Line Transversals to Translates of Unit Discs

Jesús Jerónimo Castro
Centro de Investigación en Matemáticas,
Guanajuato, Gto., C.P. 36000, México
jeronimo@cimat.mx

Abstract

Let \mathcal{F} be a family of convex figures in the plane. We say that \mathcal{F} has property T if there exists a line intersecting every member of \mathcal{F}. Also, the family \mathcal{F} has property $T(k)$ if every k-membered subfamily of \mathcal{F} has property T. Let B be the unit disc centered at the origin. In this paper we prove that if a finite family $\mathcal{F}=\left\{x_{i}+B: i \in I\right\}$ of translates of B has property $T(4)$ then the family $\mathcal{F}^{\prime}=\left\{x_{i}+\lambda B: i \in I\right\}$, where $\lambda=(1+\sqrt{5}) / 2$, has property T. We also give some results concerning families of translates of the unit disc which has either property T (3) or property T (5).

1. Introduction

Let \mathcal{F} be a family of compact convex sets in the plane. We say that \mathcal{F} has property T if there exists a line intersecting every member of \mathcal{F}. Also, if \mathcal{F} consist of at least k members, we say that \mathcal{F} has property $T(k)$ if every k-membered subfamily of \mathcal{F} has property T.

Over the years considerable effort has been devoted to finding conditions on the family \mathcal{F} such that $T(k)$ implies T. This problem was posed by Vincensini [9] and the first result in that direction was the following result due to Santaló [6]:

Santaló's Theorem. Let \mathcal{F} be a family of parallelotopes in \mathbb{E}^{n} with edges parallel to the coordinate axes. If \mathcal{F} has property $T\left(2^{n-1}(2 n-1)\right)$ then \mathcal{F} has property T.

In 1964 Grünbaum [3] posed the following problem:
Let C be a centrally symmetric figure and let $\mathcal{F}=\left\{x_{i}+C\right\}$ be a finite family of translates of C such that \mathcal{F} has property $T(m)$. What is the smallest positive number $\lambda=\lambda(C, m)$ such that, for every such \mathcal{F}, the family $\mathcal{F}^{\prime}=\left\{x_{i}+\lambda C\right\}$ has property T ?

An upper bound for Grünbaum's problem was given by Eckhoff [2]:
Eckhoff's Theorem. If a finite family \mathcal{F} of translates of C in the plane has property $T(3)$ then there exists a parallel strip of C-width 1 intersecting all members of \mathcal{F}.

Where by the C-width of a set X, in direction u, we mean the ratio between the width of X and the width of C, both taken in the direction u.

Heppes [5] proved the following result for the case of circles:
Heppes's Theorem. If a finite family \mathcal{F} of pairwise disjoint translates of a disc of diameter 1 in the plane has property $T(3)$, then there exists a parallel strip of width <0.65 intersecting all members of \mathcal{F}.

The aim of this paper is to give some results in this direction for families of translates of unit circles.

2. Some Results on Transversals

We begin with some observations:
That three translates of the euclidean unit circle $(B), x_{i}+B(i=1,2,3)$, have a common line transversal is equivalent to saying that at least one altitude of the triangle $\Delta x_{1} x_{2} x_{3}$ has length at most 2 (see Fig. 1).

We can state the problem, for the case of unit circles, in the following equivalent way: Let X be a finite set of points in the plane such that every three of them are contained in some parallel strip of width 2 . What is the smallest positive number α such that any such set X, with the above property, is contained in a parallel strip of width α ?

Independently, Eckhoff [1] and Dolnikov (1972) conjectured that this minimum number α must be equal to $1+\sqrt{5}$. This is equivalent to saying that

$$
\lambda(B, 3)=\frac{1+\sqrt{5}}{2}
$$

We will show that if we consider property $T(4)$ instead of $T(3)$ the number $(1+\sqrt{5}) / 2$ is the best. That this number cannot be improved is shown by a classical example (which we call the pentagonal example) consisting of unit circles centered at the set of vertices of a regular pentagon whose sides have length equal to $2\left(\sin 72^{\circ}\right)^{-1}($ Fig. 2).

Fig. 1

Fig. 2

In what follows, we consider only finite families of translates of a given convex figure. In order to prove Theorem 1 we will need the following lemma:

Lemma 1. Let \mathcal{F} be a finite family of unit discs in the plane which has property T (3), and let $\Delta x_{1} x_{2} x_{3}$ be a triangle of centers of the discs which has maximum area. If $\triangle x_{1} x_{2} x_{3}$ has two altitudes of length at most 2 , then there exists a parallel strip of width $1+\sqrt{5}$ which contains the set of centers.

