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Abstract. In this paper we show that there exists a (k, ε)-coreset for k-median and k-
means clustering of n points in �d , which is of size independent of n. In particular, we
construct a (k, ε)-coreset of size O(k2/εd) for k-median clustering, and of size O(k3/εd+1)

for k-means clustering.

1. Introduction

Clustering is a widely used technique in Computer Science with applications to unsu-
pervised learning, classification, data mining, and other fields. We study two variants
of the clustering problem in the geometric setting. The geometric k-median clustering
problem is the following: Given a set P of n points in �d , compute a set of k points
(i.e., medians) such that the sum of the distances of the points in P to their respective
nearest median is minimized. The k-means differs from the above in that instead of
the sum of distances, we minimize the sum of squares of distances. Interestingly the
1-mean is the center of mass of the points, while the 1-median problem, also known as
the Fermat–Weber problem, has no such closed form. As such the problems have usually
been studied separately from each other even in the approximate setting.

An important question underlying approximation algorithms is What portion of the
data is necessary to compute (approximately) a certain quantity? The smaller this portion
is, the more efficient the resulting algorithm would be. A coreset is a small portion of
the data, such that running a clustering algorithm on it, generates a clustering for the
whole data, which is approximately optimal. In particular, a small coreset indicates that

∗ See http://www.uiuc.edu/∼sariel/papers/04/small coreset/ for the most recent version of this paper. Alter-
native titles for this paper include “Finding Space/Time Stream Coresets” and “Improved Homeland Security
Using Grid Computing via Mobile ad-hoc Trustable Coresets.” Work on this paper by the first author was
partially supported by NSF CAREER Award CCR-0132901.
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a problem is easy to approximate. Furthermore, it implies that one can summarize and
sketch the data efficiently. This is useful for database applications, where one can store
such sketches efficiently, and perform efficient clustering on a database, or portions of
it using the sketches.

In particular, the size of the smallest coreset needed is a fundamental combinatorial
property of the clustering problem at hand. Among other things, coresets of size in-
dependent of n imply “strong” fixed parameter algorithms [DF]. Those are algorithms
with the running time O(n + poly(k, log n, 1/ε)+ func(k, ε)), where poly denotes a
polynomial, and func(k, ε) denotes a function that depends only on k and ε (and the
dimension d).

k-Median Clustering. The k-median problem is nontrivial even in low dimensions
and achieving a good approximation proved to be a challenge. Motivated by the work
of Arora [A], which proposed a new technique for geometric approximation algo-
rithms, Arora et al. [ARR] presented a O

(
nO(1/ε)+1

)
time (1 + ε)-approximation al-

gorithm for points in the plane. This was significantly improved by Kolliopoulos and
Rao [KR] who proposed an algorithm with a running time of O(�n log n log k) for the
discrete version of the problem, where the medians must belong to the input set and
� = exp [O((1+ log 1/ε)/ε)d−1]. The k-median problem has been studied extensively
for arbitrary metric spaces and is closely related to the uncapacitated facility location
problem. See [CGTS], [GNMO], and [MP] for more information.

The running time of the algorithm of Kolliopoulos and Rao [KR] was further improved
to O(n + �kO(1) logO(1) n) by Har-Peled and Mazumdar [HM] by using coresets. For-
mally, a weighted subset S ⊆ �d is a (k, ε)-coreset for the k-median problem if, for any
set C of k centers in the�d , the price of clustering P using C , and the price of clustering
S using C , is the same up to 1±ε (usually a coreset is a subset of the input set P but in this
paper we lift this restriction). Har-Peled and Mazumdar [HM] showed that there exists a
coreset of P of size O(kε−d log n), and by computing such a coreset quickly and running
the algorithm on this coreset, one gets the aforementioned fast approximation algorithm.

k-Means Clustering. Inaba et al. [IKI] observed that the number of Voronoi parti-
tions of k points in �d is nkd and can be done exactly in time O(nkd+1). They also
proposed approximation algorithms for the 2-means clustering problem with time com-
plexity O(nO(d)). de la Vega et al. [dlVKKR] proposed a (1 + ε)-approximation al-
gorithm, for high dimensions, with running time O(g(k, ε)dn logk n), where g(k, ε) =
exp[(k3/ε8)(ln(k/ε)) ln k] (they refer to it as �2

2 k-median clustering). This was improved
to a O(h(k, ε) dn) time algorithm by Kumar et al. [KSS], where h(k, ε) = 2(k/ε)

O(1)
(as

such, this algorithm is only appropriate when the data is high-dimensional). Matoušek
[M1] proposed a (1 + ε)-approximation algorithm for the geometric k-means prob-
lem with the running time O(nε−2k2d logk n). Again, by constructing coresets of size
O(kε−d log n), Har-Peled and Mazumdar [HM] presented an algorithm with the run-
ning time O(n + kk+2ε−(2d+1)k logk+1 n logk(1/ε)), which is linear for fixed k and ε.
Effros and Schulman [ES] showed that there exists a centroid set of size independent of
n. A centroid set is a set that contains at least one k-tuple, which forms (approximately)
optimal centers for k-means clustering. While the resulting algorithm is slower than the
algorithm of Har-Peled and Mazumdar it does hint to the possibility that a coreset of size
independent of n should exist for the k-means problem.
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Our Results. In light of the aforementioned results, it is natural to ask what is the
smallest coreset one can extract for a set of n points in �d and compute approximate
clustering using it? In particular, can one compute a coreset of size independent of n?

