with a general remark. Let S and T be linear reflexions. First,
since ST = (−S)(−T ) = S⊥T⊥ (thus identifying −S with its mirror S⊥, and so on),
then S ∩ T and S⊥ ∩ T⊥ are both pointwise fixed by the product. That is, the axis (fixed
set) of ST is

(S ∩ T )+ (S⊥ ∩ T⊥) = (S ∩ T )+ (S + T )⊥. (2.2)

In particular, if S and T commute, then (2.2) is the mirror of their product ST = T S,
which is again a reflexion.

3. Operations on Polyhedra

From now on, we confine our attention to regular polyhedra, that is, polytopes of rank 3.
Various operations provide ways of connecting regular polyhedra; in this section we
discuss these operations and their implications.

Two different regular polyhedra (or, more generally, polytopes) may be related by
what is called a mixing operation: the distinguished generators of the second group are
certain products of those of the first (see Chapter 7 of [22]—we discuss the concept on
an abstract level, but it has corresponding geometric implications for realizations). First,
duality δ just reverses the order of the distinguished generators (and the order relation
on the faces). It is worth noting that, in general, duals of faithfully realizable regular
polytopes are not necessarily faithfully realizable at all (those of Petrials of the ordinary
regular solids are particular examples), let alone in the same space.

Second, suppose thatΓ = 〈ρ0, ρ1, ρ2〉 is a string C-group, and consider the operation

(ρ0, ρ1, ρ2) �→ (ρ0ρ2, ρ1, ρ2) =: (σ0, σ1, σ2). (3.1)

We write Γ π := 〈σ0, σ1, σ2〉, and we call Γ �→ Γ π the Petrie operation. The Petrie
operation π does not always yield a C-group, although such cases are rather exceptional,
and we shall not meet any of them here. When it does, we implicitly take the Petrie
operation to apply to the corresponding polyhedron as well, and so write P �→ Pπ ,
which we call the Petrial of P .

We note that an important class of regular polyhedra or apeirohedra consists of those
which are determined by their Schläfli type and Petrie polygons. The geometric picture
of a Petrie polygon is one which shares two successive edges of each 2-face which it
meets, but not a third; thus the faces ofPπ are the Petrie polygons ofP . We write {p, q}r
for the polyhedron (possibly infinite) of Schläfli type {p, q}, whose Petrie polygons of
length r determine it. Its group is the Coxeter group 〈ρ0, ρ1, ρ2〉 = [p, q], with the
imposition of the single extra relation

(ρ0ρ1ρ2)
r = ε. (3.2)

We note that, if it is a genuine polyhedron, then the Petrial of {p, q}r is {r, q}p.
In the present context, we find it convenient to designate some regular polyhedra

by the types of their faces, vertex-figures and Petrie polygons (in a more general sense
which we describe in Section 5). Because the entries in the symbol can be fractions, the
subscript notation is somewhat less than satisfactory. We therefore write {p, q : r} for
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a regular polygon whose faces are polygons {p}, vertex-figures {q} and Petrie polygons
{r}; in the way that we use this notation, it will be clear that there are to be no implications
of universality.

Third, suppose that P is a regular polyhedron of type {p, q}, and let 1 < k < 1
2 q,

with greatest common divisor (k, q) = 1. The facetting operation ϕk is defined by

(ρ0, ρ1, ρ2) �→ (ρ0, (ρ1ρ2)
k−1ρ1, ρ2) =: (σ0, σ1, σ2). (3.3)

If 1 < m < 1
2 q is such that km ≡ ±1 mod q, then ϕm inverts ϕk . Geometrically, the new

polyhedron Pϕk has the same vertices and edges as P . However, successive edges of a
2-face are now separated by k steps along the old vertex-figure, instead of 1 (in some
local orientation); the 2-faces ofPϕk are the k-holes ofP . In case k = 2, we refer simply
to the holes of P .

The designation of a (possibly infinite) regular polyhedron of Schläfli type {p, q},
which is determined by its holes of length h, is {p, q |h}. The corresponding relation to
be imposed on the Coxeter group 〈ρ0, ρ1, ρ2〉 = [p, q] is

(ρ0ρ1ρ2ρ1)
h = ε. (3.4)

Various examples of such polyhedra occur later; for now, let us observe that the great
dodecahedron {5, 5

2 } is, as an abstract regular polyhedron, {5, 5 |3}.
In practice, we sometimes use the notation {p, q |h} merely to indicate the type of a

regular polyhedron with faces {p}, vertex-figures {q} and holes {h}. However, when we
do this, some of the entries will be fractions, and so little confusion will arise.

Fourth, we have the halving operation η. This performs on the groupΓ = 〈ρ0, ρ1, ρ2〉
of a regular polyhedron P of type {4, q} the operation

η: (ρ0, ρ1, ρ2) �→ (ρ0ρ1ρ0, ρ2, ρ1) =: (σ0, σ1, σ2). (3.5)

This results (usually) in a self-dual polyhedron of type {q, q}, denoted by Pη. It has half
the vertices of P if all edge-circuits of P have even length; otherwise it has the same
vertices. The group order (if finite) is halved just when the number of vertices is.

Our final operation is skewing (or skew halving) σ . It applies to a regular polyhedron
of P type {p, 4}, and is defined by

σ : (ρ0, ρ1, ρ2) �→ (ρ1, ρ0ρ2, (ρ1ρ2)
2) =: (τ0, τ1, τ2). (3.6)

It is remotely related to halving; in fact, as can be checked (see Section 7B of [22]),

σ = πδηπδ.
This also indicates that σ halves the order of the group just when η does, modulo the
double application of πδ. If this is the case, then ρ2 /∈ Γ (Pσ ), but acts on it as an
automorphism. In any event, Pσ is self-Petrie; the isomorphism between Pσ and Pσπ
is induced by conjugation of Γ (Pσ ) = Γ (P)σ by ρ2, since

ρ2τ0ρ2 = ρ2ρ1ρ2 = ρ1 · (ρ1ρ2)
2 = τ0τ2.

It should perhaps be emphasized that all these operations really apply to groups (or
their distinguished generators), rather than to polyhedra. This is particularly important in
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the case of σ since, as we shall see in Section 11, we can use σ to obtain non-degenerate
polyhedra from degenerate ones.

One further abstract construction, which is a special case of mixing, is the following.
Again, suppose that Γ = 〈ρ0, ρ1, ρ2〉 is a string C-group. Let τ be an involution which
commutes with all ρj , and consider the operation

(ρ0, ρ1, ρ2, τ ) �→ (ρ0τ, ρ1, ρ2) =: (σ0, σ1, σ2). (3.7)

This is called mixing with a segment, because τ can be regarded as the generating
involution of the group of the segment (1-polyhedron) { }. We have (see Theorem 7A8
of [22])

Theorem 3.1. Mixing a string C-group Γ with a segment always yields another C-
group. This is isomorphic to Γ if all edge-circuits in the associated regular polyhedron
P have even length; otherwise, it is isomorphic to the direct product Γ × C2 of Γ with
a cyclic group C2 of order 2.

We denote the resulting regular polyhedron (which again we say is obtained from P
by mixing with a segment) by P ✸ { }. This has twice as many vertices as P precisely
when some edge-circuit of P has odd length.

If P is a realization of the abstract regular polytopeP with vertex-set V , then the mix
P ✸ { } admits a realization whose vertices are a subset of V × {±1}. However, in some
cases, there may be a realization of P ✸ { } with the same ambient space as P .

Another technique which we use here is twisting (see Chapter 8 of [22]). In this, a
given group generated by involutions (usually itself a C-group) is augmented by means
of one or more automorphisms. Although it is central to our classification, we shall not
go into this any further here; we shall see various applications in the appropriate places.

4. Dimension Vectors

As a first step in describing which geometrically realized polyhedra P occur in E4,
we need to determine the possible dimension vectors (dim R0, dim R1, dim R2) of the
mirrors R0, R1, R2 of the reflexions which generate the corresponding symmetry groups
G(P). Theorem 2.2 provides a starting point; the dimension vector must satisfy

(1, 2, 2) � (dim R0, dim R1, dim R2) � (3, 3, 3),

where � indicates inequality in each component individually.
We now proceed as follows. Using essentially the same trick as in the earlier papers

[18], [21], if the mirror R0 satisfies dim R0 = 1, then we can replace it by

−R0 = R⊥0 ,

its orthogonal complement, which (as an isometry) is its product with the central inversion
−I ; we denote this general operation by κ . (In [18] we called this operation κ0, but here
no more general operations κi j or κj are needed.) We always obtain another finite group
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G ′; in fact,

|G ′| = 1
2 |G|, |G|, or 2|G|.

It will turn out that we always obtain another regular polyhedron as well.
Next, if dim R0 = 2 and dim R2 = 3 (or vice versa, but we shall see that this case

will have to be excluded), then we can replace R0 by R0 R2, that is, apply (or reverse)
the Petrie operation π ; bearing in mind (2.2), the new R0 has dim R0 = 1 or 3, and in
the former case we can proceed as previously.

