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Abstract. This paper deals with the average computational effort for calculating all ver-
tices of a polyhedron described by m inequalities in an n-dimensional space, when we apply
the so-called “Double Description Method” (from a dual point of view, i.e. for finding all
facets of the convex hull of m given points, this is equivalent to application of the “Beneath-
Beyond Algorithm”). Both are incremental algorithms, i.e. they develop the information
about the polyhedron stepwise by taking the inequalities/points successively into regard.

The average-case analysis is done with respect to the Rotation-Symmetry Model, which
is well known from the corresponding analysis of the Simplex Method for linear program-
ming. In this model degenerate problems occur with probability 0. So the (finite) effort to
solve those problems has no impact on the expected effort in our model.

All the derived results and complexities apply equivalently to both algorithms and to the
corresponding primal and dual problems.

1. Introduction

1.1. The Problem

One of the most fundamental questions arising in computational geometry concerns the
arithmetical effort to get a complete (second) description of a polyhedron, for which
another (first) description is already available. Two such configurations are well known:

• (Primal question) m restriction hyperplanes inRn—bounding feasible halfspaces—
are given. We are interested in the intersection of these m halfspaces (this is the
polyhedron under consideration). Find all vertices of the resulting (primal) poly-
hedron.
• (Dual question) m generating points inRn are given. We are interested in the convex

hull of these points (this is the polytope under consideration). Find all the facets
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(and if required even all faces) of the convex hull of the points (dual polytope or
polyhedron).

Under mild nondegeneracy assumptions (and standardizations) it can be seen that both
mathematical problems are dual to each other and under that aspect are somehow equiv-
alent. Besides theoretical interest it is important to select a best possible algorithm to
do the job mentioned above (i.e. providing the second information). All practical and
theoretical experience shows that there is nothing like an overall superior algorithm. For
some polyhedra one method works well, for others a completely different method does
the job much better.

So it makes sense to check different approaches to algorithms and—if possible—to
study these arithmetical questions even from a probabilistic point of view (average-case
analysis). This is what we are doing in this paper, where we restrict our concentration
on the first formulation, namely the “vertex-finding problem”.

Before we specialize to one of these algorithms, we present two typical categories of
how to approach the challenge:

• Sequential algorithms start from one vertex, which had previously been found.
Then they determine a next and another next vertex (one after another) until all the
vertices are discovered.
• Incremental algorithms start with somewhat easier problems. They first solve the

vertex-finding problem for only n of the restrictions (i.e. for an auxiliary poly-
hedron). Then the information for that stage is saved and one more restriction is
introduced. This makes an update of the vertex structure necessary, which is done
on the basis of the previously available information. This action is repeated iter-
atively until all m restrictions are taken into account. Then the problem has been
solved for the true (original) polyhedron.

Prominent representatives of the first (sequential) category are the pivoting algorithm
proposed by Charnes et al. [15, pp. 62–70], the further developed version by Dyer [18]
and the algorithm of Avis and Fukuda [2]. All of these algorithms entail a walk on the
surface of the polyhedron under consideration in a manner similar to the Simplex Method
and they combine this procedure with a kind of depth-first search on the graph of vertices
and edges of the primal polyhedron. Each time a vertex is reached one proceeds to a
new adjacent vertex—if such an undiscovered vertex is available. Else, i.e. if all adjacent
vertices are already detected, one has to walk back on the path used before, until there
is a new adjacent vertex. Finally, all vertices will have been detected. It is important for
the complexity of these methods to store the path constructed so far, this is necessary to
find the way back.

This algorithm has been translated and transformed for the dual question under the
name the Gift-Wrapping Algorithm by Chand and Kapur [14] (see also [33]). Here a
sequence of facets of Conv{a1, . . . , am} is constructed (these are boundary simplices,
resp. convex hulls, of special sets of n points). Every forward step can be seen as crossing
a ridge (convex hull of n − 1 out of those n points) of the actual facet in order to get to
an adjacent facet.

Avis and Fukuda [2] gave another version for the primal question (and implicitly for
the dual) relying on reverse Pivot search and avoiding the effort to store the history of the
path. This strategy makes use of the fact that in a linear programming problem with the
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primal polyhedron as the feasible region the following holds: if the objective function
cT x has a unique optimal vertex, then every vertex is connected with the optimal vertex
by a unique Simplex-Path generated by the Simplex variant under use. So it is possible
for each edge to decide whether it belongs to such a path or not. The algorithm of Avis
and Fukuda uses only edges belonging to such a Simplex-Path (in reverse direction) for
forward steps, because then the optimization process of the Simplex Method will find
the right way back without any stored information.

Another important example is the Shelling Algorithm of Seidel [31]. Here the vertices
are discovered in decreasing order with respect to a linear objective function cT x . To
understand the dual version of the Shelling Algorithm one should imagine the light of a
lamp located at a point in a facet of Conv{a1, . . . , am}. When we move that lamp away
from the polyhedron (on a fictive straight line), then more and more facets will become
illuminated. Seidel’s algorithm computes the sequence of facets in the same order as
they become illuminated. We can proceed in the corresponding way for the opposite side
of the polyhedron. This algorithm has to spend much effort in storing, too.

A typical incremental algorithm is the Double Description Method [27] (see also
[21] and [22]) originally introduced by Motzkin et al. in 1953. Here one calculates in
sequence the primal polyhedra produced by n, n+1, . . . ,m−1,m of the restrictions. In
the original or standard form, one takes the restrictions in their incoming order. However,
soon the question arises as to whether a permutation of that order would be advantageous.

The dual version of that algorithm is called the Beneath-Beyond Algorithm. (Some-
times we use this term also for the primal version, because beneath and beyond has an
important geometrical meaning there, too). Its history goes back to Grünbaum [23]. Sev-
eral times it was rediscovered, refined and used under different names. See for instance
[28], [32], [19] and [26].

Here, the newly introduced point ai is matched with every facet of Conv{a1, . . . , ai−1}.
Now one has to check whether ai is located above (beyond) or below (beneath) the
facet under consideration. The “beyond” facets will disappear when we proceed to
Conv{a1, . . . , ai }. On the other side new facets will appear. Each of them is the con-
vex hull of ai with a ridge between a formerly “beneath” and a formerly “beyond”
facet.

The order of introducing the restrictions/points is quite different in the multidimen-
sional version of the Quickhull Algorithm (see [3]). It works identically in the Update
procedure, but the order of introduction is changed dynamically. So-called “deep cuts” are
preferred. The purpose is that the structure of the final polyhedron shall be approximated
very early.

There is a vast literature on these algorithms. The papers deal with quite different
aspects. Here are some examples:

We mention, e.g. the work of Bremner [9], who constructs families of polyhedra
where the computational effort for incremental primal algorithms must be extremely
higher than the number of vertices in the final polyhedron, because the intermediate
auxiliary polyhedra are much more complicated than the final one. So, incremental
algorithms cannot be called “output-sensitive”. This means that the computational effort
for calculating the output should be polynomially bounded by the number of (binary)
bits required to describe the input and the output of the problem (i.e. Size(Input) +
Size(Output)) (see also [16]).
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Avis et al. [1] show that every algorithm has at least one of several weaknesses:

– either an unability to solve degenerate problems,
– or the inability to hold the intermediate results as simple as the final output.

