
DOI: 10.1007/s00454-007-1329-4

Discrete Comput Geom 38:139–153 (2007) Discrete & Computational

Geometry
© 2007 Springer Science+Business Media, Inc.

Dimensionality Reductions in �2 that Preserve Volumes
and Distance to Affine Spaces

Avner Magen

Department of Computer Science, University of Toronto,
Toronto, Ontario, Canada M5S 3G4
avner@cs.toronto.edu

Abstract. Let X be a subset of n points of the Euclidean space, and let 0 < ε < 1.
A classical result of Johnson and Lindenstrauss [JL] states that there is a projection of
X onto a subspace of dimension O(ε−2 log n) with distortion ≤ 1+ ε. We show a natural
extension of the above result to a stronger preservation of the geometry of finite spaces. By a
k-fold increase of the number of dimensions used compared with [JL], a good preservation
of volumes and of distances between points and affine spaces is achieved. Specifically,
we show how to embed a subset of size n of the Euclidean space into a O(ε−2k log n)-
dimensional Euclidean space, so that no set of size s ≤ k changes its volume by more
than (1 + ε)s−1. Moreover, distances of points from affine hulls of sets of at most k − 1
points in the space do not change by more than a factor of 1 + ε. A consequence of the
above with k = 3 is that angles can be preserved using asymptotically the same number
of dimensions as the one used in [JL]. Our method can be applied to many problems with
high-dimensional nature such as Projective Clustering and Approximated Nearest Affine
Neighbour Search. In particular, it shows a first polylogarithmic query time approximation
algorithm to the latter. We also show a structural application that for volume respecting
embedding in the sense introduced by Feige [F], the host space need not generally be of
dimensionality greater than polylogarithmic in the size of the graph.

1. Introduction

The dimension of a normed space that accommodates a finite set of points plays a critical
role in the way this set is analyzed. The running time of most geometric algorithms is at
least linear in the dimensionality of the space, and in many cases exponential in it. To
represent the metric of n points in the Euclidean space, one clearly needs no more than
n − 1 dimensions. By relaxing the notion of isometry to near-isometry, the underlying
structure of these points is well represented in a space with a much smaller number
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of dimensions: in their seminal paper [JL], Johnson and Lindenstrauss show that far
more efficient representations captures almost precisely the metric nature of such sets.
They present a simple and elegant principle that allows one to embed such an n-point
set into a t-dimensional Euclidean space, with t merely O(ε−2 log n), while preserving
the pairwise distances to within a relative error of ε. One simply needs to project the
original space onto a random t-dimensional subspace (and scale accordingly) to obtain
a low-distortion embedding with high probability. Their argument therefore supplies a
probabilistic algorithm for producing such an embedding.

Modifications that relate to the exact way the randomization is applied, and further
improvements in the parameters were later proposed. For example, it was shown that
by using a projection onto t independent random unit vectors, a similar result can be
achieved. In [Ac] Achlioptas shows an even simpler probability space for the desired
embedding by projecting the space onto random vectors in {−1, 1}N . In [EIO] a deran-
domization of the probabilistic projection is given, leading to an efficient deterministic
algorithm for finding such low-dimensional embeddings. Among the other simpler proofs
to the result of Johnson and Lindenstrauss (which we refer to as the JL-lemma) are [FM],
[IM], [LLR], [DA], and [AV]. A recent work of Ailon and Chazelle [AC] presents an
alternative way of random projections that preserve distances. The probability space of
t-dimensional in that work is essentially obtained by an application of a randomized
Fourier Transform and then a sparse matrix with the nonzero entries distributed like
Gaussians. The efficiency of this projection owing to the sparsity of the matrix is the
motivation of the method.

For metric spaces (X, dX ) and (Y, dY ), and an embedding f : X → Y , we de-
fine the distortion of f by supx �=y∈X (dY ( f (x), f (y))/dX (x, y)) · supx �=y∈X dX (x, y)/
dY ( f (x), f (y)). By this definition a good embedding is one that preserves the pairwise
distances. However, a set X of points in the Euclidean space has many more characteris-
tics in addition to the metric they represent, such as the center of gravity of a set of points
and its average distance to them, the angles defined by triplets of points, volumes of sets,
and distances between points to lines, planes, and higher-dimensional affine spaces that
are spanned by subsets of X . Regarding (some of) these characteristics as part of the
structure of X , we extend the definition of distortion by looking at the extent by which
an embedding preserves the volumes of subsets of X and the distances of points from
affine hulls of subsets of X . We define the volume of a set of k points in the Euclidean
space as the (k − 1)-dimensional volume (Lebesgue measure) of its convex-hull. For
k = 2 this is just the distance between the points. For k = 3 this is the area of the triangle
with vertices that are the three points of the set, etc. Throughout this paper we denote the
volume of a set S in the Euclidean space by Vol(S). When considering a general metric
space (not necessarily Euclidean), it is not a priori clear whether there is a reasonable
way to define a notion of volume.