In this paper we answer this question positively, by showing a coreset of size O(k2/εd)

for k-median and O(k3/εd+1) for k-means. Interestingly, unlike the previous results,
while the intuition for the two cases is similar, the proof and construction are funda-
mentally different. In particular, the coreset construction for the k-means case is slightly
easier than the k-median case.

The previous construction of coresets for clustering relied on first computing a set of
k centers which were a constant factor approximation to the optimal clustering. Next,
using an exponential grid of O(log n) levels around each center, and snapping the points
to this grid (approximating each point with the closest point on the grid) resulted in
the required coreset. The correctness of the above coreset follows since the price of
snapping the points to the exponential grid is smaller than ενopt(P, k), where νopt(P, k)
is the price of the optimal k-median clustering of P . In the Appendix we show that any
such approach of computing a small set C of points such that snapping the points of P
to C is “cheap” (i.e., ≤ ενopt(P, k)) is doomed, as such a set must have size 	(log n).
To overcome this, we need to be considerably more careful in picking C , such that the
errors introduced by the snapping cancel each other out.

To this end, we replace each exponential grid around a center point by a set of
O(1/εd−1) lines. We now snap the points to the lines. We end up with O(k/εd−1) point
sets, each one of them is one-dimensional (although the centers are not necessarily on
the line). We compute a coreset for each such line separately, and we take the union of
those coresets to form the resulting coreset of the whole set.

To figure out how to pick our coreset on each such line, we first solve the toy problem
of computing a coreset for a set of points on a line, where the centers are also on the
line. This is done by breaking the line into chunks of small error. (This idea is somewhat
similar to the analysis of Effros and Schulman [ES], although our analysis is considerably
simpler as we apply it only in one dimension. Effros and Schulman, on the other hand,
use a rather involved partition scheme to break their input into d-dimensional chunks
with low error.) We then extend it to the case where the centers are not necessarily on
the line. We do this analysis for the k-median and k-means cases separately, since the
analysis is substantially different.

Note that we reduced the question of computing a d-dimensional coreset to a one-
and two-dimensional problem (since the Voronoi diagram on a line of k points in �d ,
can always be simulated by k points in two dimensions). This reduction considerably
simplifies our analysis.

The paper is organized as follows. In Section 2 we present the coreset construction for
the k-median case. In Section 3 we handle the k-means case. We conclude in Section 4.

2. Coreset for k-Median

2.1. Preliminaries

For a point set X and a point p, both in �d , let d(p, X) = minx∈X‖xp‖ denote the
distance of p from X . For a set B of points on a line in �d , let I(B) denote the smallest
closed segment containing all the points of B.
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Definition 2.1 (Weighted Set). A weighted point set P is a set of points where every
point p ∈ P is assigned a weight wp, which is a real positive number. We denote by
w(P) = ∑p∈P wp the total weight of the set P . We use (p, wp) to denote a weighted
point at p with weight wp.

Definition 2.2 (k-Median Clustering). For a weighted point set P with points from
�d , with an associated weight function w : P → �+ and any point set C , we define
νC(P) =

∑
p∈P wp · d(p,C) as the price of the k-median clustering provided by C .

Further, let νopt(P, k) = minC⊆�d ,|C |=k νC(P) denote the price of the optimal k-median
clustering for P . In the following we abuse notation and, for x ∈ �d , we denote ν{x}(P)
by νx (P).

Definition 2.3 ((k, ε)-Coreset for k-Median). For a weighted point set P ⊆ �d , a sub-
set S ⊆ �d is a(k, ε)-coreset of P for k-median clustering if, for all sets C of k points
in �d , we have (1− ε)νC(P) ≤ νC(S) ≤ (1+ ε)νC(P). Note that S is not necessarily
a subset of P . We abuse terminology and also use the term coreset (without mention
of k or ε) to denote any set of weighted points being used to approximate some other
weighted point set.

Definition 2.4 (Mean/Center of Mass). For a weighted point set P in �d , let m(P) =∑
p∈P(wp/w(P))p denote the mean of P (this is also known as the center of mass of

P). We define the cumulative error (or just the error) for a weighted point set P in � as
Eν(P) = νm(P) =

∑
p∈P wp‖pm‖, where m = m(P).

2.2. One Dimension

The basic idea for the coreset construction in one dimension (here, both the points and the
centers lie in one dimension) is to break the point set into smaller sets, and use the mean
point of every subset as the representative for the coreset. We first prove, in Lemma 2.5,
that the cumulative error of a point set bounds the error that it might contribute if we
use the mean point as the coreset. In Lemma 2.6 we show that cumulative error is a
2-approximation to the optimal 1-median clustering of a point set. Hence, we can use the
mean of a point set as its coreset representative. In Lemma 2.7 we extend this observation
to several point sets. Then, in Theorem 2.8, we describe the construction and prove that
it works.

Lemma 2.5. Let P be a set of n weighted points on an oriented line � in �d , and let
m = m(P). We have:

(i)
∑

L wp‖mp‖ =∑R wp‖mp‖, where L (resp. R) are the points of P left (resp.
right) of m on �.