Bremner et al. [10] raise the question of whether there is a kind of primal–dual algo-
rithm which can exploit the fact that there are two dual and almost equivalent problems
to solve (as mentioned in the beginning of this section). The aim is to apply the “easier”
version each time.

Joswig [25] deals with the Beneath-Beyond Algorithm and compares it with other
convex-hull implementations. It turns out that each algorithm has its own “domain of
superiority” in the huge set of polyhedra.

Many researchers deal with Quickhull. Barber et al. [3] present an approach for
general dimensions motivated by 2d-experience. For polyhedra showing a so-called
balance condition, the behaviour is truly output-sensitive.

As far as we know, there is no truly satisfying theoretical result on the average-case
behaviour of the Double Description Method or the Beneath-Beyond Algorithm. This is
even worse for Quickhull, where we are (for reasons lying in stochastic theory) even far
away from a rigorous probabilistic analysis.

1.2. The Task of This Paper

The aim of this paper is an average-case analysis of the behaviour of the most popular
“incremental” algorithm for finding all vertices of the polyhedron

X = {x | aT
1 x ≤ 1, . . . , aT

m x ≤ 1} (1)

in a version that is appropriate for nondegenerate problems. The algorithm under con–
sideration is called the “Double Description Method”.

Assume that we already have discovered (calculated) all vertices of the auxiliary
polyhedron

Xl = {x | aT
1 x ≤ 1, . . . , aT

l x ≤ 1}, where 1 ≤ l ≤ m. (2)

Then we may proceed in order to obtain the corresponding information for Xl+1. This
explains the term incremental: Xl+1 is calculated on the basis of the knowledge about Xl .
The update from Xl to Xl+1 consists of two stages:

1. In the first stage we have to decide whether a vertex of Xl satisfies aT
l+1x ≤ 1 or not.

In geometrical terms this is the question whether this vertex lies beneath or beyond
the hyperplane {x ∈ Rn | aT

l+1x = 1}.
2. In the second stage all those vertices beyond the hyperplane have to be deleted,

and the new vertices on the hyperplane have to be identified and appended to our
list of vertices.

As explained in the last section, the Beneath-Beyond Algorithm does the same job in-
directly by determining all facets of Conv(0, a1, . . . , am) generated by n of the ai -points.
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This information can after that be re-translated into the primal question by calculation
of the primal vertex which is associated with the discovered dual facet.

Let us have a look on both stages in the dual context. In stage 1 the Beneath-Beyond
Algorithm checks every extant facet whether the additional point al+1 lies beneath the
facet hyperplane (i.e. on the side where the origin lies) or beyond (i.e. on the opposite
side). In stage 2 those “beyond” facets are deleted, the “beneath” facets are kept and the
new facets, which all have al+1 as one of their generators, are constructed. The effort of
doing these steps in the dual context is the same as in the primal context.

Note that sometimes—in a sloppy use of language—we use the term “Beneath-
Beyond” also in the primal context, because it has a geometrical meaning even in the
primal stage 1.

We base our analysis on the so-called

Rotation-Symmetry Model (RSM).

a1, . . . , am are distributed independently, identically and symmetrically
under rotations on Rn\{0}. (3)

This stochastic model has been used successfully for an average-case analysis of the
Simplex Method in [6] and [8], for Inner-Point Algorithms in [24] and for Gift-Wrapping
Algorithms for convex hulls, resp. for finding all vertices of X , in [7].

In our approach the term “averaging” results from randomly generating the data of
problems (here the set of vectors {a1, . . . , am}) according to a certain distribution rule.
After that, for any given data set we simulate a complete solution of the problem by
application of the algorithm under consideration. Finally we count (sum up) all the
necessary arithmetical operations for all generated data sets and calculate an average
number per generated problem.

The resulting mean values (expected values) will be classified according to

1. the number of variables = the dimension n,
2. the number m of restrictions and
3. the specific distribution under use (specified by a parameter k with−1 < k <∞).

In consequence, we want to achieve the value of Ek
m,n(s), where s is the number

of arithmetical operations (steps) required to solve a given problem. E stands for the
expected value in the space with parameters m, n and k, where m is the number of
restrictions, n is the number of variables and k denotes the special distribution parameter
under consideration.

Under RSM the following condition is satisfied with probability 1 (almost surely):

Condition of Nondegeneracy (CoN)

Each subset of {a1, . . . , am} consisting of n vectors is linearly independent,
and each subset consisting of (n + 1) vectors is in general position.

(4)

Fortunately, the remaining complementary cases have no influence on the expected
values because all operation numbers are finite and uniformly bounded from above. So
we may solve degenerate problems even by extremely lengthy (but finite) enumeration
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methods without deteriorating the average computation time. This effect avoids and saves
complicated case studies. Hence it simplifies our analysis tremendously.

In the following we use the following notations for balls and spheres:

ωn := {x ∈ Rn | ‖x‖ = 1|} and �n := {x ∈ Rn | ‖x‖ ≤ 1} (5)

for unit sphere ωn , resp. unit ball �n .
λk denotes the k-dimensional Lebesgue-measure of a set, hence

λn−1(ωn) = 2 · πn/2

�(n/2)
and λn(�n) = πn/2

�((n + 2)/2)
. (6)

The convexity of the logarithm of the gamma-function admits several estimations, which
will frequently be exploited in the calculations of this paper (see [6, Appendix]).

Remark 1. For x ≥ 1 and all 0 < α < 1 we have

(x + α − 1)α ≤ �(x + α)
�(x)

≤ xα, (7)

λn−1(ωn)

λn−3(ωn−2)
= 2π

n − 2
and

λn(�n)

λn−2(�n−2)
= 2π

n
, (8)

√
2π

n − 1
≤ λn−1(ωn)

λn−2(ωn−1)
≤

√
2π

n − 2
and

√
2π

n + 1
≤ λn(�n)

λn−1(�n−1)
≤

√
2π

n
. (9)

Rotation-symmetric distributions can be characterized uniquely by specifying their
“radial distribution function”:

F(r) := P(x | ‖x‖ ≤ r) for r ∈ [0,∞). (10)

P(x | ‖x‖ ≤ r) is the probability that a random point x has a Euclidean distance to the
origin not greater than r . In our class of distributions we have F(r) = 1 ∀r ≥ 1. These
are the distributions with bounded support �n .

If the radial distribution has a density, then we denote it by f (r), i.e.