In [F] Feige defined a notion of volumes for general metric spaces, and measured the
quality of an embedding from general metric spaces into Euclidean spaces (he calls such
embeddings volume respecting embeddings). The volume preservation there applied
to two different definition of volumes, the one in general metric spaces, and the one
in Euclidean space. This line of work led to important algorithmic applications, most
notably a polylogarithmic approximation algorithm for the bandwidth problem [F], and
an approximation algorithm for a certain VLSI layout problem [V]. Our attention focuses
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on the case where both the original and the image space are Euclidean, and consequently
the volume preservation notion is a well-defined one and need not use the more involved
definition of [F]. Accordingly, our result should not be confused with results in the
aforementioned framework, most notably Rao’s result [R], that deals with Euclidean
metric, but from of view of its metric alone, that is volume in the original space there is
according to Feige’s definition.

Our Result. Consider an embedding f :RN → R
t that does not expand distances

in X ⊂ R
N . We say f distorts the volume of a set S ⊆ X of size k by ((Vol(S)/

Vol( f (S)))1/(k−1). The exponent in this expression should be thought of as a natural
normalization measure (and was introduced in [F]). Let ε ≤ 1

4 , let X be an n-point
subset of RN , and let t = O(ε−2k log n). We show that there is a mapping of RN into
R

t that (i) does not distort the volume of subsets of X of size at most k to by more than
a factor of 1+ ε, and (ii) preserves the distance of points from affine hulls of subsets of
X of size at most k − 1 to within a relative error of ε.

Our Techniques. Our result is achieved essentially by reducing the problem of preserv-
ing volumes to the problem of preserving norms of vector akin to the original JL-type
result. The JL-lemma is based on the following probabilistic lemma that can be found
(explicitly or implicitly) in [Ac], [DA], and [IM].

Lemma 1.1. Let ε ≤ 1
3 , v ∈ RN , and let f be a random projection onto t dimensions,

multiplied by
√

N/t (1+ ε). Then

Pr

[ ‖v‖
1+ ε ≤ ‖ f (v)‖ ≤ ‖v‖

]
≥ 1− exp

(
2

15
tε2

)
. (1)

For a low distortion embedding,
(n

2

)
vectors (the unsigned pairwise differences between

the points) should maintain their norms approximately, and so t is chosen so that the
above probability is smaller than 1/

(n
2

)
resulting in O(ε−2 log n) needed dimensions.

The main technical component of our paper is Proposition 4.1, which is based on a new
perturbation result that relates to the determinants of perturbation of the identity matrix,
coupled with “epsilon-net” type of arguments. The proposition says that a sufficient
condition for a linear embedding to preserve volumes of sets of size at most k (to within
a relative error of ε) is that it preserves the norms of a certain set of exp(O(k log n))
vectors (to within a relative error of O(ε)). This, together with the probabilistic lemma
above (taking t = O(ε−2k log n)), immediately implies the result.

Applications. In [IM] Indyk and Motwani describe the way projections can be used
for designing efficient algorithms for the Approximate Nearest Neighbour problem. The
generalization of this problem from a set of points to a set of k-dimensional affine
spaces is the Approximate Nearest Affine Neighbour problem. For k = 1, e.g., this is
the problem of finding the closest line to a query point. Using Meiser’s result for point
location in arrangements of hyperplanes together with our result yields a randomized
polylogarithmic query-time approximation to the Approximate Nearest Affine Neighbour
problem, which, to the best of our knowledge, is the first. In Section 5.1 we show exactly
how this can be achieved. Our result can be applied to another classical problem in
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computational geometry that stems from data mining. Consider a data set in RN , where
the “true dimensionality” is anticipated to be much smaller than N . In other words, it
is assumed to be possible to cover (up to proximity) the set by a small number of k-
dimensional affine spaces. Finding the smallest such number of covering affine spaces is
known to be NP-hard even for N = 2 and k = 1. Currently, approximation algorithms
are known for the cases N = 2, 3. For the higher dimensions, our method provides a
way to reduce the problem to ε−2k log n dimensions.

There are also straightforward applications of our result to other problems which
extend metrical questions to ones that consider volumes. In particular, the problem of
finding the diameter of a set of n points, can be extended to finding the biggest volume
subset of size k. It is immediate by our result that this can be approximated when
dimensionality is reduced to O(k log n).

The other type of application is more structural, and relates to volume-respecting em-
beddings. In Feige’s volume-respecting embeddings, a graph on n vertices is embedded
into Euclidean space so that no distance is expanded and the (Euclidean) volumes of
sets of size at most k are “big”. Our result shows that by composing such an embedding
with a random projection onto a low dimension, the volume distortion remains asymp-
totically the same. Specifically, for k = O(log n), as is often the case, we get that the
restriction to O(log2 n)-dimensional embeddings entails only an extra constant factor to
volume-distortion of the embedding. In a similar fashion, the result by Krauthgamer et al.
[KLMN] about volume-respecting embedding based on the so-called Measured Descent
technique, needs no more than O(k log n) dimension in contrast to the exponentially
bigger number of dimensions in the original embedding.

2. Notation

The norm ‖ ·‖ always stands for the Euclidean norm. We say that an embedding ϕ: X →
R

N is a contraction if for every x, y ∈ X , ‖ϕ(x) − ϕ(y)‖ ≤ ‖x − y‖. Whenever the
dimensionality of a Euclidean space is immaterial, we call it RN without explicitly
defining N . We sometimes refer to an affine space as a flat. An affine subspace of RN

that is spanned by points of X ⊆ RN is called X -flat (analogously, we define X -lines,
X -planes, X -k-dimensional flats, etc.).