Let a, b, c be points in \mathbb{E}^{2}. We denote by $|a b|$ the length of the segment $[a, b]$ and by $d(a, b c)$ the distance from the point a to the line $b c$. Also, if C is a closed convex curve in the plane, we denote by $|C|$ the area of the convex hull of C. The following lemma is due to Straus [7]:

Straus's Lemma. If C is a closed convex curve in \mathbb{E}^{2} and one of the sides of an inscribed triangle T of maximum area lies on C, then the ratio of the areas satisfies $\sqrt{5} \cdot|T| \geq|C|$, with equality if and only if C is an affine regular pentagon.

In the case where C is the boundary of a convex pentagon, it is not difficult to prove that there is a triangle, T, of maximum area whose vertices are vertices of the pentagon. Thus, one of the sides of T lies on C and so Straus's lemma applies.

Proof of Lemma 1. Obviously, there exists such a triangle $\Delta x_{1} x_{2} x_{3}$ since the set of centers, X, is finite. Suppose that $d\left(x_{2}, x_{1} x_{3}\right) \leq 2$ and $d\left(x_{3}, x_{1} x_{2}\right) \leq 2$. Let $\Delta y_{1} y_{2} y_{3}$ be the homothetic copy of $\Delta x_{1} x_{2} x_{3}$ with center of homothety at the centroid of $\Delta x_{1} x_{2} x_{3}$ and a constant of homothety equal to -2 . We have $X \subset \Delta y_{1} y_{2} y_{3}$, otherwise we can find another triangle with vertices at points of X with greater area. Now, let $p: \mathbb{E}^{2} \longrightarrow \mathbb{E}^{2}$ be an affine transformation with $a_{i}=p\left(x_{i}\right)$, for $i=1,2,3$, such that $\left|a_{1} a_{2}\right|=\left|a_{1} a_{3}\right|$, $\left|a_{1} a_{2}\right| /\left|a_{2} a_{3}\right|=(1+\sqrt{5}) / 2$, and $\left|a_{2} a_{3}\right|=2\left(\sin 72^{\circ}\right)^{-1}$. Also, let $b_{i}=p\left(y_{i}\right)$, for $i=1,2,3$, and $X^{\prime}=p(X)$. Clearly, $\triangle a_{1} a_{2} a_{3}$ is a triangle of X^{\prime} of maximum area.

Let $m n$ be a line parallel to $a_{1} a_{2}$ and let $o q$ be parallel to $a_{1} a_{3}$, such that $d\left(n, b_{1} b_{2}\right)=$ $d\left(q, b_{1} b_{3}\right)=1+\sqrt{5}$ (see Fig. 3). Then X^{\prime} must be contained either in the quadrilateral $m n b_{1} b_{2}$ or in the quadrilateral $q o b_{3} b_{1}$. Otherwise, there exist points $d, e \in X^{\prime}$ such that

Fig. 3
$d\left(e, b_{1} b_{3}\right)>1+\sqrt{5}$ and $d\left(d, b_{1} b_{2}\right)>1+\sqrt{5}$. In this case we have

$$
\frac{\left|a_{1} a_{2} a_{3}\right|}{\left|a_{1} d a_{2} a_{3} e\right|}<\frac{1}{\sqrt{5}},
$$

contradicting Straus's lemma. Then, without loss of generality, we can assume that X^{\prime} is contained in the quadrilateral $m n b_{1} b_{2}$. Since the strip with boundary lines $m n$ and $b_{1} b_{2}$ contains X^{\prime}, it follows that the strip with boundary lines $p^{-1}(m n)$ and $p^{-1}\left(b_{1} b_{2}\right)$ contains X and this strip has width at most $1+\sqrt{5}$.

Now, as we have said before, by replacing T (3) by T (4) we obtain the following result which was conjectured by Eckhoff [1]:

Theorem 1. Let \mathcal{F} be a finite family of unit discs in the plane. If \mathcal{F} has property T (4) then there exists a parallel strip of width $1+\sqrt{5}$ which contains the set of centers.

Proof of Theorem 1. Let $\triangle x_{1} x_{2} x_{3}$, where $\left\{x_{1}, x_{2}, x_{3}\right\} \subset X$, be a triangle of maximum area. By Lemma 1 we may assume that $\Delta x_{1} x_{2} x_{3}$ has exactly one altitude ≤ 2, so we may assume $(1+\sqrt{5}) / 2<d\left(x_{2}, x_{1} x_{3}\right) \leq 2$.