F(r) =
∫ r

0
f (ρ) dρ ∀r ∈ [0,∞). (11)

Suppose that the original distribution over Rn has a density f̂ . Then f̂ (x1) = f̂ (x2)

as long as ‖x1‖ = ‖x2‖, because of rotation symmetry.
Now we introduce a function induced by this property of f̂ , namely f̃ : [0,∞)→ R

such that f̃ (||x ||) = f̂ (x) for all x ∈ Rn . Then we observe the relation

F(r) = λn−1(ωn)

∫ r

0
tn−1 f̃ (t) dt,

where

f̃ (r) = f (r)
1

rn−1λn−1(ωn)
.
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For the sake of better calculation and evaluation possibilities we restrict our interest
to the following subfamily of rotation-symmetric distributions.

We deal only with radial distribution functions parametrized by a value k > −1 of
the following kind:

Fk(r) :=



∫ r

0 (1− τ 2)kτ n−1 dτ∫ 1
0 (1− τ 2)kτ n−1 dτ

for 0 ≤ r ≤ 1,

1 for r > 1.

(12)

The corresponding radial densities of these distributions are

fk(r) :=




(1− r2)krn−1∫ 1
0 (1− τ 2)kτ n−1 dτ

for 0 ≤ r ≤ 1,

0 for r > 1.

(13)

Remark 2. The parameter k gives the weight on the radii between 0 and 1. k → −1
puts extremely much weight at the boundary of the ball. k → ∞ puts more and more
weight in the interior and less at outer spheres.

Remark 3. Interesting special cases are:

k = 0 ⇒ f̂ constant on �n ≡ uniform distribution on �n,

k → −1 ⇒ extremal dominance at r = 1 ≡ uniform distribution on ωn,

k → ∞ ⇒ extremal dominance at r = 0 ≡ totally centralized,

k = n − 1

2
⇒ radial density symmetric about r = 1

2 .

The philosophy of this paper is very similar to that of the paper on Gift-Wrapping
from 1997, see [7]. Both belong to a long-term project, where several algorithms will be
analyzed theoretically under the same stochastic model (RSM).

There have been some rudimentary results on average-case analysis and even for RSM
distributions. Compare the work of Dwyer from 1988 [17]. Mostly the results were given
in terms of the expected number of vertices (and this number was not specified in m and n).
Moreover, they were given only for single distributions (as a “random sphere”) and they
were applicable only to the situation where m was growing tremendously, while n was
fixed. That means the dependency upon n was not rigorously evaluated.

Here we try to evaluate the average-case behaviour in formulas which specifically
exhibit the dependency upon m and n. This is done for all configurations with m ≥ n.
In cases where it is too difficult to calculate the equations, we put the emphasis on
deriving true upper bounds instead of using the order notation. In addition, we are able
to study a whole variety of distributions via our parameter k. Thus we get a variation
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of the nonredundancy rate of restrictions moving from 1 to 0 in the limit when k grows
to infinity. Then the algorithms will behave quite differently, and our results can reflect
these differences.

For this evaluation we are forced to apply methods of stochastic geometry. One of
the most important tools for our analysis and one of the most “classical” problems of
stochastic geometry is the calculation of the expected number of vertices Em,n(#(V ))
when the restriction vectors ai are distributed according to a certain stochastic model
(in our case the RSM distributions). There are many papers dealing with such questions,
and the interested reader is referred to a survey by Buchta [11]. (See also [30] and [20].)

For two special distributions under consideration there are rather old results and
derivations of that expected number: For the uniform distribution over the unit ball (�n)
we know a result of Raynaud [29], which gives an asymptotic approximation

Em,n(#(V )) = Const.�(n) · m(n−1)/(n+1)(1+ o(1)) (as m →∞, and n is fixed).

Buchta and Müller [12] gave a formula for that number in the form of a combinatorial
sum. A key and extremal role in our study is the uniform distribution over the unit
sphere (ωn). Compare in particular Section 7. Here Buchta et al. [13] again calculate a
combinatorial sum and an asymptotic approximation of the form

Em,n(#(V )) = Const.ω(n) · m(1+ o(1)) (as m →∞, and n is fixed).

In this paper we rely on a more general method for deriving such expected numbers in
a simple form of nonasymptotic bounds, which allows us to handle our whole family
of distributions with varying parameter k uniformly. The above-mentioned distributions
appear as special cases (k = 0, resp. k → −1). This related, but slightly different,
evaluation method had been independently derived in [4]–[6], at that time only for the
purpose of determining the expected number of vertices on a Simplex-Path. Later, it
could be used for different geometrical figures as the number of vertices itself [7]. An
advantage of this method is that it creates upper bounds for all values of m and n and
for all k in a closed form suitable for inserting in the complexity analysis of algorithms
(as, e.g. the Double Description Method). For the two mentioned special distributions
our method arrives at the same terms with respect to the behaviour in n and we see that
(m+ 2/(n + 1))(n−1)/(n+1), resp. m, can in fact be used in the upper bounds without any
correction term o(1). Details are given in Section 5.2.

1.3. The Main Results

Here are our main results about discovering all vertices of X as in (1).

Theorem 1. Suppose that m restrictions are randomly generated according to the
RSM in dimension n with distribution-parameter k. Then the Double Description Method
(resp. the Beneath-Beyond Algorithm) determines all vertices of the polyhedron X with
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an arithmetical effort of at most

Ek
m,n(s) ≤ O(n3)

+ 2π(n/2)
[n!]1/2

�(n/2)
(n + 1+ 2k)(n−1)/2

·
[

�(k + 1+ n/2)

2
√
π�(k + 1+ (n − 1)/2)

](n−1)/(n+1+2k)

· O
{

n(2+2k)/(n+1+2k)m(n−1)/(n+1+2k)+1 n + 1+ 2k

2n + 2k

+ n2+(2+2k)/(n+1+2k)m(n−1)/(n+1+2k) n + 1+ 2k

n − 1

+ n1+(2+2k)/(n+1+2k)m(n−1)/(n+1+2k)+1 n + 1+ 2k

2n + 2k

+ n1+(2+2k)/(n+1+2k)m(n−1)/(n+1+2k) n + 1+ 2k

n − 1
(ln m − 1)

}
. (14)

For two typical values of k we get the following (slightly sharper) upper bounds.

Theorem 2. Suppose that m restrictions are randomly generated according to the RSM
in dimension n with distribution-parameter k →−1 (uniform distribution on ωn). Then
the Double Description Method (resp. the Beneath-Beyond Algorithm) determines all
vertices of the polyhedron X with an arithmetical effort of at most

Ek→−1
m,n (s) ≤ O(n3)+ 1

n
(n − 1)n−3

(
1

n − 2

)(n−1)/2

(2π)(n−1)/2 2√
π

√
n2 − 2n + 1

2

· O
{

n2 m(m − 1)

2
+ mn4 + n3 m(m − 1)

2
+ n3m(ln(m)− 1)

}
. (15)

Theorem 3. Suppose that m restrictions are randomly generated according to the RSM
in dimension n with distribution-parameter k = 0 (uniform distribution on �n). Then
the Double Description Method (resp. the Beneath-Beyond Algorithm) determines all
vertices of the polyhedron with an arithmetical effort of at most

Ek=0
m,n (s) ≤ O(n3)+ 1

n

2√
π

√
n2 + 1

2
(n + 1)n−2+2/(n+1)