For a set S ⊆ RN of size ν, we denote by L(S) the affine-hull of S, that is L(S) =
{∑ν

i=1 λi ai |
∑

i λi = 1}. For a set S ⊆ RN and x ∈ RN we define P(x, S) to be the
projection of x onto L(S). The affine distance of x to S, ad(x, S), is defined to be the
distance of x to the affine-hull of S, or equivalently ‖x − P(x, S)‖. The affine distance
will occasionally be referred to as height. Let r1, r2, . . . , rν−1 be an arbitrary set of
orthonormal vectors in L(S).1 We now define the corner points of the pair (x, S). The
i th corner point ci (x, S) is defined as P(x, S)+ ad(x, S) · ri , for 1 ≤ i ≤ ν − 1. When
ν = 2 we let c(x, S) denote c1(x, S). See Fig. 3.

1 We exclude the case where S is affinely dependent: since we consider only linear mappings, the image
of affinely dependent set will also be affinely dependent, and so the degenerated case will remain degenerated
in the image. Also notice that ad(x, S) = ad(x, S′) where S′ ⊆ S is an affinely independent set for which
L(S′) = L(S), and that if ad(x, S) = 0 then ad( f (x), f (S)) = 0.
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Fig. 1. Areas and affine distances can dramatically change and practically vanish, even under a low-distortion
embedding. Here, the distortion of � is very small, but h′ � h.

3. Preserving Distances to Lines and Preserving Areas of Triangles

Consider the problem of finding a low-dimensional Euclidean embedding of a finite
subset X of the Euclidean space, such that pairwise distances, areas of triangles, and
distance of points from X -lines do not change by much. Of course this is a special case
of the general problem we consider (here k = 3), as volumes of triplets of points are
simply areas. This case is easier to analyze and, moreover, the analysis of the general
case uses some of the structure of the two-dimensional case. More specifically, Lemma
3.1 is needed for our later analysis, while Theorem 3.2 is only used to make a simple
exposition. The current case also gives a preservation result for angles as we later note.

The natural thing to try in order to reduce dimensionality and preserve geometrical
features is simply to apply the JL-lemma: after all, in an isometry not only are distances
preserved, but all the geometry does, including angles and volumes (and affine distances)
for all subsets. One might expect that when f is nearly an isometry (i.e., f has small
distortion) it will follow that volumes and affine distances are being quite reasonably
preserved. We show that, in general, this is very far from the truth: consider a triangle
with a very small angle. A low-distortion embedding can be applied to it, so that the
triangle is changed to a triangle with dramatically different angles, area, and heights (see
Fig. 1).

However, if the triangles at hand are somewhat “reasonable” we get that small
distance-distortion does imply small heights-distortion. For simplicity, we concentrate
on a very restricted class of triangles, namely right angle isosceles, which turn out to be
enough for our needs.

Lemma 3.1. Let A, B,C be the vertices of a right angle isosceles triangle, where the
right angle is at A, and let � be a contracting embedding of its vertices to a Euclidean
space, such that the edges do not contract by more than 1 + ε, where ε ≤ 1

6 . Let h be
the length of [AC], b be �(B)−�(A) and c be �(C)−�(A). Then

1. |b · c| ≤ 2ε · h2,
2. h/(1+ 2ε) ≤ ad(�(C), {�(A),�(B)}) ≤ h.

Remark. The first assertion of the lemma says that the images of the perpendicular
edges of the triangle are almost orthogonal too. This fact is used later in the analysis of
the general case.

Proof. Let a = ‖b− c‖, and let θ be the angle between b and c. Now, |b · c| = |‖b‖2+
‖c‖2− a2|/2. A simple analysis shows that this quantity is maximized (while satisfying
the conditions on�) when‖b‖ = ‖c‖ = h/(1+ε) and a = √2h. Hence |b·c| ≤ 1

2 h2·(2−
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2/(1+ε)2) ≤ 2ε ·h2. As can be easily verified, these values of a, ‖b‖·‖c‖ also maximize
| cos θ | = |‖b‖2+ c2− a2|/(2‖b‖‖c‖). Hence | cos θ | ≤ |(2− 2(1+ ε)2)/2| = 2ε+ ε2,
and accordingly sin θ = √1− cos2 θ ≥ √1− 4ε2 − 4ε3 − ε4 > (1+ ε)/(1+ 2ε) for
ε ≤ 1

6 . Finally,

h

1+ 2ε
= h

1+ ε ·
1+ ε
1+ 2ε

≤ ad(�(C), {�(A),�(B)}) = c sin θ ≤ h.

In order to conclude that under a low-distortion embedding of the set X , areas and
affine distances do not change by much, one would like to eliminate bad cases such as
those in Fig. 1. Think of the following physical model: edges are rubber rods that can
slightly contract due to a shock. Figure 1 demonstrates that this shock may change the
areas and heights of triangles significantly. The remedy we propose is to supplement this
rubber triangle with some additional rods to keep it stable. If the contraction of these
rods is also limited, then placing them in appropriate locations will eliminate cases such
as the mapping � in Fig. 1. This mental experience translates to an additional set of
vectors whose norms must be approximately preserved.