Finally, as long as our (possibly new) group contains a hyperplane reflexion (that is,
dim Rj = 3 for some j), we can regardG as a reflexion (Coxeter) group, on which certain
involutions with two-dimensional mirrors act as automorphisms (more precisely, G is the
corresponding semi-direct product). When we have carried out the foregoing procedures,
it will later become clear that only those polyhedra whose groups have dimension vectors
(3, 2, 3) or (2, 3, 2) need to be analysed in detail. For classification purposes, we then
reverse the procedure: the starting point is a Coxeter group, not necessarily with standard
generators, which can be represented by a diagram that permits permutation of its nodes.

The one case which is not covered by the previous analysis is dimension vector
(2, 2, 2). This class is closed under the standard operations π and κ; as we shall see,
duality does not apply here. In fact, there are polyhedra in this class whose symme-
try groups are not subgroups of reflexion groups. The approach here will be through
quaternions, which will enable us to relate such a polyhedron to a pair of (sometimes
degenerate) polyhedra in E3 or, rather, the corresponding regular projective polyhedra.

We now briefly analyse the possibilities in general terms, leaving the details and
the enumeration problems for each class until subsequent sections. In the listing of the
classes, we group together those which are related by Petriality π or the operation κ; as
we have already remarked, duality δ is not always applicable.

• (3, 3, 3). For this case, the intersection R0 ∩ R1 ∩ R2 of three linear hyperplanes
will be a line, and so a corresponding polyhedron will only be three-dimensional.
It must therefore be excluded (but only on these grounds).

• (1, 3, 3). This case is allowed; κ can be applied to the (suitably realized) case
(3, 3, 3). We shall see in Section 6 that these polyhedra can also be regarded as
blends, with one component degenerating to a segment.

• (2, 3, 3). An appeal to (2.2) shows that applying Petriality π to this case yields
either case (3, 3, 3) or case (1, 3, 3). The first possibility must be excluded on the
same grounds as before, but the second will occur.

• (3, 3, 2). This would be the dual class to (2, 3, 3). However, even in the allowed
case (the Petrials of class (1, 3, 3)), the faces of the original polyhedron are centred
at o, and so the dual must be excluded.

• (1, 3, 2). If this class occurred, it would be obtained from the class (3, 3, 2) by
applying κ; we must therefore disallow it.

• (3, 2, 3). Let the group be G = 〈R0, R1, R2〉. Then R1 acts as an automorphism on
the hyperplane reflexion groupH = 〈S0, . . . , S3〉, given by

(S0, . . . , S3) := (R0, R1 R2 R1, R2, R1 R0 R1).

The underlying diagram of H is denoted D1(p, q; r) as in Fig. 1 (the notation
indicates that p and q play a similar rôle, while that of r is different). The labels on
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p q

r

r0

2

✻
❄

1

Fig. 1. The diagram D1(p, q; r).

the nodes of the diagram indicate the reflexions R0 and R2, while R1 is indicated
by the implied flip of the diagram. Moreover, we must have p, q > 1, where p
is not a fraction with an even denominator (we explain why in Section 7) and
r > 2; the resulting polyhedron is of type {2p, 2q |r}. In case q is also not a
fraction with an even denominator, then duality δ interchanges p and q. There is an
alternative approach when q is a fraction with an even denominator; in this event,
the automorphism R1 of the diagram is inner, and the group of the polyhedron can
be obtained from that of a regular 4-polytope by a mixing operation.

• (1, 2, 3). This case arises from the case (3, 2, 3) by applying κ .
• (2, 2, 3). This case is obtained from either case (3, 2, 3)or case (1, 2, 3)by Petriality
π ; naturally, the two possibilities have to be distinguished. These three classes of
polyhedra (or four if we make the distinction implied in the last sentence) fall into
two families with the same vertices.

• (3, 2, 2). This case would arise from (2, 2, 3) by duality. However, it may be seen
that, whichever way the original group of type (2, 2, 3) arises, the product R0 R1

of its corresponding reflexions R0 and R1 is a double rotation (in two orthogonal
planes), since R0 ∩ R1 = {o}; it follows that the class cannot occur.

• (1, 2, 2). This case would be obtained from (3, 2, 2) by applying κ , and so it too
must be excluded.

• (2, 3, 2). This class gives rise to rich families. In this case, R0 and R2 are the
automorphisms, which act on a diagram given by

(S0, . . . , S3) := (R1, R0 R1 R0, R0 R2 R1 R2 R0, R2 R1 R2).

The general case is thus derived from a diagramD2(p, q, r), as in Fig. 2. Once again,
the labels on the nodes and implied automorphisms correspond to the original
reflexions. The resulting polyhedron is of type {2p, 2q : 2r}, from which are
obtained up to five others by duality δ and Petriality π ; observe that these two
operations preserve the class (2, 3, 2). We have p, q, r > 1, but q must not be a
fraction with an even denominator; we shall see why in Section 8.

✉ ✉

✉ ✉

�
�

�
�

�
�

��❅
❅

❅
❅

❅
❅

❅❅

p p
r r

q

q

✻
❄

✲✛

1

0

2

Fig. 2. The diagram D2(p, q, r).
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• (2, 2, 2). This is the anomalous case, to which the notion of a Coxeter group with
outer automorphisms is inapplicable. Indeed, some examples of this kind cannot
be related to Coxeter groups in any meaningful way. The approach here is through
quaternions; see Section 10.

Remark 4.1. Lowering each entry of these dimension vectors by one gives a potential
dimension vector for polyhedra or apeirohedra in E3. If we reinstate (3, 3, 3) (which
yields only three-dimensional polyhedra), then exactly the analogues of those which
give polyhedra in E4 are valid dimension vectors in E3.

5. Notation

One aim in this section is to introduce an abbreviated notation for regular polygons,
with a view to providing a description of regular polyhedra in subsequent sections which
captures at least some of their geometry. We also need to discuss which kinds of polygons
are generated by a given pair of reflexions in E4. We have already introduced notations
which indicate the holes or Petrie polygons of a polyhedron as well.

Referring to the analysis of [15] or Section 5B of [22], there can be three types of
regular polygons in E4. We exclude the digon { } (a degenerate polygon, collapsing onto
a segment); however, { } can be a component of a regular polygon in a blend, and in that
context should be thought of as an abbreviation for {2}.

First, we have a planar polygon {p}, with p > 2 a rational number. If p = s/t in
lowest terms, then {p} = { s

t } is a regular s-gon, whose edges subtend an angle 2π t/s at
its centre. If t = 1, we just write {p} rather than { p

1 }; in what follows, though, we must
sometimes bear in mind this suppressed denominator “1”.

Second, we have a three-dimensional skew polygon or zigzag. This will always be a
2s-gon for some s, and will be denoted by { 2s

t,s } for some 1 � t < s; here, the greatest
common divisor of 2s and t is (2s, t) = 1 or 2. It will be a blend of a segment { } = {2}
with a planar regular polygon, which will be { 2s

t } if t is odd, or { s
t/2 } if t is even.

Third, we have a four-dimensional helical polygon or helix, whose notation is { p
s,t }.

This is a blend of planar regular polygons { p′
s ′ } and { p′′

t ′′ }, where p′/s ′ = p/s, p′′/t ′′ =
p/t , and p is the least common multiple of p′ and p′′ (thus the greatest common divisor
(p, s, t) = 1). Conventionally, we assume that s < t , so that 1 � s < t < 1

2 p. If,
in our subsequent calculations, a mark t > 1

2 p occurs, it should be replaced by p − t
(geometrically, the polygons are the same, but the orientation will be different, if we
cared to keep track of it).

Now let S and T be mirrors of (linear) reflexions in E4. We take a point v ∈ T \S, and
consider the regular polygon P (assumed finite) with v as the initial vertex, and S and
T playing the rôles of R0 and R1. For reasons made clear in Section 4, we suppose that
dim S � 1 and dim T � 2. To ensure non-degeneracy, neither of S or T is a subspace of
the other; moreover, as isometries, ST �= T S.

Case 1: (dim S, dim T ) = (3, 3). Here, P is planar, with centre on the two-dimensional
axis S ∩ T .
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Case 2: (dim S, dim T ) = (2, 3). We must have dim(S ∩ T ) = 1; in general, P will be
skew.

Case 3: (dim S, dim T ) = (3, 2). Here, P will again be planar.

Case 4: (dim S, dim T ) = (2, 2). In this case, P will be planar or helical, according as
dim(S ∩ T ) = 1 or 0.

Case 5: (dim S, dim T ) = (1, 3). Since this is obtained from Case 1 by an application
of κ , we see that, in general, P will be skew.

Case 6: (dim S, dim T ) = (1, 2). Once again, P will be skew; indeed, P will lie in the
subspace lin(S ∪ T ) of E4.

6. Blended Polyhedra

In the case of regular polyhedra, the only blended realizations which can occur are
those obtained from a three-dimensional polyhedron by mixing with a segment. The
two components (the original polyhedron and the segment) are then realizations of the
four-dimensional polyhedron, degenerate in the second case, and possibly also in the
first.

We noted in Section 4 that the dimension vector (3, 3, 3) has to be excluded, because
the resulting regular polyhedra are only three-dimensional. However, we can realize a
regular polyhedron Q with centre o in E3 (obtained from a group of type (2, 2, 2)) as
Q×{1} in the hyperplane H := E3×{1}; applying κ then yields a polyhedron P whose
vertices lie in H or in the reflected hyperplane−H . Exactly the same procedure applies
to the Petrials of such polyhedra Q, with dimension vectors (1, 2, 2).