√
2π

n

n−1+2/(n−1)

n−(n−1)/(n+1)

· O
{

n2m1+(n−1)/(n+1) 2n

n+1
+n4m(n−1)/(n+1) n+1

n−1
+n3m1+(n−1)/(n+1) 2n

n+1

+ n3m(n−1)/(n+1) n + 1

n − 1
·
(

ln m − n + 1

n − 1

)}
. (16)

Finally, we can compare the general results on incremental algorithms according to
RSMs with the results for Gift-Wrapping, resp. sequential algorithms.
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Theorem 4. For the special case of uniform distribution on ωn and m >> n, the
expected number of vertices is almost linear in m, precisely it is m(1− ε(m, n)) ·C(n),
for a function ε(m, n) > 0 and ε(m, n) → 0 for m → ∞, n fixed. In this case, on
the average, incremental algorithms with random order have to delete in each stage an
expected number of about (n − 1)C(n) and to produce an expected number of about
(n)C(n) completely new vertices in order to gain an increment of about 1 · C(n) in the
expected total number. So in any case we have an overproduction with factor n.

For all other RSM distributions the overproduction factor is even more dramatic,
because the deletion share is the same, but the incremental share is less (the expected
number here is sublinear in m).

Hence under our stochastic model and average-case analysis our incremental algo-
rithm has to deal with n-times more “working vertices” than the final polyhedron Xm

will have on the average. As a consequence of our implementation details, under our
criteria it cannot be as efficient as the pivoting algorithm studied in [7].

2. The Algorithm

Before diving deeply into stochastic geometry and integral theory, we describe our
algorithm in detail and think about the arithmetical effort for a given deterministic
problem. The most important role in that complexity analysis has the size of the output,
i.e. the number of vertices which have to be detected. We denote this figure by #(V ) :=
#(Vm).

Concerning the structure of X (= Xm) and of Xl with n ≤ l ≤ m and its vertices we
should take the following into regard. Here nondegeneracy guarantees that:

(a) X is simple, i.e. every vertex of X is given as the solution of a system

aT
�1 x = 1, . . . , aT

�n x = 1 and aT
j x < 1 ∀ j /∈ �,

where 1 ≤ �1 < · · · < �n ≤ m with � = {�1, . . . , �n} ⊂ {1, . . . ,m}.
(b) Every edge is a line segment, resp. the solution set of a system

aT
�1 x = 1, . . . , aT

�i−1 x = 1, aT
�i+1 x = 1, aT

�n x = 1

and aT
j x ≤ 1 ∀ j ∈ {1, . . . ,m}.

(c) Edges are incident to one or (mostly) two vertices, where one additional restriction
is active or tight, i.e. at one end

aT
�i x = 1 ∀i ∈ �, and aT

j x < 1 ∀ j /∈ �,
and at the other end

aT
�ī x < 1 for one ī ∈ �;

aT
�i x = 1 for the remaining i ∈ � and

aT
j̄ x = 1 for one j̄ /∈ � and aT

j x < 1 for the remaining j /∈ �.
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(d) Every vertex is incident to exactly n edges defined by

aT
�1 x = 1, . . . , aT

�i−1 x = 1, aT
�i+1 x = 1, aT

�n x = 1 and aT
j x ≤ 1,

∀ j ∈ {1, . . . ,m}.
For a probabilistic analysis of these vertices we need to have a dual view on the problem,
because the randomly given data are a1, . . . , am—originating from the dual space.

Remark 4. The set {a�1 , . . . , a�n } ⊂ {a1, . . . , am} determines a vertex x� of X in the
primal space via aT

�1 x = 1, . . . , aT
�n x = 1 if and only if in the dual space the hyperplane

through a�1 , . . . , a�n is a boundary hyperplane for Conv(a1, . . . , am, 0). That means
that Conv(a�1 , . . . , a�n ) is a facet of Conv(a1, . . . , am, 0) and that the origin 0 and all
points ai with i /∈ � belong to the same halfspace (bounded by that hyperplane through
a�1 , . . . , a�n ).

As already mentioned, our algorithm is an incremental algorithm. We successively
solve the following auxiliary problems:

n restrictions (a1, . . . , an) (Xn)

n + 1 restrictions (a1, . . . , an, an+1) (Xn+1)
...

...
...

...

n + r = l restrictions (a1, . . . , an, an+1, . . . , al) (Xl)

n + r + 1 = l + 1 restrictions (a1, . . . , an, an+1, . . . , al , al+1) (Xl+1)
...

...
...

...

n + (m − n) = m restrictions (a1, . . . , an, an+1, . . . , am) (Xm = X)

We determine the vertex (and edge) structures of Xn, Xn+1, Xn+2, . . . , Xl , Xl+1, . . . ,

Xm = X in such a way that each Xl+1 is developed from Xl . As soon as we have
calculated the structure of Xm = X , we are ready.

Informally, we proceed as follows for one update: Assume that the vertex–edge struc-
ture of Xl is already known and available. Then we have to check every vertex x� of Xl

to see whether it satisfies aT
l+1x� ≤ 1. If YES, we keep that vertex. If NO, the vertex is

dropped. In the latter case we have to pay attention to a set of just-generated brand new
vertices (appearing the first time in Xl+1). All such new vertices of Xl+1 have in com-
mon that they are generated as the intersection point of an Xl-edge and the hyperplane
{x | aT

l+1x = 1}. So all these new vertices satisfy aT
l+1x = 1. Therefore it pays to store

all the edges of a preliminary polyhedron Xl .
Following is a more rigorous description (in pseudocode terminology).

Initialization
Calculate the only vertex and the n edges (resp. rays) of

Xn = {x | aT
1 x ≤ 1, . . . , aT

n x ≤ 1}.

Typical Step
for l from n to m − 1 do:
Consider the description of Xl , i.e. its list of triples [vertex—edge—vertex], resp.
[vertex—edge—∞), and calculate the corresponding list for Xl+1.
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Details of Calculation

(a) Check all edges to see whether they intersect the hyperplane {x | aT
l+1x = 1} or

not. If there exists an intersection point, we call that x0.
(b) (i) Keep all edges which belong to the halfspace {x | aT

l+1x ≤ 1} completely.
(ii) Drop all edges which belong to the open halfspace {x | aT

l+1x > 1}
completely. Reduce the degree of the incident vertices each time by one,
and drop the vertex as soon as its degree has fallen to 0.

(iii) Edges crossing the hyperplane are treated as follows:
(A) If the edge is incident to two vertices x1 (with aT

l+1x1 ≤ 1) and
x2 (with aT

l+1x2 > 1), then replace the edge [x1, x2] by the edge
[x1, x0], i.e. eliminate the line segment (x0, x2].

(B) If the edge is incident only to a vertex like x2, then shorten that
edge (resp. ray) by eliminating the line segment (x0, x2], reduce
the degree of x2 by one and eliminate x2 as soon as its degree
has reached 0.