Our strategy is therefore choosing “rods” such that nice triangles as in Lemma 3.1
emerge. This, together with the fact the embeddings we consider are linear, enables us
to bound the changes of the heights. Area preservation then immediately follows.

Theorem 3.2. Let ε ≤ 1
3 and let n, t be integers for which t ≥ 60ε−2 log n. Then for

any n-point subset X of the Euclidean spaceRN , there is a linear contracting embedding
f : X → R

t , under which the areas of triangles in X are preserved to within a factor of
(1+ ε)2, the distances of points from X-lines are preserved to within a factor of 1+ ε,
and angles (of triplets of points from X ) are preserved to within a (double-sided) factor
of 1+ 8/π · √ε.

Proof. For every pair S = {y, z} of elements of X , and every element x ∈ X − S, we
consider the right angle isosceles triangle {x, P(x, S), c(x, S)}. Let V be the collection
of the unsigned vectors corresponding to these triangles (x− P(x, S), c(x, S)− P(x, S)
and x − c(x, S)) over all choices of S and x , together with all pairwise differences
between the points of X . Let f be a random projection onto t dimensions, multiplied
by
√

N/t (1+ ε/2). By Lemma 1.1, the probability that f does not expand norms of
vectors in V , and that it does not contract them by more than 1 + ε/2, is at least
1−|V | exp(− 2

15 t (ε/2)2). A little closer look shows that V contains merely 3
(n

2

)
different

directions: the directions of X -lines, and their rotations by π/4 and by π/2. Since f
is linear, vectors in the same direction are preserved simultaneously, and therefore to
establish the existence of f as above we need

1− 3

(
n

2

)
exp(− 2

15 t (ε/2)2) > 0,

which is satisfied when t ≥ 60ε−2 log n. Next we show that f satisfies the preserva-
tion statements of the theorem. Consider three different points x, y, z ∈ X . Let w =
f (P(x, {y, z}) and u = f (c(x, {y, z})). Now let θ be the angle between f (x) − w and
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Fig. 2. The triangle f (x),w,u is the f -image of a right-angle isosceles triangle. Height-contraction is
estimated via these triangles (dashed lines).

f (y)−w (see Fig. 2). Since z, P(x, {y, z}) are collinear and f is linear, f (z), w, u, f (y)
are also collinear. We now apply the second assertion of Lemma 3.1 with P(x, {y, z}),
c(x, {y, z}) and x for A, B and C and ε/2 the error parameter. It follows that

ad(x, {y, z})/(1+ ε) ≤ ad( f (x), { f (z), f (y)}) ≤ ad(x, {y, z}).
For the area estimates, we get

1

(1+ ε)2 ≤
Vol( f (S))

Vol(S)
= ‖ f (y)− f (z)‖

‖y− z‖ · ad( f (x), { f (y), f (z)})
ad(x, {y, z}) ≤ 1.

Finally, let α = �(xyz) and α′ = �( f (x) f (y) f (z)). We have that

1

1+ ε ≤
sinα′

sinα
= ‖y− x‖
‖ f (y)− f (x)‖ ·

ad( f (x), { f (y), f (z)})
ad(x, {y, z}) ≤ 1+ ε. (2)

We now turn to analyze the relative change of the angles themselves. For the case α, α′ ≤
π/2, we use the following fact that holds for any 0 < β, γ ≤ π/2: if sinβ/sin γ ≤ 1+ε
then β/γ ≤ 1 +√ε. This fact together with inequality (2) implies that 1/(1 +√ε) ≤
α′/α ≤ 1+√ε. The case where α, α′ ≥ π/2 can be easily reduced to the previous case,
by replacing α, α′ by π−α, π−α′. Last, assume that α ≥ π/2 and α′ ≤ π/2. Using the
fact that a linear embedding is an isometry times a scalar when restricted to a line, and in
particular that the order of points along a line does not change under a linear embedding,
we get ‖ f (x)− w‖ ≥ ‖ f (x)− f (y)‖. Now,

‖ f (x)− w‖ ≤ ‖x− P(x, {y, z})‖ = ‖x− y‖ · sinα ≤ ‖ f (x)− f (y)‖
1+ ε/2 · sinα,

and therefore sinα ≥ 1/(1 + ε/2) which means α ≤ π/2 +√ε. Analogously, we can
show that α′ ≥ π/2−√ε. Therefore α−α′ ≤ 2

√
ε. When the angle changes from acute

to obtuse we similarly obtain that α′ − α ≤ 2
√
ε. Summing it all up, we get

1

1+ ε′ ≤
α′

α
≤ 1+ ε′,

where ε′ = 8/π · √ε always holds.

