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Abstract. A graph is d-realizable if, for every configuration of its vertices in E N , there
exists a another corresponding configuration in Ed with the same edge lengths. A graph is
2-realizable if and only if it is a partial 2-tree, i.e., a subgraph of the 2-sum of triangles in
the sense of graph theory. We show that a graph is 3-realizable if and only if it does not
have K5 or the 1-skeleton of the octahedron as a minor.

1. Introduction

A basic problem in discrete geometry is to determine when a graph with prescribed edge
lengths can be realized in Ed . A graph G is a finite set of vertices V (G) = {1, . . . , n}
and a finite set of edges E(G), where each edge is a set containing exactly two vertices.
The graphs we consider do not contain loops or multiple edges. The standard way to
draw a graph is to draw a point for each vertex, and to draw a line segment between two
vertices for each edge. The complete graph on n vertices, denoted by Kn , is the graph
with n pairwise adjacent vertices. A good reference on graph theory is [D].

A realization of a graph G is a function which assigns to each vertex i of G a point
pi in some Euclidean space. When we draw a realization, we generally also draw the
edges between vertices as straight lines. Note that a realization is different from an
embedding, since the word embedding is usually reserved for the case when there are
no self-intersections. For example, two vertices may be assigned to the same point in a
realization and edges may intersect and even overlap.

∗ This research was supported in part by NSF Grant No. DMS-0209595. Research done while the first
author was at Cornell University.
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Fig. 1. A weighted graph that satisfies the triangle inequality but cannot be realized in any dimension. The
first picture gives the weighted graph; the second attempts to realize the weighted graph but fails. In the second
picture, vertex 4 is represented by four points.

A weighted graph (G, λ) is a graph G together with a vector of weights (or lengths)
λ = (. . . , λi j , . . .), where λi j ≥ 0 is the weight assigned to the edge {i, j}. A realization
p = (p1, . . . , pn) of a weighted graph is a realization of the graph where each edge {i, j}
has length λi j .

The Molecule Problem is to determine whether a given weighted graph has a real-
ization in Ed , and if so to construct the realization. It is easy to construct examples of
weights λ for a graph G such that (G, λ) does not have a realization in Ed for any d. For
example, if G is a triangle with edge lengths not satisfying the triangle inequality, then
(G, λ) cannot be realized in any Euclidean space. There are also examples of weighted
graphs with the triangle inequalities satisfied such that all proper subgraphs have realiza-
tions in EN , but there is no realization of the whole graph in any Euclidean space of any
dimension. For example, consider the graph Kd+1. Assign a weight of 1 to each edge of
a Kd subgraph so that it has a realization in E d−1 as a d-simplex. Each remaining edge
connects the final vertex to one of the vertices of the Kd . Let x be the distance from each
vertex of the d-simplex to the center of the d-simplex. Assign a weight less than x on
each remaining edge, but large enough so that the final vertex and any d − 1 vertices
form a d-simplex that has a realization in Ed−1. Then the weighted graph Kd+1 does not
have a realization in any dimension, but every subgraph of d vertices has a realization
as a d-simplex. Figure 1 shows a picture of this situation for d = 3.

See [H] for a discussion of the molecule problem including an algorithm for solving
it when there are sufficiently many edges in G. In a general setting, Crippen and Havel
[CH] describe an empirical algorithm for solving the molecule problem.

Given a weighted graph (G, λ), the problem to decide whether there exists a cor-
responding configuration of points in a Euclidean space of any dimension, which is a
realization of the weighted graph, is called the “Euclidean distance matrix completion
problem” (EDM) in Section 4 of [L1]. In Section 5 of [L1] it is stated that there is no
known efficient algorithm for EDM in general, but that the problem becomes easy if
one allows approximations. Indeed, the approximation problem is a special instance of
semidefinite programming problems. In the paper here we regard the realization of a
graph G in some high-dimensional Euclidean space as given, and then proceed. With
this in mind, we make the following definition.

Definition 1. A graph G is d-realizable if, given any realization p1, . . . , pn of the
graph in some finite-dimensional Euclidean space, there exists a realization q1, . . . , qn

in Ed with the same edge lengths: |pi − pj | = |qi − qj | for all {i, j} ∈ E(G).
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Note that d-realizability is a property of graphs—for G to be d-realizable, every
realizable (G, λ) must have a realization in E

d . (It has been suggested that we
could use the word “universally d-realizable” instead of the word d-realizable. This is
descriptive, but we feel that using the word d-realizable will not create any confusion and
is simpler.)