(C) If the edge is incident only to a vertex like x1, then replace the
edge by [x1, x0] and eliminate the rest.

(c) Now we have the new vertex x0. Calculate all edges emanating from x0 and
keeping aT

l+1x ≤ 1 tight. (As a result of nondegeneracy, there are n − 1 such
edges.) The direction of the n edges are given as the n columns of the negative
inverse matrix of

A� =




aT
�1

...

aT
�n


 in the form A−1

� (−ei ). (17)

Determine the vertex at the other end of the edge or the fact that this edge is
unbounded.

Remark 5. Note that in degenerate cases, step (c) will become more complicated,
since there may be many more potential neighbours of x0 in the hyperplane, and there
may be many directions of the kind mentioned in (17). So we should use combinatorial,
resp. enumerative, methods to match each pair of such vertices of the x0-type and to
decide whether they are adjacent or we should check every such direction to see whether
it defines an edge.

In our stochastic model this can be done for all occurring degenerate problems without
impact on the expected values. However, as soon as degenerate problems get a positive
weight, the quality of the algorithm in comparison with others may change dramatically.

3. Deterministic Complexity Considerations

The initialization requires the solution of n + 1 systems (one for the vertex, n for the
edges). Altogether this can be done with O(n3) arithmetical operations, and this workload
is sufficient for inverting A� and for the complete determination of the edge-directions
A−1
� (−ei ) for i = 1, . . . , n.
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For the costs of the update assume that we have a description in the form vertex–
edge–vertex or vertex–edge–∞ of Xl completely.

For each stage l = n, . . . ,m − 1 we have to perform one update step. Internally in
one update, steps (i) and (ii) require, for each of the #(El) edges (# denotes the number
of elements of a set, here of the edges of El), the calculation of the scalar products
aT

l+1x1, aT
l+1x2 and the evaluation of the restriction aT

l+1x ≤ 1 for x = x1 and x = x2.

This causes an effort of O(n).
So we need to carry out O(#(El)n) arithmetical steps.
Step (iii) handles some of these edges in an additional manner. All the intersection

points x0 correspond to vertices in Vl+1\Vl . For each of these #(Vl+1\Vl) vertices we
need O(n3) steps to calculate the edge directions.

Now the task of step (c) is to get familiar with the endpoints (vertices) on those
edges. Hence we have to apply a quotient criterion to each such edge-direction. Under
nondegeneracy this is restricted to exactly n edges. (Under degeneracy this number may
become much higher, which makes this situation much more troublesome.) This costs
(l + 1− n) scalar products (with effort O(n(l + 1− n))) and (l + 1− n) divisions. In
total we have (l + 1− n)n arithmetic operations per edge.

Note that the difference set can be characterized equivalently as V act
l+1(al+1); this is

the set of Xl+1–vertices, where aT
l+1x ≤ 1 is tight.

In addition, we introduce the term activity-event of a certain restriction, e.g. A.E .(al+1)

or activity-event in general, i.e. with respect to any of the restrictions (A.E .). Then it
is clear that in each vertex (under nondegeneracy) we have exactly n activity-events
caused by n different restrictions, and so we have #(A.E .) = #(V ) and #(V act(al+1)) =
#(A.E .(al+1)).

So step (iii) causes in one update an effort of

O(n3 + (l + 1− n)n) · #(V act
l+1(al+1)).

Finally, we have to store the new vertices, edges and triples. The cost for each edge is
n · ln(l + 1).

We summarize all those contributions:

n3 for initialization, (18)

and for l = n, . . . ,m − 1

#(El)n ≤ #(Vl) · n · n [for evaluation of all edges], (19)

#(Vl+1\Vl)n
3 = #(V act

l+1(al+1))n
3 [for all edge directions], (20)

#(Vl+1\Vl)n(l + 1− n)n [for the adjacent vertices], (21)

#(Vl+1\Vl)n[n · ln(l + 1)] [for storing the new edges]. (22)

In formula, this looks as follows:

s≤O

(
n3+

m−1∑
l=n

#(Vl)n
2+

m−1∑
l=n

#(V act
l+1(al+1))[n

3+n2(l+1−n)+n2 ln(l+1)]

)
. (23)
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The aim of further evaluations is to get precise estimations or bounds for #(Vl) and for
#(V act

l+1(al+1)).
In an average-case analysis, we need estimations or bounds for the corresponding

expected numbers.

4. Marginal Distribution Functions

As determined in the first section (see (12) and (13)), we deal with radial distribution
functions and radial densities of the kind

Fk(r) :=



∫ r

0 (1− τ 2)kτ n−1 dτ∫ 1
0 (1− τ 2)kτ n−1dτ

for 0 ≤ r ≤ 1,

1 for r > 1,

and

fk(r) :=




(1− r2)krn−1∫ 1
0 (1− τ 2)kτ n−1dτ

for 0 ≤ r ≤ 1,

0 for r > 1.

For these distributions, we can evaluate the marginal distribution and density:

G: [−1, 1] → [0, 1] with G(h) = P(xn ≤ h), (24)

and g0: [−1, 1] → [0,∞) with
∫ h

−1
g0(ζ ) dζ = G(h). (25)

For our class of distributions with bounded support (�n), knowledge of the radial
distribution allows us to specify these two and two other (very useful) marginal functions:

G(h) = 1− λn−2(ωn−1)

λn−1(ωn)

∫ 1

h

∫ 1

h/r
(1− σ 2)(n−3)/2 dσ d F(r), (26)

g0(h) = λn−2(ωn−1)

λn−1(ωn)

∫ 1

h

(r2 − h2)(n−3)/2

rn−2
d F(r), (27)

g1(h) = g0(h) · E(|x1| | xn = h)

= 2λn−3(ωn−2)

(n − 2)λn−1(ωn)

∫ 1

h

(r2 − h2)(n−2)/2

rn−2
d F(r)

= 1

π

∫ 1

h

(r2 − h2)(n−2)/2

rn−2
d F(r), (28)

g2(h) = g0(h) · E(|x1|2 | xn = h)

= λn−2(ωn−1)

(n − 1)λn−1(ωn)

∫ 1

h

(r2 − h2)(n−1)/2

rn−2
d F(r). (29)
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For the evaluation of these formulas the following is very helpful:

(a)
∫ 1

0
(1− τ 2)kτ n−1 dτ =

∫ 1

0
(1− τ 2)kττ n−2 dτ (substitution u = τ 2)

= 1

2

∫ 1

0
(1− u)k · u(n−2)/2 du = �(k + 1)�(n/2)

2�(k + 1+ n/2)

= 1

2
B
(

k + 1,
n

2

)
∀k > −1, n > −1, (30)

where B(·) denotes the well-known beta-function

B(k, l) :=
∫ 1

0
xk−1(1− x)l−1 dx = �(k)�(l)

�(k + l)
for k > 0, l > 0. (31)

(b)
∫ 1

h
(r2 − h2)l(1− r2)kr dr

(
substitution u = r2 − h2

1− h2

)