4. The General Case

Analogously to the k = 3 case, we look for a set of vectors with the following properties:
(i) it is not too big and (ii) if a linear embedding does not change the norms of the vectors
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by much, then it also does not change affine distances and volumes by much. We first
restrict our attention to one affine distance, ad(x, S) with |S| = s < k. We construct a
set of vectors in a way which is determined by the relation between ε and s. When s is
small with respect to 1/ε we extend the previous construction (for the case k = 3) in the
natural way. The right-angle isosceles triangle is substituted by a simplex spanned by
[x, P(x, S)] and by orthogonal vectors in L(S) of size ad(x, S) (call this a nice simplex).
When s is bigger than 1/ε we use, in addition to this set of vertices, a dense enough set
of points. The analysis is mostly a (linear) algebraic one. It relates to the geometry of
interest in the following simple way: Let Vs−1 be a simplex on s points, let Vs−2 be the
facet of Vs−1 opposite one of the points, and let H be the distance from that point to the
facet, then Vol(Vs−1) = H · Vol(Vs−2)/(s − 1). The simplices we take are the images
of the nice simplices under the linear low distortion embedding. The actual estimate
Vol(Vs−1)/Vol(Vs−2) is then achieved by means of analysis of determinants of matrices
with constraints resulting from the low distortion embedding on the set of auxiliary
points we added.

Similarly to the case k = 3, we make use of the linearity of our embeddings to
claim that it is enough to bound the contraction of heights in nice simplices to get the
actual bound for all the required affine distances X (refer to Fig. 3 for the exposition).
Eventually, the guarantee for the volume preservation is achieved by an iterative use of
the relation Vol(Vs−1) = H · Vol(Vs−2)/(s − 1).

Proposition 4.1. Let ε ≤ 1
12 , let S ⊂ Rn be a set of size s < k points, and let x ∈ Rn−S.

Then there is a subset W = Wx,S,ε of Rn of size ≤ (5s)3s/2, such that if f :Rn → R
t is

a linear embedding that does not expand distances in W and does not contract them by
more than 1+ ε, then ad(x, S)/(1+ 3ε) ≤ ad( f (x), f (S)) ≤ ad(x, S).

Proof. Let W0 = {x, P(x, S), c1(x, S), . . . , cs−1(x, S)}. Recall by definition that

• ci (x, S) ∈ L(S) for all i .
• The vectors {x − P(x, S), c1(x, S) − P(x, S), . . . , cs−1(x, S) − P(x, S)} are or-

thogonal and are of the same length, namely ad(x, S).

c (x,S)1

2

2

1

3

x

x

x

x

P(x,S)
c (x,S)

1 2 3S={x ,x , x }

Fig. 3. The set W0 consists of the vertices of the “nice” simplex (dashed lines). Notice that the height
[x, P(x, S)] is common to the original simplex (solid lines) and to the nice simplex, and that the linear images
of these two simplices also share the same height
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Clearly, ad(x, S) = ad(x, {P(x, S), c1(x, S), . . . , cs−1(x, S)}). Now, by linearity of f ,

ad( f (x), f (S)) = ad( f (x), { f (P(x, S)), f (c1(x, S)), . . . , f (cs−1(x, S))}),

and so it is enough to prove that

1

1+ 3ε
≤ ad( f (x), f ({P(x, S), c1(x, S), . . . , cs−1(x, S)}))

ad(x, {P(x, S), c1(x, S), . . . , cs−1(x, S)}) ≤ 1.

Since f is linear, we may simplify and assume that P(x, S) = 0 (the zero vector),
ad(x, S) = 1, and thatL(S) is spanned by the first s−1 standard vectors (so ci (x, S) = ei )
and also that x = es . We now need to show that

1

1+ 3ε
≤ H ≤ 1, (3)

where H is the affine distance ad( f (es), {0, f (e1), . . . , f (es−1)}).
The right inequality is immediate, since H ≤ ‖ f (es)‖ ≤ 1. We proceed to the more

interesting left side of inequality (3). The operation of f on the first s coordinates can be
described as a t× s matrix U . Now, the volume of the the simplex P which is the convex
hull of 0, f (e1), . . . , f (es) is

√
det(U tU )/(s − 1)!. Let P̂ be the facet of P opposite

f (es). Similarly, P̂ has volume
√

det(Û t Û )/(s− 2)!, where Û is obtained by removing
the last column of U . Consequently,

H = (s − 1) · Vol(P)/Vol(P̂) =
√

det(U tU )/ det(Û t Û ).

We let A = U tU and B = Û t Û , and note that Ai j = f (ei ) · f (ej ), and that B is
the principal minor of A that is obtained by removing its last row and column. Our
aim is therefore to bound det A/det B from below. At this point we divide our analysis
depending on the relation between 1/ε and k. The definition of W is dependent on this
relation too.

Case 1: 1/ε ≥ 4s. We start with the following algebraic lemma.

Lemma 4.2. Let µ ≤ 1/2(s − 1), and let A be a real s × s matrix, such that2 ‖A −
I‖∞ ≤ µ. Denote by B the principal minor as described above; then det A/det B ≥
1− 2µ.

The proof of Lemma 4.2 will be given shortly. We now show that for the case 1/ε ≥ 4s
Lemma 4.2 implies Proposition 4.1. Indeed, we take W = W0. Since f is a contraction
with distortion≤ 1+ε on W , for all i we have that

√
1− 2ε ≤ 1/(1+ε) ≤ ‖ f (ei )‖ ≤ 1.