Note also that our definitions allow edges to have length 0. If we required edges to
positive length, then it would not change which graphs are d-realizable, which will be
explained later.

Examples.

1. A path is 1-realizable, because we can arrange the vertices in order on a line with
the appropriate distance between any two consecutive points.

2. Similarly, a tree (a connected graph containing no cycles) is also 1-realizable.
3. A triangle is not 1-realizable, because the triangle with all edge lengths 1 can only

be realized in E2 but not in E1.

In this paper we look at the question of which graphs are d-realizable for d ≤ 3 and
obtain the following results.

Theorem 1. A graph G is 1-realizable if and only if it does not have K3 as a minor
(i.e., G is a forest).

Theorem 2. A graph G is 2-realizable if and only if it does not have K4 as a minor.

Theorem 3 (Main Theorem). A graph G is 3-realizable if and only if it does not have
either K5 or the 1-skeleton of the octahedron as a minor.

In this paper we only prove that a graph is 3-realizable if and only if it does not have
either K5 or the 1-skeleton of the octahedron as a minor assuming that the graphs V8 and
C5 × C2 are 3-realizable (see Fig. 3 for the definitions of these graphs). The graphs V8

and C5 × C2 were recently shown to be 3-realizable by Sloughter [Sl] using techniques
of stress theory, but not assuming any results of this paper. The basic idea is to break
up the given graph G as a 3-sum (see Definition 4) of smaller pieces forming a partial
3-tree. For many of these pieces, they automatically span a three-dimensional space, and
each piece can be “folded” into a given three-dimensional space. However for the two
exceptional graphs above, an additional “stretching” operation is used, where certain
pairs of points are pushed apart, and this flattens the configuration enough to force it into
a three-dimensional space. There is one exceptional case, though, for C5 × C2, where
the stretching operation has to be performed twice.

2. Low-Dimensional Results

Our discussion of 1-realizable graphs leads us to the following theorem.



128 M. Belk and R. Connelly

Theorem 1. A graph is 1-realizable if and only if it is a forest (a disjoint collection of
trees).

Proof. Clearly, any forest with any specified edge lengths can be realized in one di-
mension. If a graph is not a forest, then it contains a cycle as a subgraph. This cycle can
be realized in the Euclidean plane with three edges of length 1 and with the remaining
edges having length 0. There is no realization in the line with the same edge lengths.
Thus, a graph containing a cycle is not 1-realizable.

Observe, in the above proof, it was helpful to consider a subgraph to show that a graph
was not 1-realizable. In general if a graph G is d-realizable, then any subgraph of G is
also d-realizable.

It was also helpful to consider a realization where some edges had length 0. However,
if we required edges to have positive length, it would not change which graphs are
d-realizable. Let G be a graph, and let v = |V (G)| and e = |E(G)|. Consider the
function f : Rdv → R

e which takes a realization of G in Ed and returns the length of
each edge of G. The image of f applied to a closed ball of radius M is a compact set
in Re, since f is continuous. Thus, the set of edge lengths which cannot be realized in
E

d inside a closed ball of radius M is an open set in Re (as it is the complement of a
compact set). Since every list of edges with a realization in Ed has a realization inside
a closed ball with sufficiently large radius M , the set of edge lengths which cannot be
realized in Ed is an open set in Re. If a graph G has a realization p = (p1, . . . , pn) in
E

N with some 0 length edges that is not realizable in Ed with the same edge lengths,
then a sufficiently small perturbation of p = (p1, . . . , pn) to a configuration with no 0
length edges in EN will still not be realizable with the same edge lengths in Ed , since
the set of edge lengths that cannot be realized is open.

The following is a standard definition from graph theory.

Definition 2. A minor of a graph G is any graph obtained from G by a sequence of

• edge deletions and
• edge contractions (identify the two vertices belonging to an edge and then remove

any loops or multiple edges).

Theorem 4. If a graph G is d-realizable and H is a minor of G, then H is d-realizable.