=
∫ 1

0
ul(1− h2)l(1− u)k(1− h2)k(1− h2) 1

2 du

= 1
2 (1− h2)l+k+1

∫ 1

0
ul(1− u)k du

= 1
2 (1− h2)l+k+1�(k + 1)�(l + 1)

�(k + l + 2)

= 1
2 (1− h2)l+k+1 B(k + 1, l + 1) ∀k > −1, l > −1. (32)

Based on the inequalities in (7) we can derive bounds on beta-integrals like

(c)
1

l

(
k

l − δ
)δ
≤

(
k

l

)∫ 1

0
xk−l(1− x)l−1−δ dx

≤ 1

l

(
k + 1− δ

l − 1

)δ
∀k, l ∈ N, δ > 0. (33)

The use of (a) and (b) allows us to specialize the G- and g-functions to the k-class
cases. Here we exploit formulas (26)–(29) and (6):

Gk(h) = 1− λn−2(ωn−1)

λn−1(ωn)

2�(k + 1+ n/2)

�(k + 1)�(n/2)

∫ 1

h

∫ 1

h/r
(1−σ 2)(n−3)/2 dσ(1−r2)krn−1 dr,

(34)

g0,k(h) = λn−2(ωn−1)

λn−1(ωn)

2�(k + 1+ n/2)

�(k + 1)�(n/2)

∫ 1

h

(r2 − h2)(n−3)/2

rn−2
(1− r2)krn−1 dr

= λn−2(ωn−1)

λn−1(ωn)

2�(k + 1+ n/2)

�(k + 1)�(n/2)

1

2
(1− h2)(n−3)/2+k+1�((n − 1)/2)�(k + 1)

�(k + 1+ (n − 1)/2)
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= λn−2(ωn−1)

λn−1(ωn)

�(k + 1+ n/2)

�(n/2)

�((n − 1)/2)

�(k + 1+ (n − 1)/2)
(1− h2)(n−1)/2+k

= �(k + 1+ n/2)√
π�(k + 1+ (n − 1)/2)

(1− h2)(n−1)/2+k, (35)

g1,k(h) = 1

π

2�(k + 1+ n/2)

�(k + 1)�(n/2)

∫ 1

h

(r2 − h2)(n−2)/2

rn−2
(1− r2)krn−1 dr

= 1

π

2�(k + 1+ n/2)

�(k + 1)�(n/2)

1

2
(1− h2)n/2+k �(n/2)�(k + 1)

�(k + 1+ n/2)

= 1

π
(1− h2)n/2+k, (36)

g2,k(h) = λn−2(ωn−1)

(n − 1)λn−1(ωn)

2�(k + 1+ n/2)

�(k + 1)�(n/2)

∫ 1

h

(r2 − h2)(n−1)/2

rn−2
(1− r2)krn−1 dr

= λn−2(ωn−1)

(n − 1)λn−1(ωn)

2�(k + 1+ n/2)

�(k + 1)�(n/2)

1

2
(1− h2)(n+1)/2+k

· �((n + 1)/2)�(k + 1)

�(k + 1+ (n + 1)/2)

= λn−2(ωn−1)

(n − 1)λn−1(ωn)

�(k + 1+ n/2)

�(n/2)

�((n + 1)/2)

�(k + 1+ (n + 1)/2)
(1− h2)(n+1)/2+k

= 1√
π

�(n/2)

(n − 1)�((n − 1)/2)

�(k + 1+ n/2)

�(n/2)

· �((n + 1)/2)

�(k + 1+ (n + 1)/2)
(1− h2)(n+1)/2+k

= 1

2
√
π

�(k + 1+ n/2)

�(k + 1+ (n + 1)/2)
(1− h2)(n+1)/2+k . (37)

5. Expected Number of Vertices and Update Vertices

5.1. Calculations and Estimations for General k’s

As we have seen before, the expected number of vertices #(Vl) and the expected number
of update vertices #(Vl+1\Vl) play the most crucial role in the estimation of the expected
effort. If we have the numbers El,n(#(Vl)) and El+1,n(#(V act

l+1(al+1)) then we can estimate

Em,n(s) ≤ O

(
n3 +

m−1∑
l=n

El,n(#(Vl))n
2

+
m−1∑
l=n

El+1,n(#(V
act

l+1(al+1)))[n
3 + n2(l + 1)+ n2 ln(l + 1)]

)
. (38)
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Let us first deal with Em,n(#(V )). For this figure we have the integral representation

Em,n(#(V )) =
(

m

n

)
·
∫
Rn

· · ·
∫
Rn

P(an+1, . . . , am below hyperplane through a1, . . . , an)

· f̂ (a1) · · · f̂ (an)da1 · · · dan

=
(

m

n

)
·
∫
Rn

· · ·
∫
Rn

P(a1, . . . , an induce a facet of Conv(a1, . . . , am))

· f̂ (a1) · · · f̂ (an)da1 · · · dan

= λn−1(ωn) ·
(

m

n

)
(39)

·
∫ 1

0

∫
Rn−1
· · ·

∫
Rn−1

G(h)m−n|Det B| f̂ (b1) · · · f̂ (bn) d(b1) · · · d(bn) dh.

Here

B :=




b1
1 . . . b1

n−1 1
...

...

bn
1 . . . bn

n−1 1


 , bi :=




bi
1

...

bi
n−1

h


 and b̄i :=




bi
1

...

bi
n−1


 .

In certain special cases (as for uniform distribution on ωn ≡ k → −1 or uniform
distribution on �n ≡ k = 0) it is possible to calculate directly the value of

�B(h) :=
∫
Rn−1
· · ·

∫
Rn−1
|Det B| f̂ (b1) · · · f̂ (bn) d(b1) · · · d(bn). (40)

We shall return to this point at a later stage.
For general distributions we must get along with upper bounds obtained by use of the

Cauchy–Schwartz inequality. Therefore we define

�0(h) :=
∫
Rn−1
· · ·

∫
Rn−1

f̂ (b1) · · · f̂ (bn) d(b1) · · · d(bn), (41)

�B2(h) :=
∫
Rn−1
· · ·

∫
Rn−1
|Det B|2 f̂ (b1) · · · f̂ (bn) d(b1) · · · d(bn). (42)

Then it is clear that

�B(h) ≤
√

[�B2(h) ·�0(h)]. (43)

It is rather easy to show that (compare [6])

�0(h) = g0(h)
n and �B2(h) = n! g2(h)

n−1g0(h). (44)

Consequently,

�B(h) ≤ [n!]1/2g0(h)
n

[
g2(h)

g0(h)

](n−1)/2

. (45)
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Inserting our g-formulas for special values of k, this reads

�B,k(h) ≤ [n!]1/2g0,k(h)
n

[
g2,k(h)

g0,k(h)

](n−1)/2

= [n!]1/2

[
�(k + 1+ n/2)√

π�(k + 1+ (n − 1)/2)
(1− h2)(n−1)/2+k

]n−1

· g0,k(h)

[
1

2(k + 1+ (n − 1)/2)
(1− h2)

](n−1)/2

= [n!]1/2g0,k(h)