(ii) For a point q ∈ � such that q /∈ I(P), we have that νq(P) = w(P)‖qm‖.
(iii) For any set of points C ⊆ �d , we have |νC(P)− νC(S)| ≤ Eν(P), where S is a

coreset made out of the single point m with weight w(P).
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Proof. (i) Rotate space, such that � becomes the x-axis. Then we have∑
p∈P,xp<xm

wp(xm − xp) =
∑

p∈P,xp≥xm
wp(xp − xm), since m is the mean point of

P ⊆ �, where xp denotes the x-coordinate of a point p ∈ �d . Now,
∑

p∈L wp‖mp‖ =∑
p∈L wp(xm − xp) =

∑
p∈R wp(xp − xm) =

∑
p∈R wp‖mp‖.

(ii) Assume that xq < xm, and then we have

νq(P) =
∑
p∈P

wp‖pq‖ =
∑

p∈P,xp<xm

wp(‖qm‖ −‖pm‖)+
∑

p∈P,xp≥xm

wp(‖qm‖ +‖pm‖)

= w(P)‖qm‖ +
 ∑

p∈P,xp<m

−wp‖pm‖ +
∑

p∈P,xp≥m

wp‖pm‖
 = w(P)‖qm‖

by the first claim. The case xq > xm follows by symmetry.
(iii) We have

|νC(P)− νC(S)| =
∣∣∣∣∣∑

p∈P

wp(d(p,C)− d(m,C))

∣∣∣∣∣ ≤∑
p∈P

wp‖pm‖ = Eν(P),

since d(q,C)−‖pq‖ ≤ d(p,C) ≤ d(q,C)+‖pq‖, for any p, q ∈ �d .

Lemma 2.6. Let P ⊆ � be a set of weighted points. Then Eν(P) ≤ 2νopt(P, 1).

Proof. The function νx (P) = νx (Lx )+ νx (Rx ), where Lx and Rx are all the points of
P to the left and right of x , respectively. As x increases, the function νx (Lx ) increases,
while νx (Rx ) decreases. Those two functions are equal for x = m(P). As such, νy(P) =
νy(L y) + νy(Ry) ≥ νm(P)/2 = Eν(P)/2, for all y ∈ � and m = m(P). In particular,
this holds for the optimal point y that realizes νopt(P, 1).

Lemma 2.7. Let P be a set of weighted points in�, and let P1, . . . , Pk be a partition of
P into k sets. Then νopt(P, 1) ≥ (Eν(P1)+ Eν(P2)+ · · · + Eν(Pk)) /2, where Eν(Pi ) =
νm(Pi )(Pi ).

Proof. Let ξ = Median(P) and

νopt(P, 1) =
∑
p∈P

wp‖pξ‖ =
∑
p∈P1

wp‖pξ‖ +
∑
p∈P2

wp‖pξ‖ + · · · +
∑
p∈Pk

wp‖pξ‖

≥ νopt(P1, 1)+ νopt(P2, 1)+ · · · + νopt(Pk, 1)

≥ 1
2 (Eν(P1)+ Eν(P2)+ · · · + Eν(Pk)),

by Lemma 2.6.

Theorem 2.8. Let P be a weighted point set in�, k and ε > 0 parameters. Then there
exists a (k, ε)-coreset S of P of size O(k/ε).
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Proof. Assume that we have an approximation V , such that νopt(P, k) ≤ V ≤ c ·
νopt(P, k), where c is a constant (this can be done efficiently in linear time for small
k [HM]). We scan the points from left to right and group them into batches with the
cumulative error equal to ϕ = (ε/10ck)V . This is done by allowing the first and last
points in the batch to be a fraction of a point of P (i.e., a point p of P might appear in
two consecutive batches, as two points with total weightwp). The last batch is of weight
≤ ϕ. Observe that ϕ ≥ (ε/10ck)νopt(P, k). Let B = {B∞, . . . ,B�} denote the resulting
batches.

It is now straightforward to verify that |B| = O(k/ε). Indeed, let Copt be the set of k
medians realizing νopt(P, k). Since P is a one-dimensional point set, there are at most
k − 1 batches that are being served by more than one center in Copt. For any other batch
B ∈ B, B is being served by a single center of Copt. We call this set of batches B′. Now,
νopt(P, k) =∑i νopt(Pi , 1)where Pi is the subset of P served by center ci ∈ Copt. Now,
using Lemma 2.7 we have

∑
Bi∈B′ Eν(Bi )/2 ≤

∑
i νopt(Pi , 1) = νopt(P, k). Since we

have Eν(Bi ) = ϕ except for the last batch, the number of batches in B′ is bounded by
O
(
1+ νopt(P, k)/ϕ

)
. Hence, |B| is O(k + νopt(P, k)/ϕ) = O(k/ε).

Next, for the coreset construction, we set m(Bi ) to be the representative point for Bi

with weight w(Bi ). Let S be the resulting coreset. We claim that this is a (k, ε)-coreset.
Indeed, consider any point set C = {x1, x2, . . . , xk}. For a point xi ∈ C , let Ii denote
the interval on the real line that it serves. For a batch B, let I(B) denote the smallest
interval containing B. If a batch B ⊆ Ii , and xi /∈ I(B), then, by Lemma 2.5, we have
νxi (B) = w(B) · ‖m(B)xi‖. Namely, the contribution of the points of B to νC(P) and
νC(S) are identical.