Now for i �= j consider the triangle ei , 0, ej . The first statement of Lemma 3.1 says that
| f (ei ) · f (ej )| ≤ 2ε. We take A and B to be the matrices described above, and we take
µ = 2ε. We have just established that ‖A − I‖∞ ≤ µ, and since 1/ε ≥ 4s it follows
that µ ≤ 1/2(s − 1). By the proceeding analysis, H = √det A/det B ≥ √1− 2µ =

2 ‖M‖∞ denotes the maximal absolute value of the elements of the matrix M .
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√
1− 4ε ≥ 1/(1+ 3ε) for ε ≤ 1

12 . To conclude, notice that |W | = s + 1 ≤ (5s)3s/2.
We now prove Lemma 4.2.

Proof of Lemma 4.2. We first observe that if y ∈ Rs and v = By, then ‖v‖∞ ≥ 1
2‖y‖∞.

Assume without loss of generality that |y1| = ‖y‖∞. Now,

‖v‖∞ ≥ |v1| =
∣∣∣∣∣
∑
i<s

yi a1,i | = |y1 +
∑
i<s

yi (a1,i − δ1,i )

∣∣∣∣∣
≥ |y1| − µ

∑
i<s

|yi | ≥ |y1| − (s − 1)µ|y1| ≥ 1
2 |y1| = 1

2‖y‖∞

(δi, j denotes the Kronecker Delta, which is 1 if i = j and 0 otherwise). One immediate
consequence of the above is that B is nonsingular, since it implies that if v is the zero
vector then so is y.

Now, let v be the vector (a1,s, a2,s, . . . , as−1,s). For every j < s, let B( j) be the matrix
B with the j th column replaced by v. We next argue that |det B( j)/det B| ≤ 2µ for all
1 ≤ j < s. Let yj = det B( j)/det B. Recall that by Cramer’s rule, y = (y1, y2, . . . , ys−1)

is the (unique) solution to By = v. We now get |det B( j)/det B| = |yj | ≤ ‖y‖∞ ≤
2‖v‖∞ = 2 maxi<s ai,s ≤ 2µ.

Now,

det A = as,s det B +
∑
i<s

(−1)i+sas,i det B(i).

Therefore

det A

det B
= as,s +

∑
i<s

(−1)i+sas,i
det B(i)

det B
≥ 1− µ− (s − 1)µ · 2µ ≥ 1− 2µ.

Case 2: 1/ε < 4s. In this case W0 alone is too sparse to provide us with the needed
bound on the contraction of H . The approach we take here follows an argument used
by Feige in [F]:3 Instead of taking just W0 we add to it a much denser set, namely an
O(η)-net in the unit ball in L(S) = Rs−1, where we let η = ε/

√
s. Such a net in the

present case where 1/ε < 4s is not too big as a function of s, but is still good enough
for the bound on the contraction of H .

We turn to the details of this construction. Call a setη-separated if the distance between
any two distinct points in the set is greater than η. We take W to be an inclusion-maximal
η-separated subset of the unit ball. By standard arguments, for any point v in the unit ball
there is a point v′ ∈ W such that ‖v− v′‖ ≤ η (otherwise, W ∪ {v} would also be an η-
separated subset of the ball). Without loss of generality we can assume that W ⊃ W0. We
now assume that f does not contract distances in W by more than 1+ ε. We first bound
the norm of U (as a linear operator). Since f is a contraction on W0, the columns of U are
of (Euclidean) norm at most 1. This means that ‖U‖2 = max{‖Uv‖: ‖v‖ = 1} ≤ √s.
We next show that if v is a unit vector then ‖Uv‖ ≥ 1− 3ε. Indeed, let v′ be a vector in

3 Although considerably modified for the present use.
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W such that ‖v− v′‖ ≤ η. Now

‖Uv‖ = ‖Uv′ +U (v− v′)‖ ≥ ‖Uv′‖ − ‖U (v− v′)‖ ≥ 1

1+ ε −
√

s‖v− v′‖

≥ 1

1+ ε − η
√

s = 1

1+ ε −
√

s · ε√
s
≥ 1− 2ε.

Now, let 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λs be the eigenvalues of A, and let σ1 ≤ σ2 ≤ · · · ≤ σs−1

be the eigenvalues of B. It is known that λi ≤ σi ≤ λi+1, and so

det A

det B
=
∏s

i=1 λi∏s−1
i=1 σi

≥ λ1.

We now use the standard fact that λ1 = min{‖Uv‖2: ‖v‖ = 1}. It follows that

H =
√

det A/det B ≥
√
λ1 = min{‖Uv‖: ‖v‖ = 1} ≥ 1− 2ε ≥ 1/(1+ 3ε)

for ε < 1
12 . It remains to show that W is not too big. Since W is η-separated, by a volume

argument |W | ≤ ((2+ η)/η)s . Therefore |W | ≤ ((2+ η)/η)s = (1 + 2
√

s/ε)s ≤
(5s)3s/2.