[
1

2π

](n−1)/2

· �(k+1+n/2)n−1

�(k+1+(n−1)/2)n−1(k+1+ (n−1)/2)(n−1)/2
(1−h2)[n/2+k](n−1). (46)

So we obtain from (39)

Em,n(#(V )) ≤ λn−1(ωn) ·
[

1

2π

](n−1)/2

[n!]1/2

· �(k + 1+ n/2)n−1

�(k + 1+ (n − 1)/2)n−1(k + 1+ (n − 1)/2)(n−1)/2

·
(

m

n

)∫ 1

0
Gk(h)

m−ng0,k(h)(1− h2)[n/2+k](n−1) dh. (47)

Now we exploit an approximation relation between Gk(h) and (1− h2) from (35):

(1− Gk(h)) =
∫ 1

h
g0,k(ζ ) dζ

= �(k + 1+ n/2)√
π�(k + 1+ (n − 1)/2)

∫ 1

h
(1− ζ 2)(n−1)/2+k dζ

≥ �(k + 1+ n/2)√
π�(k + 1+ (n − 1)/2)

∫ 1

h
(1− ζ 2)(n−1)/2+kζ dζ

= �(k + 1+ n/2)√
π�(k + 1+ (n − 1)/2)

1

(n + 1+ 2k)
(1− h2)(n+1)/2+k . (48)

Since the upper bound for �B,k(h) (compare (46)) is essentially a power of (1− h2)

too, we can substitute it also by something like a power of [1− Gk(h)]:

Em,n(#(V )) ≤ λn−1(ωn)

·
(

m

n

)∫ 1

0
Gk(h)

m−ng0,k(h)[1− Gk(h)]
([n/2+k](n−1))/[(n+1)/2+k] dh

·
[

1

2π

](n−1)/2

[n!]1/2 �(k + 1+ n/2)n−1

�(k+1+(n−1)/2)n−1(k+1+(n−1)/2)(n−1)/2

·
[

�(k + 1+ n/2)√
π�(k + 1+ (n − 1)/2)

1

(n + 1+ 2k)

]−([n/2+k](n−1))/[(n+1)/2+k]
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= λn−1(ωn) ·
(

m

n

)∫ 1

0
Gk(h)

m−ng0,k(h)[1− Gk(h)]
n−1−(n−1)/(n+1+2k) dh

·
[

1

2π

](n−1)/2

[n!]1/2 �(k + 1+ n/2)n−1

�(k+1+(n−1)/2)n−1(k+1+(n−1)/2)(n−1)/2

·
[√

π�(k + 1+ (n − 1)/2)(n + 1+ 2k)

�(k + 1+ n/2)

]n−1−(n−1)/(n+1+2k)

= λn−1(ωn) ·
(

m

n

)
·
∫ 1

1/2
Gm−n[1− G]n−1−(n−1)/(n+1+2k) dG

(beta-integral, see (30), (32) and (33))

·
[

1

2π

](n−1)/2

[n!]1/2

[
n + 1+ 2k

(n + 1)/2+ k

](n−1)/2

·π(n−1)/2

[
2
√
π�(k + (n + 1)/2)

�(k + 1+ n/2)

]−(n−1)/(n+1+2k)

(n + 1+ 2k)(n−1)/2

≤ 1

n
·
[

m + (2+ 2k)/(n + 1+ 2k)

n − 1

](n−1)/(n+1+2k)

· λn−1(ωn)[n!]1/2(n + 1+ 2k)(n−1)/2 (49)

·
[

�(k + 1+ n/2)

2
√
π�(k + 1+ (n + 1)/2)

](n−1)/(n+1+2k)

= 1

n
·
[

m + (2+ 2k)/(n + 1+ 2k)

n − 1

](n−1)/(n+1+2k)

· 2π
n/2[n!]1/2

�(n/2)
(n + 1+ 2k)(n−1)/2

·
[

�(k + 1+ n/2)

2
√
π�(k + 1+ (n + 1)/2)

](n−1)/(n+1+2k)

.

This result can be simplified by use of the Stirling formula. The approximation is

Em,n(#(V )) ≤≈ 1

n

[
m + (2+ 2k)/(n + 1+ 2k)

n − 1

](n−1)/(n+1+2k)

· 2n/2πn/2n3/4(n + 1+ 2k)(n−1)/2
[
k + 1+ n

2

]−(n−1)/(2(n+1)+2k)

·
[

1

2
√
π

](n−1)/(n+1+2k)

. (50)
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5.2. Sharper Calculations for Two Popular Distributions

For two special realizations of k, namely k →−1 and k = 0 (uniform distribution onωn ,
resp. on �n), we can avoid the inexactness caused by the Cauchy–Schwartz inequality.
This comes from the fact that here we are able to calculate �B(h) exactly for all h ≥ 0.
The reason for that is simply that the intersection of a ball (sphere) with the hyperplane
{x | xn = h} reproduces a ball or a sphere of dimension n−1 with radius

√
1− h2. Since

this holds for any value of h, the internal/conditional distribution in this intersection is
(except for the scaling with

√
1− h2) the same for every h. Therefore we can conclude

��
B (h) = Const.k=0(1− h2)(n−1)/2[gk=0

0 (h)]n, (51)

�ω
B(h) = Const.k→−1(1− h2)(n−1)/2[gk→−1

0 (h)]n. (52)

Now it is known that in both cases for m = n there is exactly one vertex:

1 = En,n(#(V )) = λn−1(ωn)

(
n

n

)∫ 1

0
G(h)n−n�B(h) dh

= Const.λn−1(ωn)

∫ 1

0
(1− h2)(n−1)/2g0(h)

n dh. (53)

We can calculate [
λn−1(ωn)

∫ 1

0
(1− h2)(n−1)/2g0(h)

n dh

]−1

in both cases. This amounts for k →−1, resp. ωn , to

Const.k→−1 =
{
λn−1(ωn)

∫ 1

0
(1−h2)(n−1)/2

[
λn−2(ωn−1)

λn−1(ωn)

]n

[(1−h2)(n−3)/2]n dh

}−1

=
{
λn−1(ωn)

[
λn−2(ωn−1)

λn−1(ωn)

]n ∫ 1

0
(1− h2)(n

2−2n−1)/2 dh

}−1

=
{
λn−1(ωn)

[
λn−2(ωn−1)

λn−1(ωn)

]n √
π�((n2 − 2n − 1)/2+ 1)

2�((n2 − 2n − 1)/2+ 3
2 )

}−1

. (54)

That means

Const.k→−1 =
{

1

λn−1(ωn)

[
λn−1(ωn)

λn−2(ωn−1)

]n 2�((n2 − 2n − 1)/2+ 3
2 )√

π�((n2 − 2n − 1)/2+ 1)

}
. (55)

In the same way we obtain for �n ,

Const.k=0 =
{
λn−1(ωn)

∫ 1

0
(1− h2)(n−1)/2

[
λn−1(�n−1)

λn(�n)