Thus, the only batches that might contribute to the error are the ones that contain an
endpoint of I1, . . . , Ik (there are at most k − 1 such batches), and batches that contain a
point of C in their interior (there are at most k such batches). By Lemma 2.5(iii), every
such batch B contributes at most Eν(B) to the overall error. Let B ′1, . . . , B ′2k−1 be those
“problematic” batches. We have that

|νC(P)− νC(S)| ≤
2k−1∑
i=1

Eν(B ′i ) ≤ (2k − 1) · ϕ ≤ ενopt(P, k).

2.3. Extending to Higher Dimensions

In this section we show how to construct the coreset for a set P of n points in �d . We
need the following technical lemma.

Lemma 2.9. Let c = (0, α) be a point in the plane, let L and R be two weighted
sets of points on the positive portion of the x-axis such that all the points of L have a
smaller x-axis value than the points of R, and let l and r be two points on the x-axis
such that νl(L) = νr(R). Furthermore, let SL = {(l, w(L))} and SR = {(r, w(R))} be
the coresets formed by assigning sum of the weights on the points in sets L and R to l
and r, respectively. Also, let E = νc(L)+ νc(R)− νc(SL)− νc(SR) be the error caused
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z

Fig. 1. Case (i) of Lemma 2.9.

by using the coresets SL and SR instead of the sets L and R, respectively, in relation to
the center c. Then:

(i) If xl ≤ xl ′ ≤ xr ′ ≤ xr, for all l ′ ∈ L and r ′ ∈ R, then E ≤ 0. See Fig. 1.
(ii) If xl ′ ≤ xl ≤ xr ≤ xr ′ , for all l ′ ∈ L and r ′ ∈ R, then E ≥ 0.

Proof. (i) For two points p, q on the x-axis, such that xp ≤ xq , let e(p, q) =‖qc‖ −
‖pc‖. In particular, for any four points a, b, c, d on the x-axis, such that xa ≤ xb ≤
xc ≤ xd , we have e(a, b)/‖ab‖ ≤ e(c, d)/‖cd‖. This follows since the function f (x) =
‖c− (x, 0)‖ is a convex function with a positive second derivative, as can be easily
verified. In particular, for any a ≤ b we have f ′(a) ≤ e(a, b)/‖ab‖ ≤ f ′(b). Thus, for
a point z on the real line between R and L , we have

E = νc(L)+ νc(R)− νc(SL)− νc(SR)

=
∑
p∈L

wp(‖cp‖ −‖c l‖)+
∑
p∈R

wp(‖cp‖ −‖c r‖)

=
∑
p∈L

wpe(l, p)−
∑
p∈R

wpe(p, r) =
∑
p∈L

wp‖pl‖ e(l, p)

‖pl‖ −
∑
p∈R

wp‖rp‖ e(p, r)

‖rp‖

≤
∑
p∈L

wp‖pl‖ f ′(z)−
∑
p∈R

wp‖rp‖ f ′(z) = f ′(z)(νl(L)− νr(R)) = 0,

since e(l, p)/‖pl‖ ≤ f ′(z) ≤ e(q, r)/‖qr‖ for any p ∈ L and q ∈ R.
The second claim follows by similar argumentation.

2.3.1. Construction. The following technical lemma states the existence of an ε-net
for the sphere. See Lemma 13.1.1 of [M2] for details.

Lemma 2.10. There exists a set of points Q on a sphere of unit radius in d-dimensions
(Sd−1) centered at the origin with the following properties:

(i) Q has O(ε−(d−1)) points, and
(ii) ∀p that lie on the unit radius ball, ∃q ∈ Q such that‖pq‖ ≤ ε. Furthermore, Q

can be computed in O(ε−(d−1)) time.

We compute a set C = {c1, . . . , ck}of centers which is a c-approximation toνopt(P, k);
namely, νC(P) ≤ c · νopt(P, k), where c is a constant (as was done in [HM]). Now we
divide the set of points P into k sets based on which point in C is nearest to them. This
gives us a partition of P into k subsets P1, P2, . . . , Pk where Pi is closest to ci ∈ C.
Around each of the points ci ∈ C we place a fan L〉 of lines passing through it. This is
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c1

c2

p

p′

Fig. 2. Computing the coreset.

done by taking a unit sphere centered at ci , and placing an ε/(3c)-net Nci on this sphere,
using Lemma 2.10. For every p ∈ Nci , we generate the line spanning the segment ci p.

For each point of p ∈ Pi , let li (p) be its closest line in L〉, and let p′ be the projection
of p into li (p). Let P ′ be the set of these snapped (projected) points. Also, let P� be
the set of points projected onto the line �. Next, we compute a coreset S�, for each line
� ∈ L∞ ∪ · · · ∪ L‖, using the one-dimensional method. Namely, we scan every line �,
and break the point set, P�, along it into batches, such that for each batch B (except the
last one), we have Eν(B) = (εA�)/(20ck), where A� is a c-approximation to νopt(P�, k)
(again, allowing a boundary point to appear in two batches with a fractional weight).
See Fig. 2. (In the following, for the sake of simplicity of exposition, we ignore the fact
that a batch contains weighted points. This is a minor technicality, and it can be easily
handled.)