Remark. The different approaches we use for the two cases in Proposition 4.1 seem
to be necessary, in the sense that no one of them can be applied to the other case:
suppose we apply the approach of case 1 when ε = 1/2s, then the linear embedding
f (ej ) = ej − (1/s)

∑
i f (ei ) has distortion≤ 1+ε, but in the same time makes H zero!

If, on the other hand, we use a dense net when 1/ε � n it means that |W | � ns , which
in turn leads to a dimensionality O(ε−2k log(1/ε)) rather than O(ε−2k log n).

Corollary 4.3. Let ε ≤ 1
4 , let S ⊂ Rn be a set of size k points, and let x ∈ Rn − S. Let

f be a random projection onto t dimension multiplied by
√

N/t (1+ ε). Then

Pr

[
ad(x, S)

1+ ε ≤ ad( f (x), f (S)) ≤ ad(x, S)

]
≥ 1− exp

(
3k(2+ log k)− 2

135
tε2

)
.

Proof. Let W = Wx,S,ε/3. By Lemma 1.1 we get that the probability that f is a
contraction with distortion ≤ 1 + ε/3 on W is at least 1 − (|W |2

)
exp(− 2

15 t (ε/3)2). By
Proposition 4.1 such an embedding satisfies ad(x, S)/(1 + ε) ≤ ad( f (x), f (S)) ≤
ad(x, S). Now |W | ≤ (5k)3k/2 and so

(|W |
2

) ≤ |W |2 ≤ (5k)3k ≤ exp(3k(2+ log k)), and
the bound in the lemma follows.

4.1. The Main Theorem

Theorem 4.4. Let ε ≤ 1
4 and let k, n, t be integers greater than 1, for which t ≥

70ε−2(k log n + 3k(2 + log k)). Then for any n-point subset X of the Euclidean space
R

n , there is a linear mapping f : X → R
t , such that for all subsets S of X , 1 < |S| < k,

Vol(S)/(1+ ε) ≤ Vol( f (S)) ≤ Vol(S),
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and for x ∈ X − S,

ad(x, S)/(1+ ε) ≤ ad( f (x), f (S)) ≤ ad(x, S).

Proof. We apply Corollary 4.3 to all choices of S and x as above, and then use union
bound. We get that as long as

k∑
s=2

(
n

s

)
exp

(
3k(2+ log k)− 2

135
tε2

)
< 1,

the probability that a random projection onto t dimensions is a contraction on X and all
relevant affine distances are preserved to within 1+ ε, is positive. Now

k∑
s=2

(
n

s

)
exp

(
3k(2+ log k)− 2

135
tε2

)
≤ nk exp

(
3k(2+ log k)− 2

135
tε2

)

= exp

(
k log n + 3k(2+ log k)− 2

135
tε2

)
.

Setting t = 70ε−2(k log n+3k(2+ log k)) = O(ε−2k log n) then, guarantees that, with
positive probability, f preserves all affine distances of sets of size at most k to within a
relative error of ε.

We turn to the other part of the theorem, namely volume preservation. Let Sr =
x1, x2, . . . , xr . It is known that Vol(Sr ) = 1/(r − 1)! · ∏r−1

i=1 ad(xi+1, Si ), and so the
volume distortion of S, (Vol(S)/Vol( f (S)))1/(r−1) is simply the geometric mean of
{ad(xi+1, Si )/ad( f (xi+1), f (Si ))}r−1

i=1 . We now conclude that

1 ≤ (Vol(S)/Vol( f (S)))1/(r−1) ≤ 1+ ε.

5. Applications

5.1. The Approximated Nearest Neighbour to Affine Spaces Problem

Let F1,F2, . . . ,Fn be k-dimensional flats in Rd , and let x ∈ Rd be a query point.
To answer a Nearest Neighbour to Affine Spaces is to find the flat closest (in the
Euclidean sense) to x. In [Me] Meiser presents a solution to the point location prob-
lem in arrangements of n hyperplanes in Rd with running time O(d5 log n) and space
O(nd+1). That paper was a breakthrough in that it was the first time (and to the best of
our knowledge also the last) where an algorithm to the problem was presented that is
not exponential neither in d nor in log n. We show that by combining this result with
ours, a considerable improvement to the problem of approximating the Nearest Affine
Neighbour can be achieved. Let ρi :R

d → R be the functions that are the squares of
distances from the flats, i.e., ρi (x) = dist(x,Fi ). Note that ρ2

i are polynomials of degree
2 in x1, . . . , xd . We now use the following standard linearization of such polynomi-
als. We use the transformation ξ :Rd → R

d ′ which is the assignment transformation
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to all the monomials of degree at most two in x1, . . . , xd . For example, if d = 2,
ξ(x) = ξ((x1, x2)) = (1, x1, x2, x1x2). Clearly, d ′ = (d

2

) + 2d + 1. Next, we introduce
the functions ρ ′i defined by ρ ′i (ξ(x)) = ρ2

i (x). It is easy to see now that the ρ ′i are lin-
ear functionals.4 We can now reduce the Nearest Affine Neighbour problem with query
point x to the Vertical Ray Shooting problem from x: “Shoot” a ray from (ξ(x),−∞)
“upwards”, in other words to the positive direction of the last coordinate. Let Si be
(one of) the first surfaces this ray hits. Then Fi is the closest of F1,F2, . . . ,Fs to x.
This vertical ray-shooting query in linear arrangements can be easily answered using the
data-structure of Meiser.