Abstractly, P = Q ✸ { }, the mix of Q with a segment { }. Now P ∼= Q exactly when
every edge-circuit of Q is even; the only two three-dimensional regular polyhedra Q for
which this is the case are the cube {4, 3} and its Petrial {6, 3 : 4} = {6, 3}4. Alternate
vertices (in edge-circuits of Q with an arbitrary starting point) are then displaced from
H to −H .

For each of the 16 others (in Petrie pairs), the vertices are those of the cartesian product
Q× { }. In more detail, if v,w are vertices of Q which are joined by an edge, then there
is a corresponding edge in P = Qκ which joins v and −w. As we have remarked, an
edge-circuit in P is doubled in length from the corresponding one in Q precisely when
its length is odd.

It is clear that, as a realization, P will be blended. One component is obviously the
segment { }, which admits a natural covering by P (since all edge-circuits of P have
even length, the edge-graph of P has a 2-colouring). It might be thought that the other
component would be Q, with a corresponding covering P ↘ Q of Q by P . However,
we have already observed in [21] that the operation κ ′ (analogous to κ) on regular 3-
polytopes pairs up the classical polyhedra and their Petrials in a different way from
Petriality. This alternative pairing Q ↔ Q′ := Qκ ′ (as 3-polytopes) then results in the
identification Q ✸ { } = Q′ # { }.
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Our usual convention identifies a component of a blend with the polytope which is
covered (we shall not encounter cases when the covered object is only a pre-polytope,
in the terminology of Section 2D of [22]). We can now list the nine four-dimensional
regular polyhedra whose groups have dimension vectors (1, 3, 3), with the pairings given
by mixing (which we realize here by κ) and blending:

{3, 3}✸ { } = { 6
1,3 , 3 : 4} # { },

{3, 4}✸ { } = { 6
1,3 , 4 : 3} # { },

{4, 3}✸ { } = { 4
1,2 , 3 : 3} # { },

{5, 3}✸ { } = { 10
3,5 , 3 : 5} # { },

{3, 5}✸ { } = { 6
1,3 , 5 : 5

2 } # { },
{5, 5

2 }✸ { } = { 10
3,5 ,

5
2 : 3} # { },

{ 5
2 , 5}✸ { } = { 10

1,5 , 5 : 3} # { },
{3, 5

2 }✸ { } = { 6
1,3 ,

5
2 : 5} # { },

{ 5
2 , 3}✸ { } = { 10

1,5 , 3 : 5
2 } # { }.

The notation for the polyhedra in the second column indicates their types of faces and
Petrie polygons, as explained in Section 5.

The class (2, 3, 3) is obtained from the class (1, 3, 3) by Petriality. We get the polyhe-
dra in this class by interchanging the mix (κ) and blend in the list for the class (1, 3, 3).
This gives an additional nine polyhedra.

These polyhedra do not admit dual classes (3, 3, 1) (which is excluded on general
grounds) or (3, 3, 2). In the second case, though the faces of the polyhedra in the class
(2, 3, 3) are only three-dimensional, their centres are at the origin o, and so the “duals”
degenerate.

7. Dimension Vector (3, 2, 3) and Its Relatives

In this section we consider the regular polyhedra with dimension vector (3, 2, 3); we say
rather less about those which are derived from them using the operations κ , π or both.
Where appropriate, though, we look at the effect of the operations ϕk ; however, we leave
discussion of η and σ until Section 11.

Let the group of a polyhedron in this class be G = 〈R0, R1, R2〉, and consider the
operation

(R0, R1, R2) �→ (R0, R1 R0 R1, R2, R1 R2 R1) =: (S0, S1, S2, S3); (7.1)

each of the Sj is now a hyperplane reflexion. Since R0 and R2 commute, the picture
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here—as we saw in Section 4—is of a (generalized) Coxeter diagram of the form

� �

� �

qp

r

r0 3

21

The label j on a node corresponds to the generator Sj of the reflexion subgroup H :=
〈S0, S1, S2, S3〉. For geometric reasons, we cannot have r = 2; otherwise, 〈S0, S1〉
and 〈S2, S3〉 act on orthogonally complementary planes of E4, and the corresponding
“polyhedron” degenerates to a polygon (or, more strictly perhaps, a dihedron). However,
p = 2 or q = 2 (or both) are allowed. Observe that any of the marks p, q or r may be
fractional (with a restriction on p which will be explained shortly); in other words, the
mark p indicates the angle π/p between the mirrors S0 and S1, and similarly for q or r ,
and so we only demand that the marks p and q be greater than 1.

Let us go a little deeper here into the geometric detail. The mirrors R0 and R1 whose
reflexions generate the group of the initial 2-face are of dimensions 3 and 2, respectively,
and so (generically) their intersection has dimension 1. The initial vertex lies in R1 but
not in R0, and so its images under G2 = 〈R0, R1〉 will only span a plane; that is, the
2-faces of polyhedra in this class are planar. However, for the vertex-figure, the situation
is reversed: R1 has dimension 2 while R2 has dimension 3, and so the vertex-figure will
be (in general) a skew (three-dimensional) polygon. With the notation of the diagram,
the faces will thus be planar of type {2p}, with the appropriate interpretation when
p is fractional. We thus see at once that p = s/t cannot be a fraction with an even
denominator t , because then the resulting polygon doubly covers { s

t/2 }; this restriction
is that mentioned in Section 4.

In general, the faces of the resulting polyhedron are the vertices, edges and (planar)
faces

�

�

❣

❣

p of

�

�

❣

❣

p q

r

r

�

�

Moreover, the remaining 2-faces

� �❣ r

of the 4-polytope form holes in the polyhedron. Finally, the vertex-figure is a skew
polygon; if q = s/t , then it is in fact { 2s

t,s }.
For the enumeration, we begin with the case p = q = 2; any r > 2 is allowed. The

corresponding diagram is

� �

� �

r

r
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with the horizontal flip understood. We obtain a toroid which we can designate

{4, 4
1,2 |r},

even when r is fractional; it is isomorphic to the universal toroid {4, 4 |s} = {4, 4}(s,0)
when r = s/t in its lowest terms, and its group is (Ds×Ds)�C2 (meaning an extension
of the product of two copies of the dihedral group Ds by an outer automorphism of
order 2), and has order 2 · (2s)2 = 8s2. The geometric description is straightforward:
take the cartesian product {r} × {r} of two polygons {r}, bearing in mind that r can be a
fraction (so that {r}would then be a star-polygon). The vertices and edges are those of the
product, while the square faces {4} are the products of edges, one from each component;
the vertex-figure is a skew square { 4

1,2 }. Note that this polyhedron is self-dual. (See also
[24] for further realizations of toroids.)

Henceforth, then, we can assume that at least one of p or q exceeds 2, so that the
diagram is connected. It thus follows that the corresponding Coxeter group will be
irreducible. One approach is to look through suitable presentations of such Coxeter
groups (that is, Coxeter diagrams with, possibly, fractional marks—Goursat tetrahedra
in terms of Section 14.8 of [4]) which admit appropriate automorphisms.

Our first examples derive from the diagram of the extended group [3, 3, 3] � C2 of
the regular simplex (again, the horizontal flip is understood, with the extension of the
group [3, 3, 3] by an outer automorphism of order 2 as before):

� �

� �

�

�

There result two polyhedra: the universal {4, 6 |3} and its dual {6, 4 |3}. These were first
described by Coxeter in [3]. In our more geometrical notation, they are

{4, 6
1,3 |6}, {6, 4

1,2 |4}.

From the extended group [3, 4, 3]�C2 of the regular 24-cell, we derive the diagrams

� �

� �

�

�

4

� �

� �

4
3

4

� �

� �

�

�

4
3

each of which permits a top-to-bottom flip, and thereby gives two dual regular polyhedra
with dimension vectors (3, 2, 3). From the first diagram, we obtain the universal dual
regular polyhedra {4, 8 |3} and {8, 4 |3} of [3]. In the notation which we introduced in
Section 5, the six resulting polyhedra are

{8, 4
1,2 |3}, {4, 8

1,4 |3}, {8, 8
3,4 |3}, { 8

3 ,
8

1,4 |3}, {4, 8
3,4 |3}, { 8

3 ,
4

1,2 |3};

bear in mind here that the notation is only intended to indicate the geometry of the
faces, vertex-figures and holes. These polyhedra are related alternately by duality δ and
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the facetting operation ϕ3 (because the index k = 3 in ϕk is odd, the dimension vector
(3, 2, 3) is preserved).

We now need to comment on the remaining possibilities. As we have said, we can
exclude the possibility that p is a fraction with an even denominator. Leaving aside, for
the moment, the case when q is a fraction with an even denominator, this denies any
further examples arising from the two groups already considered, or from the remaining
Coxeter groups apart from [3, 3, 5]. However, among the Goursat tetrahedra in this last
group is

� �

� �

�

�

5
3

5

5

This diagram apparently fulfils all the required conditions. In fact, the automorphism here
is inner, because the group [3, 3, 5] is not a proper subgroup of any finite orthogonal group
in O4; therefore, it does not lead to a new regular polyhedron, because the realization is
degenerate. More precisely, if the polyhedron existed, then its vertices and edges would
be (as we have observed) those of

�

�

❣

❣

�

�

5
3

5

5

From the symmetry, the 14400/10 = 1440 vertices would lie in pairs in the (possibly
extended) edges of the 600-cell {3, 3, 5}. However, direct calculation shows that the
initial vertex is actually one of {3, 3, 5}, and so the vertices coincide in twelves with
those of {3, 3, 5}. Similar considerations apply to other putative examples.