Hence, we get O(k/ε) points selected in the coreset on each of the lines through ci ,
and hence O(k/εd) coreset points for each Pi . Thus, the total number of points in the
coreset S is O(k2/εd).

2.3.2. Correctness

Observation 2.11. Let p be a point of P , and let ci be its nearest point in C, let p′ be
the corresponding point in P ′. We have ‖pp′‖ ≤ ‖pci‖ε/(3c).

Lemma 2.12. Let P be a set of points on a line �, and let S� be the coreset constructed
for it. Also, let C be a set of k points in �d . Then |νC(P)− νC(S�)| ≤ (ε/3)νopt(P, k).

Proof. The proof follows the one-dimensional case (i.e., Theorem 2.8), although the
analysis is somewhat more involved. We rotate and translate all the points so that the
line � coincides with the x-axis. Let C = {c1, . . . , ck}, and let c′1, . . . , c′k denote the
projection of c1, . . . , ck into �, respectively. Next, we partition the line into k intervals
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I1, . . . , Ik , such that Ii is the portion of � closer to ci than any other point of C (note that
the points of C are not necessarily on �). Then every point in the coreset S� corresponds
to a subset (i.e., batch) of P . By construction, all the batches have the same cumulative
error (except the last batch, which might have a smaller cumulative error). In particular,
for any batch B we have that the cumulative error Eν(B) ≤ (ε/20k)νopt(P, k).

Let B̂ be the union of the set of all batches which are served by more than one center
of C and the set of all batches B such that the interval I(B) contains the projection of

a center point of C to �. We also add the last batch on � to B̂. Clearly, |B̂| ≤ 2k. Let
U =⋃B∈B̂ B be the points of P in B̂, and let SU ⊆ S� be the corresponding coreset. It
follows that the total error contributed by the points of U is

E∗ = |νC(U )− νC(SU )| ≤
∑
B∈B̂

Eν(B) ≤ 2k
ε

20k
νopt(P, k) ≤ ε

10
νopt(P, k),

by Lemma 2.5(iii).
Let us fix a center c ∈ C , and let I be its Voronoi cell on �. Next, consider the set

R (resp. L) of the batches to the right (resp. left) of c′ that lie in its interval I. Let
B1, B2, . . . , Bt denote the batches of R sorted from left to right. Furthermore, let Li

and Ri be the set of points of Bi to the left and right of the mean m(Bi ), respectively,
for i = 1, . . . , t . Finally, let S i

l and S i
r denote the coresets formed by placing a point at

m(Bi ) with weight w(Li ) and w(Ri ), respectively. Let S i = S i
l ∪ S i

r be the one point
coreset placed at m(Bi )with weightw(Li )+w(Ri ). Let SR denote the resulting coreset
for all the batches in R. Let PR denote the points in R. By Lemma 2.9(ii) we have that

νc(B
i )− νc(S i ) = νc(L

i )− νc(S i
l )+ νc(R

i )− νc(S i
r ) ≥ 0.

Thus, the error contributed by the coreset of R is

E = νc(PR)− νc(SR) =
t∑

i=1

(
νc(B

i )− νc(S i )
) ≥ 0.

On the other hand, by Lemma 2.9(i) we have

E ′ =
t−1∑
i=1

(
νc(R

i )− νc(S i
r )+ νc(L

i+1)− νc(S i+1
l )

) ≤ 0.

Thus,

0 ≤ E = E ′ + νc(L
1)− νc(S1

l )+ νc(R
t )− νc(S t

r ) ≤ Eν(B1)+ Eν(Bt )

= 2(ε/20k)νopt(P, k).

Namely, the total error induced by using the coreset for batches in R is bounded by
2(ε/20k)νopt(P, k). By symmetry, the same holds for the batches in L . Thus, the total
error induced by such batches is at most k · 2 · 2(ε/20k)νopt(P, k) ≤ (ε/5)νopt(P, k).
Thus, we have

|νC(P)− νC(S�)| ≤ (ε/5)νopt(P, k)+ (ε/10)νopt(P, k) ≤ (ε/3)νopt(P, k)

as desired.
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Theorem 2.13. Let P be a point set of n points in �d , and let S be the coreset con-
structed for it in Section 2.3.1. Then S is a weighted set of size O(k2/εd) and it is a
(k, ε)-coreset of P for k-median clustering.

Proof. By Lemma 2.12 we know that the error between the distance of any set C of
size k and the snapped points P ′ on the fans can be well approximated using the coreset.
Furthermore, the error introduced by the snapping is bounded by

E =
∑
p∈P

∥∥pp′
∥∥ ≤ k∑

i=1

(∑
p∈Pi

( ε
3c

)
‖pxi‖

)
≤ (ε/g)3νopt(P, k),

by Observation 2.11.
So,

∣∣νC(P)− νC(P ′)
∣∣ ≤ ∑

p∈P

∥∥pp′
∥∥ ≤ (ε/3)νopt(P, k). Thus, for any set C of k

points, we have

|νC(P)− νC(S)| ≤
∣∣νC(P)− νC(P

′)
∣∣+ ∣∣νC(P

′)− νC(S)
∣∣

≤ (ε/3)νopt(P, k)+ (ε/3)νopt(P
′, k)

≤ (ε/3)νopt(P, k)+ (ε/3)νopt(P, k)(1+ ε/3) ≤ ενopt(P, k),

by Lemma 2.12.