As in the proof of Lemma 1 we have that $X \subset \Delta y_{1} y_{2} y_{3}$, where $\Delta y_{1} y_{2} y_{3}$ is the homothetic copy of $\Delta x_{1} x_{2} x_{3}$ with center of homothety the centroid of $\Delta x_{1} x_{2} x_{3}$ and constant of homothety equal to -2 . Clearly, there must exist an $x \in X$ with $d\left(x, y_{1} y_{3}\right)>$ $1+\sqrt{5}$, or else we are done, so let $e \in X$ be a point that maximizes this distance (see Fig. 4).

Since every four points of X are contained in a strip of width 2 and the triangle $\Delta x_{1} x_{2} x_{3}$ has exactly one altitude ≤ 2, we have either $d\left(x_{2}, x_{3} e\right) \leq 2$ or $d\left(x_{2}, x_{1} e\right) \leq 2$. Without loss of generality we may assume that $d\left(x_{2}, x_{3} e\right) \leq 2$.

Claim 1. There exists a parallel strip which contains X, whose boundary lines are parallel to $x_{3} e$ and whose width is less than $1+\sqrt{5}$.

Fig. 4

Proof of Claim 1. Let $p: \mathbb{E}^{2} \longrightarrow \mathbb{E}^{2}$ be an affine transformation with $x_{i}^{\prime}=p\left(x_{i}\right)$, for $i=1,2,3$, such that $\left|x_{1}^{\prime} x_{2}^{\prime}\right|=\left|x_{1}^{\prime} x_{3}^{\prime}\right|,\left|x_{1}^{\prime} x_{2}^{\prime}\right| /\left|x_{2}^{\prime} x_{3}^{\prime}\right|=(1+\sqrt{5}) / 2$, and $\left|x_{2}^{\prime} x_{3}^{\prime}\right|=$ $2\left(\sin 72^{\circ}\right)^{-1}$. Also, let $y_{i}^{\prime}=p\left(y_{i}\right)$, for $i=1,2,3, e^{\prime}=p(e)$, and $X^{\prime}=p(X)$. We consider points $f \in\left[x_{3}^{\prime}, y_{2}^{\prime}\right], g \in\left[x_{1}^{\prime}, y_{2}^{\prime}\right], p \in\left[x_{2}^{\prime}, y_{3}^{\prime}\right]$, and $q \in\left[x_{1}^{\prime}, y_{3}^{\prime}\right]$, such that $d\left(f, y_{1}^{\prime} y_{3}^{\prime}\right)=d\left(g, y_{1}^{\prime} y_{3}^{\prime}\right)=d\left(p, y_{1}^{\prime} y_{2}^{\prime}\right)=d\left(q, y_{1}^{\prime} y_{2}^{\prime}\right)=1+\sqrt{5}$ (see Fig. 5). Let $m \in\left[f, y_{2}^{\prime}\right]$ and $n \in\left[g, y_{2}^{\prime}\right]$ be points such that $m n$ is parallel to $y_{1}^{\prime} y_{3}^{\prime}$ and $e^{\prime} \in[m, n]$. We deduce X^{\prime} must be contained in the quadrilateral $m n y_{3}^{\prime} y_{1}^{\prime}$. Now, we consider points $r \in\left[x_{2}^{\prime}, p\right], s \in\left[x_{1}^{\prime}, q\right]$, such that $r s$ is parallel to $y_{1}^{\prime} y_{2}^{\prime}$ and $|q s|=|g n|$. Since $\Delta x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime}$ is a triangle of maximum area we know by Straus's lemma that any point of X^{\prime} must be below the line $r s$. This implies that X^{\prime} must be contained in the pentagon $y_{1}^{\prime} m n s r$. Let S_{1} be the parallel strip whose boundary lines are l_{1} and l_{2}, with $m \in l_{1}, r \in l_{2}$, and l_{1} and l_{2} parallel to $x_{3}^{\prime} e^{\prime}$. We then have $X^{\prime} \subset S_{1}$ which implies that $X \subset p^{-1}\left(S_{1}\right)$. Now, we will prove that $p^{-1}\left(S_{1}\right)$ has width less than $1+\sqrt{5}$.