There remain the cases when q is a fraction with an even denominator (these were
overlooked in [23]). In Equation (10) in Section 6.1 of [20], it was observed that the
mixing operation

(T0, . . . , T3) �→ (T1, T0T2, T3) =: (R0, R1, R2) (7.2)

on the group 〈T0, . . . , T3〉 of a regular 4-polytope Q yields that of a regular polyhedron
P . With one exception, P has the following description. The edges of its faces join
successive mid-points of edges of Petrie polygons of the facets of Q; the faces can then
be thought of as central sections of these facets (this is actually the case when Q is
convex). If Q = {q1, q2, q3}, with q3 = s/t �= 4 (this is the exception), then the vertex-
figure is { 2s

t,s }; note that each edge of a facet of Q belongs to two of its Petrie polygons.
In case Q = {3, 3, 4}, the resulting “polyhedron” splits into three copies of the torus
{4, 4 |4}.
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We thus obtain 15 regular polyhedra, the generating reflexions of whose groups have
dimension vector (3, 2, 3). Applying the operations (7.2) and (7.1) in turn yields

(T0, . . . , T3) �→ (T1, T0T2T1T0T2, T3, T2T3T2),

which corresponds to the diagram D1(p, q; r), where

• p = 1
2 h, with {h} the Petrie polygon of the facet {q1, q2} of Q (strictly speaking,

the Petrie polygon is skew, and p corresponds to the planar polygon whose basic
rotation is (T0T2T1)

2);
• q = 1

2 q3;
• {r} is the hole of the vertex-figure {q2, q3} of Q, namely, the face of {q2, q3}ϕ2 .

We may also observe that we can recover the original 4-polytope Q from the diagram
D1(p, q; r):

• q3 = 2q;
• q3 and r yield q2—indeed, r = t for {3, t} and {t, 3}, while r = 3 for {5, 5

2 } and
{ 5

2 , 5};
• q2 and h = 2p then give q1 by

cos2 π

q1
= cos2 π

h
− cos2 π

q2

(compare equation 2.33 of [4]). The corresponding (abstract) groups of the regular
star-polytopes which occur here are described in [17].

Of course, because q is a fraction with an even denominator (q3 is odd), none of these
15 polyhedra has a realizable dual in E4.

Let us illustrate this latter discussion with a couple of examples:

{3, 5, 5
2 } �→ {10, 10

4,5 |3}, with diagram D1(5, 5
4 ; 3),

{ 5
2 , 3, 5} �→ { 10

3 ,
10
2,5 |5}, with diagram D1(

5
3 ,

5
2 ; 5).

We say little about the related classes (1, 2, 3) and (2, 2, 3), which are derived from
the class (3, 2, 3) by κ , Petriality π , or both, except to remark that they contribute to the
final classification. It should be observed (as the analysis of Section 4 shows) that none
of these derived polyhedra can have geometrically realizable duals in E4. For example,
the faces of the Petrial of {4, 4

1,2 |r} are helices of type { 2s
t,s−t } (if r = s/t as before); all

have the same vertex-figure { 4
1,2 }.

Perhaps, though, it is worth briefly remarking on the types of the Petrie polygons of the
polyhedra with group [3, 4, 3]�C2. Referring to the previous list, they are, respectively,
{ 24

1,11 } for the first two { 12
1,5 } for the next two and { 24

5,11 } for the last.
Note that κ interchanges polyhedra in the class (2, 2, 3) derived from the class (3, 2, 3)

with those derived from (1, 2, 3) = (3, 2, 3)π (in an obvious informal notation). In
summary, we thus derive a further 3 · 23 = 69 regular polyhedra, apart from infinitely
many derived from the toroids, to add to the 8+ 15 = 23 listed previously.
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8. Dimension Vector (2, 3, 2)

As we saw in Section 4, a polyhedron in the class (2, 3, 2) is derived from a diagram of
the form

✉ ✉

✉ ✉

�
�

�
�

�
�

��❅
❅

❅
❅

❅
❅

❅❅

p p
r r

q

q0 3

21

Thus, in this case, R0 and R2 are automorphisms which act on a diagram given by

(S0, . . . , S3) := (R1, R0 R1 R0, R0 R2 R1 R2 R0, R2 R1 R2). (8.1)

The labels on the nodes now correspond to the new (hyperplane) reflexions Sj .
Again, as we have already indicated, the resulting polyhedron is of type {2p, 2q : 2r}

(we explain how to interpret these numbers below), from which are obtained up to five
others by duality δ and Petriality π . Note that the three operations δ, π and κ preserve
the class (2, 3, 2); indeed, we have

δ: p ↔ q, π : p ↔ r, κ: p ↔ p′, r ↔ r ′,

where
1

p
+ 1

p′
= 1,

1

r
+ 1

r ′
= 1.

Applying the same analysis as in Section 7, we see that the 2-faces of the polyhedron
are skew (2p)-gons of the form {p} # { }. Here, it does not matter if p is a fraction
with an even denominator; the skew nature of the face prevents a collapse. However, the
vertex-figure is a planar polygon so that, if q is a fraction with an even denominator,
then collapse occurs and the polyhedron degenerates. This is the restriction on q which
we mentioned in Section 4.

Notice that R0 R2 is also an automorphism of the diagram. For non-degeneracy, it
turns out that at least one of R0, R2, R0 R2 must be an outer automorphism; in general,
then, two of them will be outer and the other inner.

Bearing these considerations in mind, we readily see that the only diagrams of the
above form which admit suitable automorphisms are given by the following unordered
triples {p, q, r}—which should not be confused with Schläfli symbols of regular 4-
polytopes (none actually is such a symbol). First, {p, 2, 2} (with an arbitrary fractional
p > 2, except that such a fraction with an even denominator cannot play the rôle of q);
second, {3, 3, 3

2 }, {4, 4, 3
2 }, { 4

3 ,
4
3 ,

3
2 } (in these three we cannot have q = 3

2 , and so each
gives only two polyhedra); third, {3, 4, 4

3 } (here, any permutation is allowed, and so we
obtain a full family of six). Here, the group [3, 3, 5] makes no contribution, even though
(for instance) we do have a Goursat tetrahedron corresponding to D2(3, 5, 5

3 ). As we
observed in Section 7, [3, 3, 5] has no outer automorphisms as a subgroup of O4, and
we shall see in Section 11 why the remaining possiblilities must also be eliminated.
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We briefly discuss these polyhedra. In the first case, the two automorphisms (sym-
metries) R2 and R0 R2 of the diagram

�

�

�

�

p p

are both outer; their composition R0 is also an outer automorphism, except when p is
a fraction with an even denominator. (Note that R2 and R0 R2 give the two involutory
ways of interchanging the two dihedral subdiagrams.) In any event, if p = s/t (in lowest
terms), then the resulting group is of order{

2 · 2 · (2s)2 = 16s2, if t is odd,

2 · (2s)2 = 8s2, if t is even.

Whatever t is, we obtain a polyhedron with (planar) square vertex-figures and skew
2s-gonal faces, namely, one of type

{ 2s
t,s , 4 : 4

1,2 }.

The Petrial { 4
1,2 , 4 : 2s

t,s } is a toroid of type {4, 4}(s,s) when t is odd, but of type {4, 4}(s,0)
if t is even (note that the group order gives the type; we discuss the relationship between
these toroids and those of the previous section in Section 11). Moreover, if t is odd, then
there is a polyhedron of type { 4

1,2 ,
2s
t : 4

1,2 } dual to the first (if t is even, then the dual is
not realizable in E4).

The two polyhedra in the family {3, 3, 3
2 } have the same group of order 2 · 120 = 240

(and the same 20 vertices) as {4, 6 |3}, and so are derived from the group [3, 3, 3] of
the 4-simplex; we shall see why in Section 11. They form a Petrial pair, and are also
interchanged by the operation κ . In the notation we introduced in Section 5, they are of
type

{ 6
1,3 , 6 : 6

2,3 }, { 6
2,3 , 6 : 6

1,3 }.
Further, the first polyhedron is self-dual; the second has no dual in E4.