3. Coreset for k-Means

3.1. Preliminaries

Definition 3.1 (k-Means Clustering). Let µC(P) =
∑

p∈P wp ·(d(p,C))2 denote the
price of the k-means clustering of P as provided by the set of centers C . Letµopt(P, k) =
minC⊆�d ,|C |=k µC(P) denote the price of the optimal k-means clustering of P . Again,
for x ∈ �d , we use µx (P) to denote the quantity µ{x}(P).

Definition 3.2 ((k, ε)-Coreset for k-Means). A weighted set S is a(k, ε)-coreset of P
for k-means clustering if, for any set C of k points in �d , we have (1 − ε)µC(P) ≤
µC(S) ≤ (1+ ε)µC(P).

Definition 3.3. For a point set P , the error of P is Ê(P) = ∑
p∈P‖pm‖2, where

m = m(P).

3.2. The One-Dimensional Case

3.2.1. Construction. Let P be a given set of n points on the real line. The procedure is
similar to the k-median case except for the fact that just picking the mean point of each
batch as its representative does not suffice and we will need two appropriately placed
representative points for each batch. We consider the points from left to right and group
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them into batches, such that a batch B has Ê(B) ≤ ξ , and for two consecutive batches B
and B ′ we have Ê(B ∪ B ′) ≥ ξ , where ξ ≤ (ε2/100k2)µopt(P, k). Arguing in a similar
fashion to the k-median case, it follows that the number of batches is O(k2/ε2). Let
B(P) denote the resulting set of batches.

Lemma 3.4. Let B be a set of points on a line. There exist two weighted points (q1, w1)

and (q2, w2) both lying completely within I(B), such that

• w1 + w2 = |B|,
• (q1w1 + q2w2)/(w1 + w2) = m, where m = m(P),
• and w1‖q1m‖2 + w2‖q2m‖2 =∑p∈B‖pm‖2.

Let T (B) = {(q1, w1), (q2, w2)} denote this coreset.

Proof. We construct these weighted points through a sequence of steps. Let the leftmost
point in B be pl and the rightmost point be pr .

• For every point p ∈ B to the right of m we add a point at the rightmost extreme of B
with weight‖pm‖/‖pr m‖. Clearly, (‖pm‖/‖pr m‖)‖pr m‖2 ≥‖pm‖2. Similarly for
every point p ∈ B to the left of m we add a point at the leftmost extreme of B with
weight‖pm‖/‖plm‖. This results in two weighted points pl and pr . Furthermore,
we have m({pl , pr }) = m, Ê({pl , pr }) ≥ Ê(B), and wpl + wpr ≤ |B|.
• Now we scale up the weights so that wpl + wpr = |B|. Note that this does not

change the mean, and only increases Ê({pl , pr }).
• Finally, consider the scaled set

C(t) = {(pl · t + (1− t)m, wpl ), (pr · t + (1− t)m, wpr )}.

Clearly, C(t) for t ∈ [0, 1] has m(C(t)) = m. Furthermore, C(1) is just the current
two weighed points, and C(0) is just one point at m. Thus, pick t∗ ∈ [0, 1], such
that Ê(C(t∗)) = Ê(B). This is possible, since Ê(C(1)) ≥ Ê(B).
Clearly, C(t∗) is the required coreset.

Let S(P) =⋃B∈B(P) T (B) be the constructed coreset for P .

3.2.2. Correctness. The following claim is well known (Lemma 2.1 in [KMN+]).

Lemma 3.5. Let B be a set of points in �d , then for any q ∈ �d we have µq(B) =
|B|‖qm‖2 + Ê(B).

Lemma 3.6. Let B be a set of points in �d lying on a common line, let T = T (B) be
the coreset constructed for it by the algorithm of Lemma 3.4, and let q be any point in
�d . Then µq(B) = µq(T ).

Proof. We haveµq(B) = |B|‖qm‖2+ Ê(B), andµq(T ) = w(T )‖qm(T )‖+ Ê(T ) =
|B|‖qm‖2 + Ê(B), by Lemma 3.4. Thus, µq(B) = µq(T ).
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Theorem 3.7. Let P be a set of n points in�d such that the points of P all lie on a line
�, and let S be the coreset constructed for it in Section 3.2.1. Then S is a (k, ε/3)-coreset
for k-means clustering of P , for any set of k centers in �d .

Proof. The proof is similar to the k-median case. We first rotate space such that � is on
the x-axis. Let C = {c1, . . . , ck} be a set of k centers, µC = µC(P) and µ′C = µC(S).
Let I1, . . . , Ik be a partition of the line into intervals such that Ii is the loci of points
closest to ci out of all the centers in C, for i = 1, . . . , k. Note that the batches of B(P),
and their corresponding coreset points, that lie completely within Ii , do not contribute
to the overall error

∣∣µC − µ′C
∣∣ by Lemma 3.6.