Proof. Zero length edges are allowed.

A graph property is called minor monotone if it is closed under the operation of taking
minors. Minor monotone graph properties are interesting, because of the graph minor
theorem of Robertson and Seymour [RS2].

Theorem 5 (The Graph Minor Theorem). Every minor monotone graph property has
a finite list of forbidden minors; i.e. there exits a finite list of graphs G1, . . . ,Gn such
that a graph G satisfies the graph property if and only if G does not have any Gi as a
minor.
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The survey paper [T] by Thomas provides many examples of graph properties and
their corresponding forbidden minors.

We do not need Theorem 5 in order to prove our theorem about forbidden minors.
This result simply predicts that there will be a finite list of forbidden minors for our
problem, while it provides no help in finding them.

The forbidden minor for 1-realizability is K3. For d-realizability, the graph Kd+2 is a
forbidden minor (but not necessarily the only minimal forbidden minor), because it can
be realized as the 1-skeleton of a (d + 1)-simplex.

The following definition will be helpful in characterizing 2-realizable graphs.

Definition 3. A graph is series parallel if it is a subgraph of a graph that is constructed
from a K2 by repeatedly attaching subdivided edges to two adjacent vertices.

Wagner [W] classified series parallel graphs in terms of minors. See [D] for a more
recent proof.

Theorem 6 [W]. A graph G is series parallel if and only if G does not contain K4 as
a minor; i.e., K4 is the only forbidden minor for series parallel graphs.

We are now ready to classify 2-realizable graphs.

Theorem 2. A graph is 2-realizable if and only if it does not have K4 as a minor.

Proof. First, suppose that a graph G does not have K4 as a minor. Then by Theorem 6, G
is series parallel. We can assume that G is maximally series parallel (if any edge is added
to the graph, it is no longer series parallel), since subgraphs of d-realizable graphs are
d-realizable. A maximally series parallel graph can be constructed from K2 by attaching
subdivided edges with exactly one subdivision between two adjacent vertices.

We will proceed by induction. The graph K2 is 2-realizable. If we attach a subdivided
edge to adjacent vertices with edge lengths satisfying the triangle inequality to a graph
that is realized in E2, the resulting graph can also be realized in E2. By induction, all
maximally series parallel graphs are 2-realizable.

Now, suppose that a graph G is 2-realizable. Note that K4 is not 2-realizable, because
there are realizations of K4 in E3 as the 1-skeleton of a tetrahedron. Thus, G cannot
contain K4 as a minor.

3. Tree Decompositions

It will be helpful to be able to create examples of d-realizable graphs. In creating some
examples of d-realizable graphs, we want a generalization of trees and series parallel
graphs. Trees are created by joining paths together along vertices. Series parallel graphs
are created by attaching a subdivided edge to two adjacent vertices and possibly taking
a subgraph. The generalization we need is provided by tree decompositions, which were
used extensively by Robertson and Seymour [RS1].
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2-tree Partial 2-tree 3-tree

Fig. 2. Examples of partial k-trees.

Definition 4. Let G1 and G2 be two graphs, both containing a Kk as a subgraph. The
k-sum of G1 and G2, denoted G1⊕k G2, is the graph obtained by identifying the two Kk’s.

Note that G1⊕k G2 is uniquely defined once the correspondence between the vertices
in the copies of Kk in G1 and G2 is determined.

Definition 5. A graph is a k-tree if it can by obtained through a sequence of k-sums of
Kk+1’s. A graph is a partial k-tree if it is a subgraph of a k-tree.

Clearly, a graph is a partial 2-tree if and only if it is a series parallel graph. Figure 2
shows an example of a 2-tree, a partial 2-tree, and a 3-tree.

Suppose G1 and G2 are both d-realizable and both contain a Kd subgraph. We can
realize both G1 and G2 in Ed and then attach the two realizations along the common Kd

subgraph to create a realization of G1⊕d G2 in Ed . Thus, G1⊕d G2 is also d-realizable.
Forests are equivalent to partial 1-trees, so 1-realizable graphs are partial 1-trees.

Series parallel graphs are equivalent to partial 2-trees, so 2-realizable graphs are partial
2-trees. Clearly, all partial d-trees are d-realizable.