The remaining polyhedra in the class (2, 3, 2) are all derived from the group [3, 4, 3];
the symmetry groups have order 2 · 1152 = 2304. Indeed, the hyperplane reflexions
in the three diagrams are the same, and it is only the choice of outer normal vectors to
them which gives rise to different diagrams; it is then the automorphisms which differ.
In the last case {p, q, r} = {4, 4

3 , 3}, we have the whole family of six related by duality
(interchange R0 and R2) and Petriality (replace R0 by R0 R2). For the other two (as we
have said), 3

2 cannot play the rôle of q.
We shall see in Section 11 that the polyhedra for which q = 4 or 4

3 have the same 144
vertices as {4, 8 |3}, namely, those of the (Minkowski) sum of {3, 4, 3} and its dual (of
the same size). When q = 3 (recall that q = 3

2 is not permitted), we have 192 = 2 · 96
vertices; these are the mid-points of the edges of one copy of {3, 4, 3} and those of its
dual copy.
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Again, we list the polyhedra according to their diagrams:

{ 8
1,4 , 8 : 6

2,3 }, { 6
2,3 , 8 : 8

1,4 },
{ 8

3,4 ,
8
3 : 6

2,3 }, { 6
2,3 ,

8
3 : 8

3,4 },
{ 8

1,4 ,
8
3 : 6

1,3 }, { 6
1,3 ,

8
3 : 8

1,4 }, { 8
3,4 , 6 : 8

1,4 }, { 8
1,4 , 6 : 8

3,4 }, { 6
1,3 , 8 : 8

3,4 }, { 8
3,4 , 8 : 6

1,3 }.
In the first two lines, the pairs are mutual Petrials; the first of each pair is self-dual. In
the last line, the polyhedra are related alternately by π and δ (in a cycle). The operation
κ also permutes these polyhedra; it will preserve vertex-figures, but will interchange the
pairs of marks { 8

1,4 ,
8

3,4 } and { 6
1,3 ,

6
2,3 } in both face and Petrie polygons. As an example,

{ 8
1,4 , 8 : 6

2,3 }
κ←→ { 8

3,4 , 8 : 6
1,3 }.

Finally, ϕ3 also links pairs of polyhedra whose vertex-figures are octagons. Namely,
we first have

{ 8
1,4 , 8 : 6

2,3 }
ϕ3←→ { 8

1,4 ,
8
3 : 6

1,3 }, { 8
3,4 ,

8
3 : 6

2,3 }
ϕ3←→ { 8

3,4 , 8 : 6
1,3 }.

Of course, since π and ϕ3 commute, we can similarly link their Petrials:

{ 6
2,3 , 8 : 8

1,4 }
ϕ3←→ { 6

1,3 ,
8
3 : 8

1,4 }, { 6
2,3 ,

8
3 : 8

3,4 }
ϕ3←→ { 6

1,3 , 8 : 8
3,4 }.

9. Quaternions

As we said earlier, the symmetry groups with dimension vector (2, 2, 2) are anomalous,
in that there are no immediate relationships to reflexion groups. In fact, in some cases,
no such relationship exists. Our treatment of this class will employ quaternions. In this
section we give a brief outline of that part of the theory which we need; for further details,
consult [10].

We recall that the quaternions consist of all x = ξ0 + ξ1i+ ξ2j+ ξ3k, where ξj ∈ R
for i = 0, . . . , 3, with an associative (but not commutative) multiplication induced by

i2 = j2 = k2 = ijk = −1.

It is convenient to identify x with the vector (ξ0, ξ1, ξ2, ξ3) ∈ E4. The real part of x is
 (x) = ξ0, and its imaginary part is !(x) = ξ1i + ξ2j + ξ3k. The conjugate of x is
x = ξ0 − ξ1i − ξ2j − ξ3k; then xx = ‖x‖2 (as a real vector). Thus, if x �= 0, then x is
invertible. In particular, the set Q of unit quaternions (that is, with ‖x‖ = 1) forms a
group; the inverse of x ∈ Q is x.

Each element of the rotation group SO4 can be represented by a transformation of the
form

x �→ x g(a,b) := axb, (9.1)

where a,b ∈ Q. In keeping with our usual conventions, mappings are thought of as acting
on the right; thus it must be the inverse of a quaternion which provides an appropriate
mapping when acting on the left. The group G of a polyhedron in the class (2, 2, 2) is
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clearly a finite subgroup of SO4, and so admits a representation as a group consisting of
such elements g(a,b).

Before we go further, it is appropriate to comment on the rôle of conjugacy, which
gives insights into the geometry of the mappings g(·, ·) (compare [10] here). The left-
acting quaternions a occurring in the group G clearly form a finite (left) subgroup GL of
the whole groupQ of unit quaternions. There is similarly a right subgroup GR consisting
of the right-acting quaternions b. Then it is easy to see that conjugating the whole groupG
leads to conjugating the left and right groups GL and GR, and conversely. This freedom to
take conjugates, which amounts to a free choice of suitable coordinates for the subgroups
GL and GR, will prove very useful.

In fact, G is a certain quotient of GL × GR. If we define

NL := {a ∈ GL | g(a, 1) ∈ G}

(that is, x �→ ax is in G), and NR similarly, then NL and NR are normal subgroups (of
GL and GR) such that GL/NL

∼= GR/NR.
If a = cosϑ + sinϑu and b = cosϕ + sinϕv, with u, v pure imaginary unit quater-

nions, then g(a,b) is (in general) a double rotation through angles ±ϕ ± ϑ ; thus it is a
planar rotation (with a two-dimensional axis) just when ϕ = ±ϑ . It further follows that,
for g(a,b) to be a reflexion (that is, involutory), other than x �→ −x, both a and b must
be pure imaginary.

The unit quaternion a = cosϑ + sinϑu induces an element of SO3, given by

x �→ xg(a, a) = axa,

where x is pure imaginary (thus we regard E3 as the subspace of pure imaginary quater-
nions); the kernel of this homomorphism from Q to SO3 is {±1}. This element is a
rotation through the angle 2ϑ about the axis lin{u} (or about lin{1,u} if thought of as in
E

4). Thus the constituent groups GL and GR have quotients GL and GR in SO3, each (in
the present case) of half the order; these will be generated by half-turns about lines in
E

3. Two such groups G,G ′ are conjugate in SO4 if and only if the corresponding pairs of
rotation groups GL,G ′

L and GR,G ′
R are conjugate in SO3. However, the fact that each

element of SO3 lifts to two elements of Q will cause some problems.
The standard scalar product in E4 is given by 〈x, y〉 =  (xy), and so we see that, if

a,b ∈ Q are pure imaginary (so that a2 = b2 = −1), then ab is of the form cosϑ+sinϑu
for some pure imaginary u ∈ Q, where cosϑ = −〈a,b〉.

For future reference, we list the quaternion groups which play a rôle later. It must be
emphasized, however, that the coordinates chosen here are, to a certain extent, arbitrary.
Their elements are quaternions ν0+ν1i+ν2j+ν3k, with the vectors (ν0, ν1, ν2, ν3) ∈ E4

taking the following values. First, the binary dihedral groupDn of order 4n: all elements

(cos(kπ/n), sin(kπ/n), 0, 0), (0, 0, cos(kπ/n), sin(kπ/n)), (9.2)

for k = 0, . . . , 2n − 1. In fact, only the case n even will concern us. Next, the binary
octahedral group O of order 48: all permutations of

(±1, 0, 0, 0), 1
2 (±1,±1,±1,±1), 1

2 (±
√

2,±
√

2, 0, 0). (9.3)
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Note that these form the vertices of two dual regular 24-cells in E4. Last, the icosians or
binary icosahedral group I of order 120: all even permutations of

(±1, 0, 0, 0), 1
2 (±1,±1,±1,±1), 1

2 (0,±τ,±τ−1,±1), (9.4)

where τ = 1
2 (1+

√
5) is the golden section. (The odd permutations would serve as well,

and we shall not worry about which choice is made in any given context.) These form the
vertices of a regular 600-cell in E4. Observe that the latter two groups have a common
subgroup, the binary tetrahedral group T , consisting of the first 24 elements of each
(which form the vertices of a 24-cell). We shall see that the only groups which can occur
as appropriate groups GL or GR are the dihedral groups D2n , the octahedral group S4 or
the icosahedral group A5; the cyclic groups Cn , dihedral groups D2n+1 and tetrahedral
group A4 do not contain enough half-turns (and, in particular, are not generated by them).

Remark 9.1. A comment is in order here. An opposite orthogonal transformation of
E

4 is of the form

x �→ a xb,

with a,b as before. In a group G containing such transformations, the corresponding left
and right groups GL and GR must be conjugate in the whole group of unit quaternions
(again, see [10] for this). Thus one could also use quaternions to investigate the classes
other than (2, 2, 2); however, the methods which we have already described are more
efficacious.

10. Dimension Vector (2, 2, 2)

Let P be a regular polyhedron of Schläfli type {p, q} (with p, q generally fractional)
in the class (2, 2, 2), and let G = 〈R0, R1, R2〉 � SO4 be its symmetry group, so that
dim Rj = 2 for each j . As in Section 9, we regard G as a group of elements g(a,b),
with a,b ∈ Q, the group of unit quaternions. Our approach will be to determine which
rotation groups GL,GR � SO3 are involved, and how they lift to groups GL,GR � Q.

We can therefore suppose that the generating reflexions are Rj = g(aj ,bj ) for j =
0, 1, 2, with each aj ,bj ∈ Q pure imaginary (as we observed in Section 9). Interpreted
as unit vectors in E3, we can think of a0, a1, a2 as outer normals to the cone generated
by some Schwarz triangle on the unit sphere (see Section 6.8 of [4]). If this triangle is
(r1 q 2), it means that

〈a0, a1〉 = − cos(π/r1), 〈a1, a2〉 = − cos(π/q), 〈a0, a2〉 = 0.

Similarly, b0,b1,b2 give a Schwarz triangle (r2 q 2). To some extent, this already fixes
the possible liftings into quaternions; however, there is still ambiguity as to the choice
of signs of (say) the aj , bearing in mind that g(−a,−b) = g(a,b).