Thus, the only problematic batches are the ones that contain an endpoint ofI1, . . . , Ik .
There are at most k − 1 such batches. Let B be one such batch. Assume that the interval
I(B) intersects I1, . . . , It , and let Vi = Ii ∩ B, for i = 1, . . . , t . Let m = m(B) and
let SB = T (B). We partition SB into portions corresponding to the sets V1, . . . , Vt .
Formally, Si is a set of the two points of SB , re-weighted such that w(Si ) = |Vi |, for
i = 1, . . . , t . We have, by Lemma 3.5, that

µC(SB) =
∑

i

µC(Si ) ≤
∑

i

µci (Si ) =
∑

i

(
Ê(Si )+ |Vi |‖ci m‖2

)
=
∑

i

(
Ê(Si )+

∑
p∈Vi

‖ci m‖2

)
= Ê(SB)+

∑
i

∑
p∈Vi

‖ci m‖2.

Since |‖ci p‖ −‖pm‖| ≤‖ci m‖, we have∑
i

∑
p∈Vi

‖ci m‖2 ≥
∑

i

∑
p∈Vi

(‖ci p‖ −‖pm‖)2

≥
∑

i

∑
p∈Vi

‖ci p‖2 − 2
∑

i

∑
p∈Vi

‖ci p‖ ·‖pm‖ +
∑

i

∑
p∈Vi

‖pm‖2

≥ µC(B)− 2
∑

i

∑
p∈Vi

‖ci p‖ ·‖pm‖ + Ê(B).

We also have‖ci p‖ +‖pm‖ ≥‖ci m‖ and so∑
i

∑
p∈Vi

‖ci m‖2 ≤
∑

i

∑
p∈Vi

(‖ci p‖ +‖pm‖)2

≤ µC(B)+ 2
∑

i

∑
p∈Vi

‖ci p‖ ·‖pm‖ + Ê(B).

We conclude that∣∣∣∣∣∑
i

∑
p∈Vi

‖ci m‖2 − µC(B)

∣∣∣∣∣ ≤ 2
∑

i

∑
p∈Vi

‖ci p‖ ·‖pm‖ + Ê(B).
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This gives us

|µC(SB)− µC(B)| =
∣∣∣∣∣Ê(SB)+

∑
i

∑
p∈Vi

‖ci m‖2 − µC(B)

∣∣∣∣∣
≤ 2

∑
i

∑
p∈Vi

‖ci p‖ ·‖pm‖ + 2Ê(B)

≤ 2Ê(B)+ 2
√∑

i

∑
p∈Vi

‖ci p‖2
√∑

i

∑
p∈Vi

‖pm‖2

≤ 2Ê(B)+ 2
√
µC(B)

√
Ê(B),

by the Cauchy–Swartz inequality. By construction Ê(B) ≤ (ε2/100k2)µopt(P, k). Thus,

|µC(SB)− µC(B)| ≤ 2
ε2

100k2
µopt(P, k)+ 2

ε

10k

√
µC(B)µopt(P, k)

≤ 2
ε2

100k2
µopt(P, k)+ 2

ε

10k
· µC(B)+ µopt(P, k)

2

≤ ε

5k
µopt(P, k)+ ε

10k
µC(B).

Since there are k − 1 border batches, we conclude that

|µC(S)− µC(P)| ≤ ε

5
µopt(P, k)+ ε

10
µC(P) ≤ ε

3
µC(P),

as required.

3.3. Extending to Higher Dimensions

Again we use a similar approach to the one we used for the k-median case. We calculate
an approximation µopt(P, k) ≤ A ≤ c · µopt(P, k), where c > 1 is a constant. Then we
partition the point set P into sets P1, P2, . . . , Pk with Pi consisting of points in the area
of control of ci ∈ A. Then we draw O(1/εd−1) lines through each of the centers of A as
before and snap the points of Pi onto the closest line around ci . We compute a coreset for
every line using the algorithm of Section 3.2.1. This gives us O(k2/ε2) points selected
for the coreset on every line, thus the total size of the resulting coreset S is O(k3/εd+1).

This set is indeed a coreset. The proof is an easy extension of the one-dimensional
case. The snapping into the lines introduces a multiplicative error smaller than ε/3.
The coreset construction introduces an error of similar magnitude, by Theorem 3.7.
Since this is a straightforward extension of our previous discussion, we omit any further
details.

Theorem 3.8. Given a set P of n points in �d , one can compute a (k, ε)-coreset for
P for k-means clustering of size O(k3/εd+1).
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3.3.1. Centroid Set. Given a set P of n points in �d , a set D ⊆ �d is a (k, ε)-
approximate centroid set for P , if there exists a subset C ⊆ D of size k, such that
µC(P) ≤ (1+ ε)µopt(P, k).

Matoušek showed that there exists an ε-approximate centroid set of size
O(nε−d log(1/ε)) [M1]. Interestingly enough, his construction is weight insensitive.
In particular, using a (k, ε/2)-coreset S in his construction results in an ε-approximate
centroid set of size O

(|S| ε−d log(1/ε)
)
.

Theorem 3.9. Given a set P of n points in �d , one can compute a (k, ε)-centroid set
for P for k-means clustering of size O

(
(k3/ε2d+1) log(1/ε)

)
.

Theorem 3.9 slightly improves (as far as the dependency of k is concerned) over the
result of Effros and Schulman [ES] that showed that there exists a centroid set of size
O(ε−d−1(k4 + k2ε−2)). We conjecture that the dependency on ε in the bound on the
coreset size in Theorem 3.9 can be further improved by constructing the centroid set for
each line separately. Since this would lead to only minor improvements over the result
of Effros and Schulman [ES], we do not investigate this direction any further.

