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Abstract. Let F be a family of convex figures in the plane. We say that F has property
T if there exists a line intersecting every member of F . Also, the family F has property
T (k) if every k-membered subfamily of F has property T . Let B be the unit disc centered
at the origin. In this paper we prove that if a finite family F = {xi + B: i ∈ I } of translates
of B has property T (4) then the family F ′ = {xi + λB: i ∈ I }, where λ = (1+√5)/2,
has property T . We also give some results concerning families of translates of the unit disc
which has either property T (3) or property T (5).

1. Introduction

Let F be a family of compact convex sets in the plane. We say that F has property
T if there exists a line intersecting every member of F . Also, if F consist of at least
k members, we say that F has property T (k) if every k-membered subfamily of F has
property T .

Over the years considerable effort has been devoted to finding conditions on the family
F such that T (k) implies T . This problem was posed by Vincensini [9] and the first result
in that direction was the following result due to Santaló [6]:

Santaló’s Theorem. Let F be a family of parallelotopes in En with edges parallel to
the coordinate axes. If F has property T (2n−1(2n − 1)) then F has property T .

In 1964 Grünbaum [3] posed the following problem:

Let C be a centrally symmetric figure and let F = {xi + C} be a finite family
of translates of C such that F has property T (m). What is the smallest positive
number λ = λ(C,m) such that, for every such F, the family F ′ = {xi + λC} has
property T ?
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An upper bound for Grünbaum’s problem was given by Eckhoff [2]:

Eckhoff’s Theorem. If a finite family F of translates of C in the plane has property
T (3) then there exists a parallel strip of C-width 1 intersecting all members of F .

Where by the C-width of a set X , in direction u, we mean the ratio between the width
of X and the width of C , both taken in the direction u.

Heppes [5] proved the following result for the case of circles:

Heppes’s Theorem. If a finite family F of pairwise disjoint translates of a disc of
diameter 1 in the plane has property T (3), then there exists a parallel strip of width
< 0.65 intersecting all members of F .

The aim of this paper is to give some results in this direction for families of translates
of unit circles.

2. Some Results on Transversals

We begin with some observations:

That three translates of the euclidean unit circle (B), xi + B (i = 1, 2, 3), have a
common line transversal is equivalent to saying that at least one altitude of the triangle
	x1x2x3 has length at most 2 (see Fig. 1).

We can state the problem, for the case of unit circles, in the following equivalent way:
Let X be a finite set of points in the plane such that every three of them are contained
in some parallel strip of width 2. What is the smallest positive number α such that any
such set X, with the above property, is contained in a parallel strip of width α?

Independently, Eckhoff [1] and Dolnikov (1972) conjectured that this minimum num-
ber α must be equal to 1+√5. This is equivalent to saying that

λ(B, 3) = 1+√5

2
.

We will show that if we consider property T (4) instead of T (3) the number (1+√5)/2
is the best. That this number cannot be improved is shown by a classical example (which
we call the pentagonal example) consisting of unit circles centered at the set of vertices
of a regular pentagon whose sides have length equal to 2(sin 72◦)−1 (Fig. 2).
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In what follows, we consider only finite families of translates of a given convex figure.
In order to prove Theorem 1 we will need the following lemma:

Lemma 1. Let F be a finite family of unit discs in the plane which has property T (3),
and let	x1x2x3 be a triangle of centers of the discs which has maximum area. If	x1x2x3

has two altitudes of length at most 2, then there exists a parallel strip of width 1 +√5
which contains the set of centers.

Let a, b, c be points in E2. We denote by |ab| the length of the segment [a, b] and by
d(a, bc) the distance from the point a to the line bc. Also, if C is a closed convex curve
in the plane, we denote by |C | the area of the convex hull of C . The following lemma is
due to Straus [7]:

Straus’s Lemma. If C is a closed convex curve in E2 and one of the sides of an
inscribed triangle T of maximum area lies on C, then the ratio of the areas satisfies√

5 · |T | ≥ |C |, with equality if and only if C is an affine regular pentagon.

In the case where C is the boundary of a convex pentagon, it is not difficult to prove
that there is a triangle, T , of maximum area whose vertices are vertices of the pentagon.
Thus, one of the sides of T lies on C and so Straus’s lemma applies.

Proof of Lemma 1. Obviously, there exists such a triangle 	x1x2x3 since the set of
centers, X, is finite. Suppose that d(x2, x1x3) ≤ 2 and d(x3, x1x2) ≤ 2. Let 	y1 y2 y3 be
the homothetic copy of 	x1x2x3 with center of homothety at the centroid of 	x1x2x3

and a constant of homothety equal to−2. We have X ⊂ 	y1 y2 y3, otherwise we can find
another triangle with vertices at points of X with greater area. Now, let p: E2 −→ E

2

be an affine transformation with ai = p(xi ), for i = 1, 2, 3, such that |a1a2| = |a1a3|,
|a1a2|/|a2a3| = (1+√5)/2, and |a2a3| = 2(sin 72◦)−1. Also, let bi = p(yi ), for
i = 1, 2, 3, and X ′ = p(X). Clearly, 	a1a2a3 is a triangle of X ′ of maximum area.