Since R1 R2 is an ordinary rotation through 2π/q (and we can take q > 2 without
loss of generality), we see that we must have

〈a1, a2〉 = 〈b1,b2〉 = ± cos(π/q).
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By changing signs of both a1 and b1 if necessary, we can assume that the sign is negative,
fitting in with the convention of Section 9. Further, we have r1, r2 > 1 such that

〈a0, a1〉 = − cos(π/r1), 〈b0,b1〉 = − cos(π/r2);
we shall see that it is necessary to allow rj � 2.

We first look at just one of the groups GL and GR, say, the former. Here, we make the
choice of coordinates

a0 = i,

a1 = α1i+ α2j+ α3k,

a2 = j.

We therefore have

α1 = − cos(π/r1), α2 = − cos(π/q).

Since

a0a2 = ij = k,

it follows that

α3 = − cos(π/h1),

where we regard GL as the group of a (possibly degenerate) polyhedron {r1, q : h1},
with the notation h1 indicating its Petrie type (this may perhaps be better thought of as
a polyhedron lying in the real projective plane). Note that

cos2(π/r1)+ cos2(π/q)+ cos2(π/h1) = α2
1 + α2

2 + α2
3 = 1;

this gives a different way of looking at Coxeter’s formula [4, 2.33], which is easily
deducible from it.

We gain even more information (enough to distinguish among various possibilities)
if we look further into the geometry. Recalling the free choice of coordinates we have
for our generating quaternions ai and bj , we now pick them to be

a0 = α1i+ α2j, b0 = β1i+ β2j,

a1 = b1 = sin(π/q)j− cos(π/q)k,

a2 = b2 = k.

(We remark that these coordinates are only chosen to elucidate the geometry; they will
not usually be best in other circumstances.) In view of our previous discussion, we have

α2 sin(π/q) = − cos(π/r1) $⇒ α2 = −cos(π/r1)

sin(π/q)
,

and similarly for β2. (Recall that we only insist that r1 > 1, so that cos(π/r1) < 0 is
permitted.) Finally, applying the Petrie operation, and so replacing a0 by

a0a2 = (α1i+ α2j)k = α2i− α1j,
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we see that

−α1 sin(π/q) = − cos(π/h1) $⇒ α1 = cos(π/h1)

sin(π/q)
,

and similarly for β1.
At this stage, we begin to see the rôle that different liftings of the groups GL and

GR can play. Since we may transfer a change of sign freely between aj and bj , we
need only impose such sign changes on the aj (in practice, we do not always do this,
particularly when we wish to emphasize some symmetry). Moreover, we must ensure
that 〈a1, a2〉 = 〈b1,b2〉 = − cos(π/q), and so a1 and a2 must change sign together.
Thus our freedom of choice is to change the sign of a0, change signs of both a1 and a2,
or change all three signs. The first is κ , and replaces r1 and h1 by r ′1 and h′1, given by

1

r1
+ 1

r ′1
= 1,

1

h1
+ 1

h′1
= 1.

The second replaces r1 by r ′1, while the third replaces h1 by h′1. Potentially, then, this
gives four distinct liftings, giving rise to four different polyhedra. Bearing in mind what
we said about congruency of these groups in Section 9, we can see that equivalence of the
sets of vectors (a0, a1, a2) and (b0,b1,b2) under SO3 is what matters, subject to possible
exchanges of sign of an aj and corresponding bj . It should be noticed that changing the
signs of all three aj (which is the easiest way of changing relative orientation) will, in
general, not yield the same polyhedron (if it exists), because h1 is replaced by h′1 while
r1 is preserved.

Our notation keeps track of these sign changes. The triple rj , q, hj is associated with
the regular projective polyhedron {rj , q : hj } (which indicates the type of the polyhedron
and its Petrial), with the understanding that replacing rj by r ′j or hj by h′j gives the same
set of generators of a finite subgroup of SO3, but that different choices may give different
liftings of the combined pair of groups.

From the discussion of Section 9, we already know the type of face of our polyhedron.
It is of the form {p1}#{p2}, with the pj given by

1

pj
= ±1

2

(
1

r1
± 1

r2

)

for some choice of signs (different inside the bracket); here, we replace ri by r ′i for both
i if necessary, to ensure that suitable signs can be chosen so that pj > 2 for j = 1, 2 (it
is easy to see that this is possible). This choice, by the way, may result in changing signs
of some bj (as well as, of course, the corresponding aj ). As in Section 5, it is convenient
to write the face, instead, as{

p

d1, d2

}
, with pj = p

dj

(when reduced to lowest terms) for j = 1, 2. Thus we have 1 � d1 < d2 <
1
2 p; the

faces are helices, so that d2 = 1
2 p is not allowed.
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Observe that, with the correct choice of signs above, r1 and r2 can be recovered from

1

rj
= d2 ± d1

p
,

with reduction of the fractions to their lowest terms. These are the r1 and r2 which we
usually employ in the notation for the polyhedra.

The type of the Petrie polygon is given in exactly the same way, with h1, h2 instead of
r1, r2. Using the conventions just introduced, we denote the resulting polyhedron (when
it exists) by

{r1, q : h1} &' {r2, q : h2}. (10.1)

Our present choice of coordinates gives 1 as an initial vertex of the polyhedron
(assuming that it exists); then the adjacent vertex 1R0 is

a01b0 = −a0b0 = −(α1i+ α2j)(β1i+ β2j) = (α1β1 + α2β2)+ (α2β1 − α1β2)k,

so that, if the edge-length is 2λ, then

λ2 = 1
4

(
(1− (α1β1 + α2β2))

2 + (α2β1 − α1β2)
2
)

= 1
2 (1− α1β1 − α2β2)

= 1

2

(
1− cos(π/h1) cos(π/h2)+ cos(π/r1) cos(π/r2)

sin2(π/q)

)
,

after a little calculation (note that α2
1 + α2

2 = 1, and so on).

Remark 10.1. Because the symmetries of a polyhedron in this class consist of rotations
only, such polyhedra occur in enantiomorphic pairs, where the 2-faces are always left or
always right helices. (The situation is exactly analogous to that of the regular apeirohedra
in E3 whose symmetry groups have dimension vector (1, 1, 1); compare Remark 4.1.
See [21] or Section 7E of [22] for further details about these apeirohedra.) Any opposite
isometry—in O4\SO4—interchanges the enantiomorphism classes.

Remark 10.2. The whole symmetry groups [3, 4] and [3, 5] of the octahedron and
icosahedron are not rotation groups. Notice, by the way, that this accords with the well-
known facts that [3, 4] ∼= S4 × C2 and [3, 5] ∼= A5 × C2, with C2 here generated by the
reflexion in {o} (the central inversion).

One problem which we encounter here is that the corresponding polyhedron may
degenerate, although there are pointers to when degeneracy occurs. As a specific example,
ignoring the rôle of the hj for the moment, consider the case r1 = 3, r2 = 5

2 and q = 5,
when we should obtain a polyhedron

{3, 5} &' { 5
2 , 5} = { 30

1,11 , 5},
with the latter symbol indicating its type. If we replace 5

2 by 5
3 (or 3 by 3

2 ), giving the
other choice of lifting for R0, then we should obtain type

{3, 5} &' { 5
3 , 5} = { 15

2,7 , 5}.
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(Up to enantiomorphism, these two choices can be Petrials of each other.) Now reference
to [10] shows that the only possible group these polyhedra can have is the rotation group
[3, 3, 5]+ of the regular 600-cell {3, 3, 5}, of order 7200. (There are limited possibilities
which ensure that GL/NL

∼= GR/NR, because the 120 icosians I of (9.4) form a double
cover of the simple group A5.) Thus the polyhedra themselves should have 7200/10 =
720 vertices. However, if we choose (for the first polyhedron) GL = 〈a0, a1, a2〉 and
GR = 〈b0,b1,b2〉, with generators

a0 = k, b0 = j,

a1 = b1 = − 1
2 (τ i+ τ−1j+ k),

a2 = b2 = i,

where τ = 1
2 (1+

√
5), in which case (up to scaling) 1 is the initial vertex, it is obvious

that the vertices obtained form a subset of I, that is, the vertex set of {3, 3, 5}; in fact, we
get all of I. It follows that the 720 putative vertices of the two polyhedra must coincide
in sixes at the vertices of the 600-cell, and so the polyhedra degenerate. (We shall return
to this example later, and see that it can be redeemed by—for example—changing signs
of all the bj . In view of this degeneracy, though, it was unfortunate that we chose it as
an illustrative example in [23].)

We must thus look at the possible component rotation subgroups of SO3 systemat-
ically. We first list those groups which contribute to the enumeration; these are really
groups which act on the corresponding projective space and, as we have seen, we can
specify them by (rational) triples {p, q, r} with

cos2(π/p)+ cos2(π/q)+ cos2(π/r) = 1. (10.2)

This is Gordan’s equation. Here, p, q, r stand indiscriminately for the type of the face,
vertex-figure and Petrie polygon. In lifting them, we can replace (for example) p by p′,
except that the mark q , say, for the vertex-figure always satisfies q > 2. In the listing we
also need to define q ′′ by

1

q
+ 1

q ′′
= 1

2
.