The preprocessing time, as well as space needed for the above, is O(nd ′+1) = O(nd2
),

and the query time is O(d ′5 log n) = O(d10 log n). We now apply our result in the
following way.

For each flatFi , take an affinely independent subset of k+1 points. We can embed these
O(kn) points to O(ε−2k log(kn)) = O(ε−2k log n) dimensions, and for k constant this
is just O(ε−2 log n). Concatenation of the above yields a query time of O(ε−20 log11 n),
and a preprocessing time (and space) of nO(ε−4 log2 n).

The standard problem in this approach remains: we need to answer queries on any
point of the space, and not on a predetermined set. Looking into the proof of Theorem
4.4 we easily notice that by taking t = ε−2 Qk log n we get that the probability that
a fixed projection is good in the sense that it does not distort affine distances from a
random point x on the sphere to sets of size at most k − 1 in X is n−�(Q). We can
therefore approximate the answer to all but a small fraction of the query points, with
only a constant factor sacrifice in the number of dimensions needed.

5.2. Projective Clustering

Projective Clustering is a well-known problem which has important applications in data-
mining. This special variant of clustering relates very closely to the geometric structures
that are discussed in this paper. Here is the problem: Given an n-point set X inRN and an
integer s > 0, find s k-dimensional flats (k-flats), h1, . . . , hk , so that the greatest distance
of any point in X from its closest flat is minimized. In other words, this is an s-clustering
problem, where a cluster is defined by a k-flat, and the quality of the clustering, its width,
is the maximal distance of any point from its corresponding flat.5 The “regular” clustering
is in fact a special case, where k = 0. There are different ways to define the solution
for the projective clustering problem: the optimal width, the clustering, and the k-flats
themselves. In [AP] Agarwal and Procopiuc give an efficient approximation algorithm
for the planar case where the flats are lines, i.e., N = 2 and k = 1. In [HV] Har-Peled
and Varadarajan give a dnO((ks/ε5) log(1/ε)) algorithm that approximates the solution to
within 1 + ε. Here we show that under certain restrictions one can reduce the problem
to one in which the space is of dimension that depends logarithmically in n, such that
only a small inaccuracy incurs.

4 The ρ′i are no longer defined on the whole space, but this should not be of any concern to us.
5 Any other variant, such as average distance, sum, and sum-of-squares is probably as applicable here.
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In [AP] the original problem is reduced to the variant where the candidate flats are
only the X -k-flats. Namely only affine subspaces that are spanned by k + 1 points from
X are considered. We call this variant the Median Projective Clustering. Agarwal and
Procopiuc show that by this reduction an additional factor of at most 2 is added to the
approximation. We claim

Theorem 5.1. An instance of the Median Projective Clustering with X ⊆ RN and k
the dimensionality of the flats, can be reduced to a t-dimensional space instance with a
1+ ε approximation to the optimal width, where t = O(ε−2k log n).

Proof. Using Theorem 4.4, we can map X to Rt , such that the distance of points in X
to k-dimensional X -flats do not expand, and do not contract by more than a factor of
1+ ε Therefore any solution w∗ in the reduced problem corresponds to a solution w in
the original problem, with w∗ ≤ w ≤ 2w∗, and we immediately get that τ ∗ ≤ τ ≤ 2τ ∗,
where τ and τ ∗ are the optimal solution to the original problem and the optimal solution
to the reduced problem, respectively. Note that the clustering for that width can also be
given from the reduced problem. It is not clear, however, how to reconstruct the k flats
from the ones in the reduced problem, as the k-flats in the smaller space do not map back
to the original space (a projection is not injective).

6. Discussion

In [Al] Alon shows that the dimensionality used in the JL-lemma is nearly tight.
Specifically, he gives a lower bound for the number of dimensions in Euclidean
space needed to preserve all distances to within a relative error of ε that stands at
�(ε−2 log n(1/log(1/ε))) leaving a gap of log(1/ε) between the upper and lower
bound. The lower bound is constructive and uses the set X = {0, e1, e2, . . . , en}.
Using an argument like that of Lemma 3.1 one gets that the vectors f (vi ) are a (1, 2ε)
almost orthonormal system. Using linear algebra Alon then shows that such a system
must have dimension�(ε−2 log n(1/(log(1/ε))) implying the bound. Can we show that
�(k log n/ε2) dimensions are needed in order to preserve volumes of sets of size k? It is
interesting to ask whether Alon’s technique can be generalized to our setting. It is easy to
see, however, that the above set X , for the case where ε = O(1/k)will not generate such
a bound, and in fact the usual dimensionality of O(ε−2 log n) will suffice. This is since
all polytopes spanned by the points of X are either “nice” or close to being “nice”, which
means that no auxiliary points are needed and maintaining the norms of the original

(n
2

)
suffices. It is important to note that there are also nonconstructive techniques providing a
lower bound to the JL-lemma (see Matoušek’s book [Ma] for relevant discussion); such
techniques may prove more useful to a lower bound in our setting.
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