4. Which Graphs Are 3-Realizable?

Arnborg et al. [APC] have determined the forbidden minors of partial 3-trees.

Theorem 7 [APC]. The forbidden minors for partial 3-trees are K5, the 1-skeleton of
the octahedron (K2,2,2), V8, and C5 × C2 (see Fig. 3).

K5 Octahedron = K2,2,2 V8 C5 × C2

Fig. 3. Forbidden minors for partial 3-trees.
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Fig. 4. Steps 1–5 of the proof of Theorem 8.

Given the above theorem, it is reasonable to ask which graphs in Fig. 3 are 3-realizable.
If any of these graphs is not 3-realizable, then it is a forbidden minor for 3-realizability.
We already know that K5 is not 3-realizable. The following theorem shows that the
octahedron is not 3-realizable.

Theorem 8. The 1-skeleton of the octahedron (K2,2,2) is not 3-realizable.

Proof. We construct a realization of the octahedron in E4 that cannot be realized in E3.
Figure 4 shows the construction.

Step 1: We start with a degenerate triangle with edge lengths 1, 1, and 2. This is the
only way to realize these three points with the given lengths (up to congruence, which
includes reflections and translations). We label these vertices 1, 2, and 3 in order.

Step 2: Now we attach vertex 4 to this degenerate triangle at vertices 1 and 3 with
edge lengths

√
2 and

√
2. This is again the only way to realize this graph with these edge

lengths (up to congruence).
Step 3: Now we attach vertex 5 to vertices 1, 2, and 4. We place this vertex in the

third dimension above the plane� determined by vertices 1, 2, 3, and 4. We make all of
the new edges have length 1. This is the only way to realize this graph with these edge
lengths (up to congruence).

Step 4: We now attach vertex 6 to vertices 2, 3, and 4. In three dimensions we place
it either above or below the plane �. We make all of the new edges have length 1. Note
that in E3 there are only two possible realizations. However, in E4, there are infinitely
many possible realizations. Vertex 6 can rotate around plane� without changing any of
the edge lengths.
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Fig. 5. Graphs of V8 with an added edge contract to K5.

Step 5: There is one final edge to add between vertices 5 and 6. In E3 this edge has
only two possible lengths (

√
2 and 2 for the given edge lengths), but in E4 this edge can

be any length in between.
This gives us infinitely many realizations in E4 that cannot be realized in E3. Thus,

the octahedron is not 3-realizable.

The graphs V8 and C5 × C2 are 3-realizable, as shown in [Sl]. This leaves open the
possibility that there are other graphs which are not 3-realizable but do not have K5

or the octahedron as a minor. We eliminate this possibility by showing that any graph
containing V8 or C5 × C2 as a minor either contains K5 or the octahedron as a minor or
is 3-realizable. We need some lemmas about V8 and C5 × C2.

Lemma 1. If any edge is added between nonadjacent vertices of V8, the resulting graph
has K5 as a minor.

Proof. There are two ways to add an edge to V8 up to graph isomorphism. Figure 5
shows these two graphs. The solid bold edge is the added edge. If we contract the dotted
edges, the resulting graph is K5.

Lemma 2. If any edge is added between nonadjacent vertices of C5×C2, the resulting
graph has either the octahedron or K5 as a minor.

Proof. There are three ways to add an edge to C5 × C2 up to graph isomorphism.
Figure 6 shows these three graphs. The added edge is in bold. Contracting the dotted
edges produces the octahedron for the first two graphs and K5 for the third graph.

We say that a graph G is obtained from a graph H by splitting a vertex if H is obtained
from G by contracting an edge e, where both ends of e have degree at least 3 in G. A

Contracts to octahedron Contracts to octahedron Contracts to K5

Fig. 6. Graphs of C5 × C2 with an added edge contract to either the octahedron or K5.
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graph is a wheel if it is obtained from a cycle on at least three vertices by adding a
vertex joined to every vertex on the cycle. A graph G is 3-connected if it has at least four
vertices and every graph obtained by deleting two vertices is connected.

Seymour [Se] proved the following theorem, which is a useful tool for proving for-
bidden minor theorems. The theorem can also be found in [T]

Theorem 9. Let H be a 3-connected minor of a 3-connected graph G such that H is
not a wheel. Then G can be obtained from H by repeatedly applying the operations of
adding an edge between two nonadjacent vertices and splitting a vertex.