We then have

{2, q, q ′′} (q > 2 arbitrary), {3, 3, 4}, {3, 5, 5
2 }. (10.3)

Remark 10.3. We have not used the fact that these triples are (effectively) the only
rational solutions of Gordan’s equation (10.2), because our listing is derived from the
rotation groups.

For the binary dihedral group, let q = s/t > 2. The half-turns R′1 and R′2 in E3

corresponding to R1 and R2 are about axes subtending the angle π(1 − 1/q), ensuring
that R1 R2 is a single rotation through π/q; we can take the corresponding quaternions
to be

a1 = b1 = −(cos(π/q)j+ sin(π/q)k),

a2 = b2 = j.
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The half-turn R′0 corresponding to R0 must have an axis orthogonal to that of R′2; it can
be in the plane of R′1 and R′2 (regarded as lines) or orthogonal to it. The different choices
for the corresponding quaternions are thus

a0 = ±i, b0 = ±k.

We list them like this, but note that a0 = k (and so on) is equally possible. This gives
the triple {2, q, q ′′}.

Which dihedral group 〈R′0, R′1, R′2〉 results depends on whether or not s is even. In
fact, we obtain {

Ds, if s is even,

D2s, if s is odd.

To see why, note that 〈R′1, R′2〉 ∼= Ds , and R′0 ∈ 〈R′1, R′2〉 if s is even, while R′0 /∈ 〈R′1, R′2〉
if s is odd. Thus the quaternion group is Ds if s is even, but D2s if s is odd (see (9.2)).

After only a little work, we find that {2, q : q ′′} &' {q ′′, q : 2} has 2s vertices

cos
2kπ

q
+ sin

2kπ

q
i, cos

2kπ

q
j+ sin

2kπ

q
k,

for k = 0, . . . , s − 1, where q = s/t (in lowest terms) as before. In our abbreviated
notation,

{2, q : q ′′} &' {q ′′, q : 2} = { 2s
t,s−t , q : 2s

t,s−t };
the faces are therefore 2s-gons, so that the polyhedron is (combinatorially) flat, meaning
that every vertex belongs to every face (see Sections 4E and 4F of [22]). Moreover, it is
self-Petrie (strictly, its Petrial is enantiomorphic), and is taken into a congruent copy by
κ . Our four potential possibilities here reduce to one; note that changing signs of a1 and
a2 leads to a directly congruent set in E3, as does changing signs of all three bj for the
second set. The symmetry group has order 4s2. It is worth remarking why this order does
not depend on s being even or odd; if s is even, the normal subgroups NL and NR are
bothDs/2, while if s is odd they are Cs , a cyclic group of order s. (It should be remarked
that this case was omitted in the brief sketch in [23].)

Next, we consider the case when one of the component quaternion groups, GL say, is
binary dihedral, while GR is not. Then q = 3, 4, 5 or 5

2 , and the other component GR is
O (see (9.3)) or I. Here, different liftings will generally give different polyhedra. For
example,

{2, 3 : 6} &' {5, 3 : 5
2 } = { 20

3,7 , 3 : 60
7,17 },

{2, 3 : 6} &' {5, 3 : 5
3 } = { 20

3,7 , 3 : 60
13,23 }.

However, we get nothing new if we change 5 to 5
4 ; the variation is in the Petrie polygon

alone. Of course, if we take the Petrial, the opposite is true.
The enumeration is straightforward; we list Petrial pairs together. For q = 3, we have

two pairs with GR = O, and group order 24 · 48/2 = 576, and four pairs with GR = I,
and group order 24 · 120/2 = 1440. For q = 4, 5 or 5

2 , we have two pairs each; for the
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first, GR = O and the group has order 16 · 48/2 = 384, and for the other two GR = I
and the group order is 40 · 120/2 = 2400. In total, we thus obtain 24 polyhedra of this
kind.

For the remainder, the component groups GL and GR are binary octahedral or binary
icosahedral. The case where we have one of each—say GL = O and GR = I—is the
easiest, and so we treat that first. Here, we have q = 3; the group order is 48 · 120/2 =
2880, and so the polyhedra all have 2880/6 = 480 vertices (note that these comprise
four left cosets of I or ten right cosets of O). For example, the polyhedra derived from
{4, 3 : 3} and {5, 3 : 5

2 }, with possible replacement of 5 by 5
4 or 5

2 by 5
3 , have edge-lengths

2λ (and unit circumradius) given by

λ2 = 1

2

(
1− ±1/

√
2 · 1

2τ ± 1
2 · 1

2τ
−1

3
4

)

= 1
6 (3∓ τ

√
2∓ τ−1).

Thus the different liftings—corresponding to the choices of signs—give four distinct
polyhedra. It is extremely tedious to verify that these polyhedra actually exist, because
no convenient coordinates are available. In all, we obtain four Petrial pairs here, and
another four from interchanging 5 and 5

2 (and thus τ by τ−1). This gives 16 polyhedra
in all, which we shall not list individually.

Remark 10.4. The representation of finite subgroups of SO4 by left and right quater-
nion groups has certain implications. For instance, the vertices of any polytope whose
symmetry group is [3, 3, 5]+ or [3, 3, 5] fall into subsets, each forming a copy of the
vertex-set of {3, 3, 5}; its dual {5, 3, 3} is a particular example.

Finally, we take the two component groups to be the same. We begin with the binary
octahedral group. Here, we find that some liftings give degenerate polyhedra. In order to
see why some choices lead to degeneracy, we must specify suitable generating reflexions.
We thus first take

a0 = 1√
2
(j+ k), b0 = −i,

a1 = b1 = 1√
2
(i− j),

a2 = b2 = 1√
2
(j− k).

The Petrie operation π replaces a0 and b0 by

a′0 = a0a2 = −i, b′0 = b0b2 = − 1√
2
(j+ k),

so that the (putative) polyhedron would be

{3, 3 : 4} &' {4, 3 : 3
2 }.
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Note that this would not be self-Petrie. Since the initial vertex can clearly be taken
to be 1 (as in our earlier general discussion), we see that the vertex-set is a subset of
O (regarded as a set of points in E4); it is not hard to see that we obtain all these 48
points. However, the group has order 482/2 = 1152 (it is not the group [3, 4, 3] of the
24-cell but, instead, the extension of its rotation subgroup [3, 4, 3]+ by an involutory
outer automorphism), and so we should expect (if the polyhedron were non-degenerate)
1152/6 = 192 vertices. It follows that the vertices actually collapse in sets of four.

The other non-self-Petrie cases degenerate in the same way. It is not immediately
clear that the self-Petrie liftings do not degenerate, but we shall see why (by means of a
direct construction) in Section 11. Given that they exist, we then obtain two polyhedra:

{3, 3 : 4} &' {4, 3 : 3} = { 24
1,7 , 3 : 24

1,7 },
{ 3

2 , 3 : 4} &' {4, 3 : 3
2 } = { 24

5,11 , 3 : 24
5,11 }.

Observe that these two polyhedra are related by κ .
We now move on to the binary icosahedral group I. We first choose

a0 = i, b0 = j,

a1 = b1 = − 1
2 (τ i− τ−1j+ k),

a2 = b2 = k.

Ignoring the Petrie polygon, we obtain the type {5, 3} &' { 5
3 , 3} = { 5

1,2 , 3}. If we apply
the Petrie operation π , we replace a0 and b0 by

a′0 = ik = −j, b′0 = jk = i,

and the type is { 5
2 , 3} &' {5, 3} = { 10

1,3 , 3}. In other words, what we actually have for the
first is

{5, 3 : 5
2 } &' { 5

3 , 3 : 5} = { 5
1,2 , 3 : 10

1,3 }.
This identifies it as the faithful realization in E4 of the dodecahedron {5, 3}, and the
second polyhedron as that of its Petrial {10, 3}5. (See [15] or pp. 137–138 of [22] for
more details about the realization space of {5, 3}.) The group order is 120, and the two
polyhedra are related by κ as well as π .

If, however, we change the sign of each bj (rather than the aj for convenience here),
then the Petrie operation π yields

a′0 = ik = −j, b′0 = j(−k) = −i

as before, but the type is now

{5, 3 : 5
3 } &' { 5

3 , 3 : 5} = { 5
1,2 , 3 : 5

1,2 }.

In this case we therefore have the faithful realization in E4 of the self-Petrie hemi-
dodecahedron {5, 3}5 (in view of our previous remark, the two Petrials are actually
enantiomorphic). Finally, changing the sign of b0 again, we now get

{5, 3 : 5
2 } &' { 5

2 , 3 : 5} = { 10
1,3 , 3 : 10

1,3 },



Four-Dimensional Regular Polyhedra 383

for the polyhedron and its Petrial, which identifies it as the polyhedron of [16] whose
graph is the generalized Petersen graph G(10, 3) of [12] (these are of type {p, 3} with
2p vertices—see also below). The first of the two polyhedra has group order 60, and the
second 120. The two polyhedra are related by κ , which here changes the group order.

Remark 10.5. This case is in contrast to that of the binary octahedral group, in that all
four polyhedra exist (that is, are non-degenerate). Note, however, that the group orders
are much smaller than the 120 · 120/2 = 7200 that can occur when the component
groups are both I.