Let t be the point of segment $[p, q]$ such that $|p t|=|p r|=|f m|$ (see Fig. 6). Thus the segments $[t, m],[p, f]$, and $\left[x_{2}^{\prime}, x_{3}^{\prime}\right]$ are parallel. Since $\left|x_{1}^{\prime} g\right|>\frac{1}{2}\left|x_{1}^{\prime} y_{2}^{\prime}\right|$ it follows that $\angle x_{1}^{\prime} x_{3}^{\prime} e^{\prime}>\frac{1}{2} \angle x_{1}^{\prime} x_{3}^{\prime} y_{2}^{\prime}=\angle$ prt. This in turn implies that l_{2} intersects the interior of

Fig. 5

Fig. 6
the segment $[t, m]$ in a point u. Moreover, let $x_{2}^{\prime} v$ be parallel to $x_{3}^{\prime} e^{\prime}$, with $v \in[t, m]$, and let $w=\left[x_{3}^{\prime}, e^{\prime}\right] \cap[t, m]$.

Let S_{2} be the strip whose boundary lines are $x_{2}^{\prime} v$ and $x_{3}^{\prime} w$. Since $|v w|=\left|x_{2}^{\prime} x_{3}^{\prime}\right|=$ $\left|x_{1}^{\prime} y_{2}^{\prime}\right|,|t m|=\left|q y_{2}^{\prime}\right|$, and $\left|q y_{2}^{\prime}\right| /\left|x_{1}^{\prime} y_{2}^{\prime}\right|=(1+\sqrt{5}) / 2$, we have

$$
\frac{|u m|}{|v w|}<\frac{|t m|}{|v w|}=\frac{\left|q y_{2}^{\prime}\right|}{\left|x_{1}^{\prime} y_{2}^{\prime}\right|}=\frac{1+\sqrt{5}}{2}
$$

this implies that the ratio between the width of S_{1} and the width of S_{2} is less than $(1+\sqrt{5}) / 2$. As affine transformations preserve the ratio between lengths of parallel segments, then we get that the ratio between the width of the strip $p^{-1}\left(S_{1}\right)$ and the width of the strip $p^{-1}\left(S_{2}\right)$ is less than $(1+\sqrt{5}) / 2$. Since the width of $p^{-1}\left(S_{2}\right)$ is at most 2 (since $d\left(x_{2}, x_{3} e\right) \leq 2$), the width of $p^{-1}\left(S_{1}\right)$ is less than $1+\sqrt{5}$.

Thus, we conclude that there exists a parallel strip of width $1+\sqrt{5}$ which contains X.

Remark 1. Notice that in the proof of Theorem 1 we only require that the translates of B by the vectors x_{1}, x_{2}, x_{3}, and e possess a common transversal, i.e., it is not necessary that the whole family \mathcal{F} possesses the property T (4). Furthermore, since we know that the number $(1+\sqrt{5}) / 2$ is necessary for the pentagonal example, we have proved that $\lambda(B, 4)=(1+\sqrt{5}) / 2$.

With stronger conditions it is possible to obtain a better constant, $2 \sqrt{2}$, although this constant could probably be reduced. We obtain this result by a nice application of the following theorem due to Hadwiger and Debrunner [4]:

Hadwiger-Debrunner's Theorem. Given any family of parallelograms with parallel edges, such that any three can be intersected by an ascending line, there exists an ascending line intersecting all the parallelograms.

Fig. 7

Theorem 2. Let \mathcal{F} be a family of unit discs in the plane which has property T (5). Then there exists a parallel strip of width $2 \sqrt{2}$ which contains the set of centers.

Proof of Theorem 2. Let x_{1}, x_{2} be points in the set of centers, X, which are further apart and let o be the midpoint of the segment $\left[x_{1}, x_{2}\right]$. If $d\left(x_{1}, x_{2}\right) \leq 2 \sqrt{2}$, then for every point $x \in X$ we have that the distance from x to the line perpendicular to $x_{1} x_{2}$ through o is $\leq \sqrt{2}$. So the conclusion of the theorem follows. Else, we may assume that $d\left(x_{1}, x_{2}\right)>2 \sqrt{2}$. Consider the coordinate axes through o in such a way that $x_{1} x_{2}$ is an angle-bisector to the angle formed by the axes (see Fig. 7). With each disc in \mathcal{F} we associate a circumscribed square which has sides parallel to the coordinate axes; in this way we obtain a finite family, F^{\prime}, of translates of a square with side 2 .

As we can see, the squares centered at x_{1} and x_{2} have only ascending transversals. Furthermore, since \mathcal{F} has property $T(5)$, and so \mathcal{F}^{\prime}, we have that every three members of \mathcal{F}^{\prime} have an ascending transversal. It follows, by Hadwiger-Debrunner's theorem that there exists a line l which is a common transversal to every member of \mathcal{F}^{\prime}. Therefore, any center of a square belonging to \mathcal{F}^{\prime} has a distance at most $\sqrt{2}$ from l. We conclude that there exists a parallel strip of width $2 \sqrt{2}$ which contains the set of centers.