3.3.2. Running Time. The running time of the resulting (1+ ε)-approximate k-means
clustering algorithm is O(n+polyd(k, log n, 1/ε)+(k3/εd+1)((k3/ε2d+1) log(1/ε))k+1),
where polyd(· · ·) is a polynomial with degree that depends on d. This follows easily by
performing our coreset construction on the coreset generated by the construction of Har-
Peled and Mazumdar [HM], and we omit the easy but tedious details. This compares
quite favorably with the Effros and Schulman [ES] algorithm, that has the running time

O

(
k2n log log n + k8

ε3(d+1)
n + 1

εd+1

(
k4

εd+1

)k+2
)
,

which has worse dependency on n and k. Unfortunately, it does not improve over
the algorithm of Har-Peled and Mazumdar [HM], which has the running time O(n +
kk+2ε−(2d+1)k logk+1 n logk(1/ε)), which already has linear running time for small values
of k and better dependency on k.

4. Conclusions

In this paper we showed the existence of small coresets for the k-means and k-median
clustering in�d , with size independent of n. We believe that this result is quite surprising.

Our techniques do not yield any significant improvement in performance over the
approximation algorithms of Har-Peled and Mazumdar [HM]. As mentioned in the In-
troduction, the results in this paper imply algorithms with the running time O(n +
poly(k, log n, 1/ε) + func(k, ε)), where poly denotes a polynomial, and func(k, ε) de-
notes a function that depends only on k and ε (and the dimension d). This, however,
improves upon the results of Har-Peled and Mazumdar [HM] only for a very narrow
interval of values of k in the k-means case.
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One improvement implied by our work is that one can stream points for (1 + ε)-
approximate k-median clustering in�d using O((k2/εd) logd+1 n) space, using the stan-
dard techniques which are also used by Har-Peled and Mazumdar [HM] (this improves
by one log factor over the best bound implied by their techniques). The new result for
k-means coreset does not imply any improvement for the k-means case.

At this point, there are numerous problems for further research. In particular:

1. Can the running time of approximate k-means clustering be improved to be similar
to the k-median bounds? Can one do FPTAS for k-median and k-means (in both k
and 1/ε)? Currently, we can only compute the (k, ε)-coreset in fully polynomial
time, but cannot extract the approximation itself from it.

2. Does a coreset exists for the problems of k-median and k-means clustering with
only polynomial dependency on the dimension and no dependency on n? There
are some partial relevant results [BHI].

3. Can one improve the bounds on the size of the coresets for k-median and k-means
clustering?

Appendix. Lower Bound on Coreset If Bounding Snapping Error

Let P be a set of n points in �d . The previous construction of coresets for k-means and
k-median clustering by Har-Peled and Mazumdar [HM], worked by finding a set S such
that νS(P) ≤ ενopt(P, k). This property by itself is sufficient to guarantee that S is a
(k, ε)-coreset for P . Surprisingly, the following theorem shows that, in the worst case,
any set with this property must be large (i.e., size dependent on n).

Theorem A.1. For any ε < 1
32 , there exists a set P of n points in � such that, for any

set S, if νS(P) ≤ ενopt(P, 1), then |S| is 	(ε−1 log n).

Proof. Consider the n = 2t points in P placed on the real line in the following way.
There are n/2i points placed uniformly in the intervals Ii = (−2i+1,−2i ) ∪ (2i , 2i+1),
for i = 1, 2, . . . , t = lg n. Also, place a single point on the origin forming I0. Now, let
S be any weighted coreset for the points of P . Let si denote the number of points in
S ∩ Ii . Each point in Ii can be served by (snapped to) either one of these si points, the
outermost points of Ii−1 or the innermost points of Ii+1. Hence, there are at most si + 4
representatives that can serve the points of Ii .

Now consider the contribution of the points of Ii to νS(P). We derive a lower bound
on this contribution by considering the two intervals of Ii to be a single interval of length
2i+1, which are served using si+4 centers. Clearly, the minimum is achieved when those
centers serve intervals of equal length, which is Li = 2i+1/(si + 4). The distance of
points of P on this interval to the points of S is going to be on average about Li/4. Thus,
the contribution of the points of P of Ii to νS(P) is (n/2i )(Li/4) ≥ n/(2(si + 4)). Note
that the origin is a median in this case and

νopt(P, 1) ≤
t∑

i=1

n

2i
· 2i+1 ≤ 2nt.



18 S. Har-Peled and A. Kushal

Hence,

1

2

t∑
i=1

n

si + 4
≤ νS(P) ≤ ενopt(P, 1) ≤ ε2nt.

This gives us that
∑t

i=1(1/(si + 4)) ≤ 4ε lg n.
We observe that |S| ≥ α = ∑t

i=1 si . The quantity α is minimized, subject to the
above constraint, when all the si ’s are equal. Thus, the above minimum is achieved when
s1 = · · · = st = β, and lg n/(β + 4) = 4ε lg n. Thus, β = 1/(4ε)− 4, implying that

|S| ≥
lg n∑
i=1

si ≥ β lg n = 	
(

lg n

ε

)
.

This testifies that our more involved analysis (i.e., Theorem 2.13) to get a better
coreset of size independent of n is indeed necessary. In particular, our improved coreset
construction works since it guarantees that the errors introduced by snapping the points
to the coreset cancel themselves out when considering any set of k medians.
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