The remaining examples (in the binary icosahedral family) display exactly the same
behaviour as those which arise when GL and GR are the binary octahedral group. In other
words, when the putative polyhedron is self-Petrie, then it exists; if it is not, then it
degenerates (once again, we make a forward reference to Section 11). For example, the
degenerate case which we looked at earlier turns out to be

{3, 5 : 5
3 } &' { 5

2 , 5 : 3} = { 30
1,11 , 5 : 15

2,7 }.
There are just two edge-lengths 2λ of the polyhedra in the non-degenerate family,

given by

λ2 = 1
2 (1± 2/

√
5).

However, the effect of the facetting operation ϕ2 should be noticed; this ties the two
families of two (related by κ—they are already self-Petrie) into a single family of four.
We then have

{3, 5 : 5
2 } &' { 5

2 , 5 : 3}={ 30
1,11 , 5 : 30

1,11 } ✛
ϕ2✲ {5, 5

2 : 3} &' {3, 5
2 : 5}={ 15

1,4 ,
5
2 : 15

1,4 }

{3, 5 : 5
3 } &' { 5

3 , 5 : 3}={ 15
2,7 , 5 : 15

2,7 }
κ

❄
✻

✛ ϕ2✲ {5, 5
2 : 3

2 } &' { 3
2 ,

5
2 : 5}={ 30

7,13 ,
5
2 : 30

7,13 }
κ

❄
✻

11. Further Connexions

In this final section we discuss some further connexions among the various classes which
we have considered previously. Some of the operations which we introduced in Section 3
automatically lead from one polyhedron to another in the same class; thus, what we shall
do in this section is look at the remaining possibilities. We have already dealt with δ and
κ in the general discussions. We have also observed the effect of π in the way that we
have grouped the classes. The only facetting operations ϕk which play a rôle are ϕ2 for
polyhedra with pentagonal vertex-figures and ϕ3 for polyhedra with octagonal vertex-
figures, and we have already listed their effects, because they preserve the respective
classes. Finally, then, we are left with halving η and skewing σ .

For η, if the original dimension vector is (d0, d1, d2), then the new one is (d1, d2, d1);
in our cases, we have (3, 2, 3) �→ (2, 3, 2) or (2, 3, 2) �→ (3, 2, 3). Note, however, that
none of the polyhedra in the other classes related to (3, 2, 3) permit the application of η,
and that only the toroidal polyhedra in class (2, 3, 2) permit it.
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It is straightforward to keep track of the generating (hyperplane) reflexions of the
original diagrams of Figs. 1 and 2, to show that

D1(2, q; r)
η�−→ D2(q, q, r

2 ), D2(2, q, r)
η�−→ D1(q, q; r); (11.1)

that is, corresponding to the diagram D1(2, q; r) in class (3, 2, 3) with p = 2 (and so
with the relevant branch of the diagram missing) is the diagram D2(q, q, r

2 ) in class
(2, 3, 2) with p = q and r replaced by r

2 , and similarly for D2(2, q, r). We look at the
individual cases.

We begin with the toroidal polyhedra and their relatives. For those of Schläfli type
{4, 4}, we have

{4, 4
1,2 | s

t }
η�−→ { 4

1,2 , 4 : 2s
t,s }, { 4

1,2 , 4 : 2s
t,s }

η�−→ {4, 4
1,2 | s

t }.

Note that if t is even, then η does not halve the group order in the latter case. If r = s/t
with t odd, then the dual of its Petrial is

{ 4
1,2 ,

2s
t : 4

1,2 }.

It might appear that we could apply η to it; however, as (11.1) shows, the result degen-
erates to a polyhedron with digonal holes.

There are no more polyhedra with square faces in the class (2, 3, 2), and so our only
further applications are to the class (3, 2, 3). Thus we next have

{4, 6
1,3 |3}

η�−→ { 6
1,3 , 6 : 6

2,3 },

with the same group [3, 3, 3]� C2.
Next, η links up the two families of polyhedra derived from the extension [3, 4, 3]�C2

of the group [3, 4, 3]. Here we have

{4, 8 |3} η�−→ { 8
1,4 , 8 : 6

2,3 }, {4, 8
3 |3}

η�−→ { 8
3,4 ,

8
3 : 6

2,3 },

derived from the diagrams D2(4, 4, 3
2 ) and D2(

4
3 ,

4
3 ,

3
2 ) in class (2, 3, 2). Observe that

these polyhedra all have the same vertices and group [3, 4, 3]�C2; this follows from the
existence of odd edge-circuits in the graphs of the first polyhedra in each pair. Naturally,
the same then remains true when we further apply operations such as π , κ and ϕ3, which
explains why we did not discuss the geometric structure of the polyhedra in the class
(2, 3, 2) in more detail in Section 8.

Last, consider a polyhedron with square faces derived by (7.2) from a 4-polytope (there
are just three, coming from {3, 3, q3} with q3 = 3, 5 or 5

2 ). In such a case, q is a fraction
with an odd denominator, and the vertex-figure of the corresponding polyhedron of class
(2, 3, 2) will then collapse. A similar line of argument shows that the other possible
polyhedra in class (2, 3, 2) derived from diagrams with marks 5 or its fractions must
also degenerate, because they can be obtained from such degenerate polyhedra in class
(3, 2, 3) by η.

We now come to the skewing operation σ ; this applies to a regular polyhedron of
Schläfli type {p, 4}. The result degenerates for toroidal polyhedra in the class (2, 3, 2),
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and there are no others in that class to which it applies (in any event, since σ = πδηπδ,
and both π and δ preserve this class, one is—in effect—reduced to considering η). It
also degenerates for the few polyhedra in class (2, 2, 2) to which it might be applicable;
what goes wrong here is that the component regular projective polyhedra end up having
different values of q .

However, σ does work on class (3, 2, 3); in fact, it yields polyhedra in class (2, 2, 2).
Moreover, as we shall see, it even actually applies to certain degenerate polyhedra in the
class; recall that σ really operates on groups. Now

(R0, R1, R2)
σ�−→ (R1, R0 R2, (R1 R2)

2) =: (S0, S1, S2).

Thus, in terms of the diagram D1(p, 2; r), the new generators (S0, S1, S2) are given by

� �

� �

�

�

p

r

r1

1,2

2

✻
❄

0

The labels on the diagram index the reflexions Sj ; thus S0 is the flip. Note that S1 and
S2 are both products of two (commuting) hyperplane reflexions, one of which is shared
between them; the new vertex-figure corresponds to the old hole. Further, S0 = R1 is the
flip in the original diagram; hence, subsequently applying κ is equivalent to replacing
the first mark p in the diagram by p′.

For the toroids, there should be no surprise to find that

D1(2, 2; r)
σ�−→ { 2s

t,s−t , r; 2s
t,s−t } = {2, r : r ′′} &' {r ′′, r : 2},

with r = s/t .
Next, we have

D1(3, 2; 3)
σ�−→ { 10

1,3 , 3; 10
1,3 } = {5, 3 : 5

2 } &' { 5
2 , 3 : 5}.

As we said in Section 10, the edge-graph of this polyhedron is the Petersen-type graph
G(10, 3); it doubly covers the ordinary Petersen graph G(5, 2). Indeed, the latter is the
graph of the hemi-dodecahedron, which is obtained as

D1(
3
2 , 2; 3)

σ�−→ { 5
1,2 , 3; 5

1,2 } = {5, 3 : 5
3 } &' { 5

3 , 3 : 5}.
This is an interesting example. First, it illustrates that a graph D1(p, 2; r) giving a
degenerate polyhedron in class (3, 2, 3) can give rise to a non-degenerate one in class
(2, 2, 2). Second, note that the whole group is isomorphic to each of the component
rotation groups in SO3.

Moving on, we have

{8, 4
1,2 |3}

σ�−→ { 24
1,7 , 3 : 24

1,7 } = {3, 3 : 4} &' {4, 3 : 3}.
The geometry of this polyhedron is interesting and, incidentally, shows that it exists.
It may be seen that its 192 vertices lie at the mid-points of the edges of the 24-cell
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{3, 4, 3} and its reciprocal. A given vertex is joined to the mid-points of the edges of the
corresponding triangular face of the reciprocal. Given two adjacent edges, there are two
choices to continue to a third edge; these two choices correspond to the faces and the
Petrie polygons (the polyhedron is self-Petrie).

In view of our earlier comment about κ , we have directly

{ 8
3 ,

4
1,2 |3}

σ�−→ { 24
5,11 , 3 : 24

5,11 } = { 3
2 , 3 : 4} &' {4, 3 : 3

2 }.

We have just recalled that the pentagonal diagrams, corresponding to regular polytopes
such as {5, 5

2 , 5}, give rise to degenerate polyhedra in class (3, 2, 3). What is surprising is
that σ does apply to these diagrams, yielding non-degenerate polyhedra in class (2, 2, 2).
We have already listed them in Section 10, but there are analogous geometric pictures to
the previous example which describe their geometry, and thus establish their existence.
So, for example,

{ 30
1,11 , 5 : 30

1,11 } = { 5
2 , 5 : 3} &' {3, 5 : 5

2 }
has its 720 vertices at the mid-points of the edges of the 600-cell {3, 3, 5} (or {5, 5

2 , 5}),
and each vertex is joined by an edge to the mid-points of the edges of the pentagonal
link of the original edge in the boundary complex of {3, 3, 5}.
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