Let mn be a line parallel to a1a2 and let oq be parallel to a1a3, such that d(n, b1b2) =
d(q, b1b3) = 1+√5 (see Fig. 3). Then X ′ must be contained either in the quadrilateral
mnb1b2 or in the quadrilateral qob3b1. Otherwise, there exist points d, e ∈ X ′ such that
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d(e, b1b3) > 1+√5 and d(d, b1b2) > 1+√5. In this case we have

|a1a2a3|
|a1da2a3e| <

1√
5
,

contradicting Straus’s lemma. Then, without loss of generality, we can assume that X ′

is contained in the quadrilateral mnb1b2. Since the strip with boundary lines mn and
b1b2 contains X ′, it follows that the strip with boundary lines p−1(mn) and p−1(b1b2)

contains X and this strip has width at most 1+√5.

Now, as we have said before, by replacing T (3) by T (4) we obtain the following
result which was conjectured by Eckhoff [1]:

Theorem 1. Let F be a finite family of unit discs in the plane. If F has property T (4)
then there exists a parallel strip of width 1+√5 which contains the set of centers.

Proof of Theorem 1. Let 	x1x2x3, where {x1, x2, x3} ⊂ X, be a triangle of maximum
area. By Lemma 1 we may assume that 	x1x2x3 has exactly one altitude ≤ 2, so we
may assume (1+√5)/2 < d(x2, x1x3) ≤ 2.

As in the proof of Lemma 1 we have that X ⊂ 	y1 y2 y3, where 	y1 y2 y3 is the
homothetic copy of 	x1x2x3 with center of homothety the centroid of 	x1x2x3 and
constant of homothety equal to−2. Clearly, there must exist an x ∈ X with d(x, y1 y3) >

1 +√5, or else we are done, so let e ∈ X be a point that maximizes this distance (see
Fig. 4).

Since every four points of X are contained in a strip of width 2 and the triangle
	x1x2x3 has exactly one altitude ≤ 2, we have either d(x2, x3e) ≤ 2 or d(x2, x1e) ≤ 2.
Without loss of generality we may assume that d(x2, x3e) ≤ 2.

Claim 1. There exists a parallel strip which contains X, whose boundary lines are
parallel to x3e and whose width is less than 1+√5.
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Proof of Claim 1. Let p: E2 −→ E
2 be an affine transformation with x ′i = p(xi ),

for i = 1, 2, 3, such that |x ′1x ′2| = |x ′1x ′3|, |x ′1x ′2|/|x ′2x ′3| = (1+√5)/2, and |x ′2x ′3| =
2(sin 72◦)−1. Also, let y′i = p(yi ), for i = 1, 2, 3, e′ = p(e), and X ′ = p(X). We
consider points f ∈ [x ′3, y′2], g ∈ [x ′1, y′2], p ∈ [x ′2, y′3], and q ∈ [x ′1, y′3], such that
d( f, y′1 y′3) = d(g, y′1 y′3) = d(p, y′1 y′2) = d(q, y′1 y′2) = 1 + √5 (see Fig. 5). Let
m ∈ [ f, y′2] and n ∈ [g, y′2] be points such that mn is parallel to y′1 y′3 and e′ ∈ [m, n].
We deduce X ′ must be contained in the quadrilateral mny′3 y′1. Now, we consider points
r ∈ [x ′2, p], s ∈ [x ′1, q], such that rs is parallel to y′1 y′2 and |qs| = |gn|. Since 	x ′1x ′2x ′3
is a triangle of maximum area we know by Straus’s lemma that any point of X ′ must be
below the line rs. This implies that X ′ must be contained in the pentagon y′1mnsr. Let
S1 be the parallel strip whose boundary lines are l1 and l2, with m ∈ l1, r ∈ l2, and l1

and l2 parallel to x ′3e′. We then have X ′ ⊂ S1 which implies that X ⊂ p−1(S1). Now,
we will prove that p−1(S1) has width less than 1+√5.

Let t be the point of segment [p, q] such that |pt | = |pr | = | f m| (see Fig. 6). Thus
the segments [t,m], [p, f ], and [x ′2, x ′3] are parallel. Since |x ′1g| > 1

2 |x ′1 y′2| it follows
that ∠x ′1x ′3e′ > 1

2∠x ′1x ′3 y′2 = ∠prt. This in turn implies that l2 intersects the interior of

b

x′
1

x′
2

x′
3

y′
1

y′
2

y′
3

f

g

m

ne′

p

qr

s

l1

l2

Fig. 5



414 J. Jerónimo

b b

b

b

t
b

u
b

v
b

w
b

x′
1

x′
2

x′
3

y′
1

y′
2

y′
3

f
m

e′

p

qr

l1

l2

g

n

Fig. 6

the segment [t,m] in a point u. Moreover, let x ′2v be parallel to x ′3e′, with v ∈ [t,m],
and let w = [x ′3, e′] ∩ [t,m].