Note that V8 and C5 × C2 are both 3-connected.
We are now ready to prove the main theorem. We thank Monique Laurent and Robin

Thomas for pointing out omissions in the initial draft of this proof.

Theorem 3 (Main Theorem). The forbidden minors for 3-realizability are K5 and the
octahedron.

Proof. We assume that V8 and C5 × C2 are 3-realizable (see [Sl]).
We know that K5 is a forbidden minor. By Theorem 8, the octahedron is a forbidden

minor.
We need to show that if a graph G does not have K5 or the octahedron as a minor, then

it is 3-realizable. We can assume that G is connected, since each connected component
can be realized separately.

In a somewhat similar manner, we can assume that G is 3-connected. If there is a
vertex whose deletion disconnects the graph, then G is the 1-sum of two graphs, which
can be realized in E3 separately and then joined together at the vertex. If there are two
vertices whose deletion disconnects the graph, we can do essentially the same thing. The
graph G is a subgraph of the 2-sum of two graphs, which can be realized separately. To
get the two graphs from G:

1. Remove the two vertices u and v, disconnecting the graph into two graphs H1

and H2.
2. Consider the induced subgraph of G spanned by the vertices of H1 and u and v.

Do the same for H2.
3. Add an edge between u and v (if there is not already an edge). Call the resulting

graphs G1 and G2.

Now, G is a subgraph of G1 ⊕2 G2 (either G is G1 ⊕2 G2 or G is G1 ⊕2 G2 minus
the edge between u and v). Note that if G did not contain K5 or K2,2,2 as a minor, then
G1 and G2 do not either.

Thus, we can assume that G is 3-connected, so we can use Theorem 9.
The graph G must contain either V8 or C5 ×C2 as a minor. By Theorem 9, G can be

obtained from V8 or C5 ×C2 by repeatedly adding an edge and splitting a vertex. Thus,
either G is V8 or C5 ×C2 or G has V8 plus an edge or C5 ×C2 plus an edge as a minor.
In the second case, by Lemmas 1 and 2, G has K5 or K2,2,2 as a minor.
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K4 K4 3-summed with four K4’s

Fig. 7. The cube is a partial 3-tree.

Thus, we get that every graph that does not contain K5 or K2,2,2 as a minor can be
constructed from partial 3-trees, V8’s, and C5 × C2’s using 1-sum, 2-sum, and 3-sums,
and is 3-realizable.

We can also classify 3-realizable graphs based on their k-sum “building blocks.”
Every 3-realizable graph is a subgraph of a graph that can be obtained by a sequence
of 3-sums and 2-sums involving K4, V8, and C5 × C2. Since neither V8 nor C5 × C2

contains a K3 as a subgraph, both of these graphs must be attached with 2-sums.

5. Examples

Example 1. The 1-skeleton of the cube is a partial 3-tree, and therefore 3-realizable.

Consider the 1-skeleton of the tetrahedron (K4). Take the 3-sum of this graph with
four other K4’s, one for each face of the tetrahedron. The resulting graph shown in Fig. 7
has the cube as a subgraph.

Example 2. The graph K3,3 is a partial 3-tree, and therefore 3-realizable.

Consider a triangle (K3), and 3-sum this graph with three K4’s, all being attached to
the original triangle. The resulting graph shown in Fig. 2 has K3,3 as a subgraph.

Example 3. The Cauchy graph on n ≥ 5 vertices Chn (defined below) is 4-realizable,
but not 3-realizable.

The graph Chn is the graph obtained from a cyclic graph by placing an edge between
every other vertex. Figure 8 shows several Cauchy graphs. The graph Chn is a minor of
Chn+2—if we label the vertices around the outer cycle 1, 2, . . . , n+ 2, then contracting
edges {1, 3} and {2, 4} of Chn+2 yields the graph Chn . The Cauchy graph on five vertices
is K5, so it is not 3-realizable; and the Cauchy graph on six vertices is the octahedron, so
it is not 3-realizable. Thus, all Chn for n ≥ 5 are not 3-realizable. However, all Cauchy
graphs are partial 4-trees, and thus 4-realizable.
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Ch5 Ch6 Ch7 Ch8

Fig. 8. The Cauchy graphs on five, six, seven, and eight vertices. Contracting the dotted edges in Ch7 and
Ch8 produces the graphs Ch5 and Ch6, respectively.