Now, denote by Q a square of side 2 and consider a family \mathcal{F} of translates of Q. If \mathcal{F} has property $T(6)$ then there exists a line transversal to each member of this family, as was shown by Santaló. Assume that the family has property T (3). Then we obtain that the constant 1 in Eckhoff's result is the best possible. The following result was previously proved by Eckhoff [2], however, for completeness we give a proof for it here:

Theorem 3. Let \mathcal{F} be a finite family of translates of Q which has property T (3). Then there exists a parallel strip of Q-width 1 which intersects every member of \mathcal{F}. Moreover, this constant cannot be reduced, i.e., $\lambda(Q, 3)=2$.

Proof of Theorem 3. By Eckhoff's theorem we know that there exists a parallel strip of Q-width at most 2 which contains the set of centers. Let $\mathcal{F}=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ be a family consisting of four translates of the unit square, where the translates have centers x_{1}, x_{2}, x_{3}, and x_{4}, respectively. Choose the translates so that $x_{1} x_{2} x_{3} x_{4}$ is a square of side

Fig. 8

2 whose sides are parallel to the sides of the unit square. As we can see in Fig. 8, \mathcal{F} has property T (3) but no property T, i.e., there exists no common transversal for the family \mathcal{F}. Since any parallel strip containing the set $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ must contain the square $x_{1} x_{2} x_{3} x_{4}$, it must have Q-width at least 2 , therefore, the number 1 given in the theorem cannot be reduced.

Remark 2. Let K be a convex body in the plane. The following was observed by Eckhoff:

$$
\lambda(K, 3)=2 \quad \text { if and only if } K \text { is a parallelogram. }
$$

3. Final Remarks

The Eckhoff-Dolnikov conjecture remains open for the case where the triangle of maximum area has only one altitude ≤ 2. It is possible that the techniques used in this paper could be useful for the proof of this conjecture.

Letting \mathcal{F} be a finite family of translates of a figure of constant width, we find that Lemma 1, Theorem 1, and Theorem 2 are still valid. This can be seen from the following reduction noted by Tverberg [8]: Let K be a convex set and let K^{\prime} be the centrally symmetric set obtained by setting $K^{\prime}=\frac{1}{2}(K+(-K))$. Let $\mathcal{F}=\left\{x_{i}+K: i \in I\right\}$ be a family of translates of K and let $\mathcal{F}^{\prime}=\left\{x_{i}+K^{\prime}: i \in I\right\}$ be the associated family of translates of K^{\prime}. Then it is easily seen that \mathcal{F} and \mathcal{F}^{\prime} share the same properties with respect to disjointness, transversals, and GPs. We know that in the case when K is a figure of constant width, K^{\prime} is a euclidean disc, hence our assertion follows.

Obviously, the number $2 \sqrt{2}$ in Theorem 2 could be reduced using better arguments.

Acknowledgements

I thank V.L. Dolnikov for his constant advice and many helpful discussions. I am also indebted to Jürgen Eckhoff and the unknown referee for enhancing the readability of the paper.

References

1. J. Eckhoff (1969), Transversalenprobleme vom Gallai'schen Typ, Dissertation, Göttingen.
2. J. Eckhoff (1973), Transversalenprobleme in der Ebene, Arch. Math. 24, 191-202.
3. B. Grünbaum (1964), Common secants for families of polyhedra, Arch. Math. 15, 76-80.
4. H. Hadwiger and H. Debrunner (1955), Ausgewählte einzelprobleme der kombinatorischen geometrie in der ebene, Enseign. Math. 1, 56-89.
5. A. Heppes (2005), New upper bound on the transversal width of T (3)-families of discs, Discrete Comput. Geom. 34, 463-474.
6. L. Santaló (1940), Un teorema sobre conjuntos de paralelepípedos de aristas paralelas, Publ. Inst. Mat. Univ. Nac. Litoral 2, 49-60.
7. E.G. Straus (1978), Some extremal problems in combinatorial geometry, Lecture Notes in Mathematics, vol. 686, pp. 308-312.
8. H. Tverberg (1989), Proof of Grünbaum's conjecture on common transversals for translates, Discrete Comput. Geom. 4, 191-203.
9. P. Vincensini (1935), Figures convexes et variétés linéaires de l'espace euclidien à n dimensions, Bull. Sci. Math. 59, 163-174.

Received February 2005, and in revised form February 28, 2006. Online publication March 9, 2007.