Let S2 be the strip whose boundary lines are x ′2v and x ′3w. Since |vw| = |x ′2x ′3| =
|x ′1 y′2|, |tm| = |qy′2|, and |qy′2|/|x ′1 y′2| = (1+

√
5)/2, we have

|um|
|vw| <

|tm|
|vw| =

|qy′2|
|x ′1 y′2|

= 1+√5

2
;

this implies that the ratio between the width of S1 and the width of S2 is less than
(1+√5)/2. As affine transformations preserve the ratio between lengths of parallel
segments, then we get that the ratio between the width of the strip p−1(S1) and the width
of the strip p−1(S2) is less than (1+√5)/2. Since the width of p−1(S2) is at most 2
(since d(x2, x3e) ≤ 2), the width of p−1(S1) is less than 1+√5.

Thus, we conclude that there exists a parallel strip of width 1 + √5 which con-
tains X .

Remark 1. Notice that in the proof of Theorem 1 we only require that the translates of
B by the vectors x1, x2, x3, and e possess a common transversal, i.e., it is not necessary
that the whole family F possesses the property T (4). Furthermore, since we know that
the number (1+√5)/2 is necessary for the pentagonal example, we have proved that
λ(B, 4) = (1+√5)/2.

With stronger conditions it is possible to obtain a better constant, 2
√

2, although this
constant could probably be reduced. We obtain this result by a nice application of the
following theorem due to Hadwiger and Debrunner [4]:

Hadwiger–Debrunner’s Theorem. Given any family of parallelograms with parallel
edges, such that any three can be intersected by an ascending line, there exists an
ascending line intersecting all the parallelograms.
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Theorem 2. LetF be a family of unit discs in the plane which has property T (5). Then
there exists a parallel strip of width 2

√
2 which contains the set of centers.

Proof of Theorem 2. Let x1, x2 be points in the set of centers, X, which are further
apart and let o be the midpoint of the segment [x1, x2]. If d(x1, x2) ≤ 2

√
2, then for

every point x ∈ X we have that the distance from x to the line perpendicular to x1x2

through o is≤ √2. So the conclusion of the theorem follows. Else, we may assume that
d(x1, x2) > 2

√
2. Consider the coordinate axes through o in such a way that x1x2 is

an angle-bisector to the angle formed by the axes (see Fig. 7). With each disc in F we
associate a circumscribed square which has sides parallel to the coordinate axes; in this
way we obtain a finite family, F ′, of translates of a square with side 2.

As we can see, the squares centered at x1 and x2 have only ascending transversals.
Furthermore, since F has property T (5), and so F ′, we have that every three members
of F ′ have an ascending transversal. It follows, by Hadwiger–Debrunner’s theorem that
there exists a line l which is a common transversal to every member of F ′. Therefore,
any center of a square belonging to F ′ has a distance at most

√
2 from l. We conclude

that there exists a parallel strip of width 2
√

2 which contains the set of centers.

Now, denote by Q a square of side 2 and consider a family F of translates of Q. If F
has property T (6) then there exists a line transversal to each member of this family, as
was shown by Santaló. Assume that the family has property T (3). Then we obtain that
the constant 1 in Eckhoff’s result is the best possible. The following result was previously
proved by Eckhoff [2], however, for completeness we give a proof for it here:

Theorem 3. Let F be a finite family of translates of Q which has property T (3). Then
there exists a parallel strip of Q-width 1 which intersects every member ofF . Moreover,
this constant cannot be reduced, i.e., λ(Q, 3) = 2.

Proof of Theorem 3. By Eckhoff’s theorem we know that there exists a parallel strip
of Q-width at most 2 which contains the set of centers. Let F = {P1, P2, P3, P4} be a
family consisting of four translates of the unit square, where the translates have centers
x1, x2, x3, and x4, respectively. Choose the translates so that x1x2x3x4 is a square of side
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2 whose sides are parallel to the sides of the unit square. As we can see in Fig. 8, F has
property T (3) but no property T , i.e., there exists no common transversal for the family
F . Since any parallel strip containing the set {x1, x2, x3, x4} must contain the square
x1x2x3x4, it must have Q-width at least 2, therefore, the number 1 given in the theorem
cannot be reduced.

Remark 2. Let K be a convex body in the plane. The following was observed by
Eckhoff:

λ(K , 3) = 2 if and only if K is a parallelogram.

3. Final Remarks

The Eckhoff–Dolnikov conjecture remains open for the case where the triangle of max-
imum area has only one altitude ≤ 2. It is possible that the techniques used in this paper
could be useful for the proof of this conjecture.

Letting F be a finite family of translates of a figure of constant width, we find that
Lemma 1, Theorem 1, and Theorem 2 are still valid. This can be seen from the following
reduction noted by Tverberg [8]: Let K be a convex set and let K ′ be the centrally
symmetric set obtained by setting K ′ = 1

2 (K + (−K )). Let F = {xi + K : i ∈ I } be
a family of translates of K and let F ′ = {xi + K ′: i ∈ I } be the associated family of
translates of K ′. Then it is easily seen that F and F ′ share the same properties with
respect to disjointness, transversals, and GPs. We know that in the case when K is a
figure of constant width, K ′ is a euclidean disc, hence our assertion follows.

Obviously, the number 2
√

2 in Theorem 2 could be reduced using better arguments.
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