6. Discussion and Open Problems

The main theorem along with [Sl] classifies all 3-realizable graphs. For higher dimen-
sions, the problem is even harder. There are over 75 known forbidden minors for partial
4-trees [Sa1]. There is an algorithm in [Sa2] that determines whether a graph is a partial
4-tree in linear time.

Given a graph G and a dimension d, it should be possible to use techniques of algebraic
geometry to determine whether G is d-realizable. Let e = |E(G)| and v = |V (G)|, and
suppose that we know that G is N -realizable (for example, N could be v). There is a
polynomial function from R

Nv to Re which takes a realization in EN and returns the
length of each edge. The image of this polynomial function is a semi-algebraic set (a
set defined as a finite union of sets defined by a finite list of polynomial inequalities).
There is a similar polynomial function from R

dv to Re. The question of whether G is
d-realizable is then equivalent to the question of whether the two semi-algebraic sets are
equal. This question can be solved, but the algorithm is exponential. One bound on the
complexity is (4e)O(Ndv2). See Chapter 13 of [BPR] for more information on determining
whether two semi-algebraic sets are equal.

Another question to ask is How fast does the number of forbidden minors for d-
realizability grow? What is an upper and lower bound for the number of forbidden
minors? We know that Kd+2 is a forbidden minor for all d. Also, there is an analogue
of the octahedron construction for all d ≥ 3, so there are at least two forbidden minors
for all d , and probably a lot more than two. It seems reasonable to conjecture that the
number of forbidden minors for d-realizability grows at a similar rate to the number of
forbidden minors for partial d-trees.

Once we know which graphs are d-realizable, we would like a reasonable algorithm to
realize a given weighted graph (a graph with specified edge lengths) inEd . The algorithm
should take a weighted d-realizable graph and either return that the weighted graph
cannot be realized in any dimension or return a realization in Ed . For d = 3, Matoušek
and Thomas showed that given a graph, a 3-tree decomposition can be determined in
linear time (see [MT]). A correction to their algorithm appears in [Sa2]. Their algorithm
takes a graph and either returns that the graph is not a partial 3-tree or returns a 3-tree
which has the original graph as a subgraph. This algorithm could be modified to find a
decomposition containing V8’s and C5 × C2’s.

For realizing partial 3-trees, the remaining question is how to assign edge lengths to
the new edges (the edges that are part of the 3-tree but not part of the original partial
3-tree). Note that it does not matter which tree decomposition we use. There may be
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multiple ways to make a partial 3-tree into a 3-tree. If the partial 3-tree (with given
edge lengths) has a realization in some dimension, then any 3-tree decomposition also
has a realization in that dimension (assign the edge lengths based on the partial 3-tree
realization). Thus, if we determine that one 3-tree with the required edge lengths on the
subgraph cannot be realized in dimension 3, then the original weighted graph could not
be realized in dimension 3. For realizing graphs containing V8’s and C5×C2’s, we would
need a way to assign edge lengths to new edges and we would need a way to realize V8’s
and C5 × C2’s with specified edge lengths.

The analogous question for d = 2 has been fully answered by Jack Snoeyink. He has
given an algorithm running in linear time and space as a function of n, the number of
vertices of the graph G, to determine a partial 2-tree realization.

One of the motivations for this paper is a result of Barvinok in [B1]. See also [DL]
for another proof of the first statement below. The following is a special case of a
more general situation considered by Barvinok for the solution of quadratic polynomial
equations, but this is most relevant for us.

Theorem 10. Any graph G with e edges is d-realizable if e < (d + 1)(d + 2)/2.
Furthermore, G is still d-realizable if e = (d + 1)(d + 2)/2, and G is not the complete
graph Kd+1.

This last extension is in [B2]. This leads to the following conjecture:

Conjecture. If a graph G has e edges and e < (d + 1)(d + 2)/2, then G is a partial
d-tree. Furthermore, if G has e = (d + 1)(d + 2)/2, and G is not the complete graph
Kd+1, then G is still a d-tree.
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