]n [
(1− h2)(n−1)/2

]n
dh

}−1

=
{
λn−1(ωn)

[
λn−1(�n−1)

λn(�n)

]n ∫ 1

0
(1− h2)(n

2−1)/2 dh

}−1

=
{
λn−1(ωn)

[
λn−1(�n−1)

λn(�n)

]n √
π�((n2 + 1)/2)

2�((n2 + 2)/2)

}−1

. (56)
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That means

Const.k=0 =
{

1

λn−1(ωn)

[
λn(�n)

λn−1(�n−1)

]n 2�((n2 + 2)/2)√
π�((n2 + 1)/2)

}
. (57)

Now we conclude

Em,n
k→−1(#(V )) = λn−1(ωn)

(
m

n

)∫ 1

0
G(h)m−n�ω

B(h) dh

= λn−1(ωn)

(
m

n

)∫ 1

0
G(h)m−ng0(h)g0(h)

n−1(1− h2)(n−1)/2 dh

·
{

1

λn−1(ωn)

[
λn−1(ωn)

λn−2(ωn−1)

]n 2�((n2 − 2n + 2)/2)√
π�((n2 − 2n + 1)/2)

}

=
(

m

n

)[
λn−2(ωn−1)

λn−1(ωn)

]n−1

·
∫ 1

0
G(h)m−ng0(h)

[
(1− h2)(n−3)/2

]n−1
(1− h2)(n−1)/2 dh

(compare (48))

·
{[

λn−1(ωn)

λn−2(ωn−1)

]n 2�((n2 − 2n + 2)/2)√
π�((n2 − 2n + 1)/2)

}

≤
(

m

n

)[
λn−1(ωn)

λn−2(ωn−1)

]{
2�((n2 − 2n + 2)/2)√
π�((n2 − 2n + 1)/2)

}
(n − 1)n−2

·
[
λn−1(ωn)

λn−2(ωn−1)

]n−2

·
∫ 1

1/2
�m−n[1−�]n−2d� (58)

≤ �(m + 1)�(n − 1)

�(n + 1)�(m)
(n − 1)n−2

[
λn−1(ωn)

λn−2(ωn−1)

]n−1

·
{

2�((n2 − 2n + 2)/2)√
π�((n2 − 2n + 1)/2)

}
(59)

≤ m
1

n
(n − 1)n−3

(
1

n − 2

)(n−1)/2

(2π)(n−1)/2

· 2√
π

√
(n2 − 2n + 1)/2. (60)

Ignoring constants, we get an order of

m · nn/2−5/2 · 2n/2 · πn/2

(that means that we have saved n1/4 in comparison with Cauchy–Schwartz).
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Correspondingly we get

Ek=0
m,n (#(V )) = λn−1(ωn)

(
m

n

)∫ 1

0
G(h)m−n��

B (h) dh

= λn−1(ωn)

(
m

n

)∫ 1

0
G(h)m−ng0(h)g0(h)

n−1(1− h2)(n−1)/2 dh

·
{

1

λn−1(ωn)

[
λn(�n)

λn−1(�n−1)

]n 2�((n2 + 2)/2)√
π�((n2 + 1)/2)

}

=
(

m

n

)[
λn−1(�n−1)

λn(�n)

]n−1

·
∫ 1

0
G(h)m−ng0(h)

[
(1− h2)(n−1)/2

]n−1
(1− h2)(n−1)/2 dh

·
{[

λn(�n)

λn−1(�n−1)

]n 2�((n2 + 2)/2)√
π�((n2 + 1)/2)

}

≤
(

m

n

)[
λn(�n)

λn−1(�n−1)

]{
2�((n2 + 2)/2)√
π�((n2 + 1)/2)

}
(61)

·
∫ 1

1/2
�m−n[1−�]n−2+2/(n+1) d�

· (n + 1)n−2+2/(n+1)

[
λn(�n)

λn−1(�n−1)

]n−2+2/(n+1)

(compare (48))

≤ �(m + 1)�(m − n + 1)�(n − 1+ 2/(n + 1))

�(n + 1)�(m − n + 1)�(m + 2/(n + 1))
(n + 1)n−2+2/(n+1)

·
[

λn(�n)

λn−1(�n−1)

]n−1+2/(n+1) { 2�((n2 + 2)/2)√
π�((n2 + 1)/2)

}

(bounding as in (33)) (62)

≤
(

m + 2/(n + 1)

n − 1

)(n−1)/(n+1) 1

n
(n + 1)n−2+2/(n+1)

·
[

λn(�n)

λn−1(�n−1)

]n−1+2/(n+1) { 2�((n2 + 2)/2)√
π�((n2 + 1)/2)

}

≤
(

m + 2/(n + 1)

n − 1

)(n−1)/(n+1) 1

n
[n + 1]n−2+2/(n+1)

[√
2π√
n

]n−1+2/(n+1)

· 2√
π

(
n2 + 1

2

)1/2

. (63)
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This is an approximate order of(
m + 2

n + 1

)(n−1)/(n+1)

n−2nn−2n−(n−1)/2n2n/2πn/2

=
(

m + 2

n + 1

)(n−1)/(n+1)

nn/2−5/22n/2πn/2.

Again, we are about n1/4 better.
Note that there remain only few (slight) reasons why these two last estimations do

not deliver lower bounds simultaneously. One reason is the use of the approximation
relation (48), where we had used∫ 1

h
(1− ζ 2)(n−1)/2+k dζ ≥

∫ 1

h
(1− ζ 2)(n−1)/2+kζ dζ.

The quotient can be bounded from below by h. This error is done with power n for
each (1− Gk(h)). However, since we have Gm−n in our integral, we have the impact of
the asymptotic movement as (m → ∞, n fixed). This effect makes values with h � 1
irrelevant. For h → 1 the error (1/h)n is ignorable. h then has its gravity at 1.

The same arguments hold after (58) and after (61), where we start the integration at
0 instead of at 1

2 . Since we have Gm−n , the region between 0 and 1
2 is almost irrelevant

for the asymptotic case. So, asymptotically, up to, e.g. (59) or (62) in our two special
examples the results can even be regarded as lower bounds.

In addition we need the expected value of Em,n(#(Vl+1\Vl)).

Remark 6.

Em,n(#(Vl+1\Vl)) = n

l + 1
Em,n(#(Vl+1)). (64)

Proof. The expected value of vertices of Vl+1 is known from the derivation above. Each
vertex rises n activity events (for each of the tight restrictions exactly one).

That means that in stage l + 1,

Em,n(#(A.E .)) = nEm,n(#(Vl+1)).

However, now we exploit the symmetry of the points a1, . . . , am and the fact that

Em,n(#(V
act

l+1(a1))) = Em,n(#(V
act

l+1(a2))) = · · · = Em,n(#(V
act

l+1(al+1)))

= 1

l + 1
Em,n(#(A.E .)).

Therefore we know that

Em,n(#(Vl+1\Vl)) = Em,n(V
act

l+1(al+1)) = 1

l + 1
Em,n(#(A.E .))

= 1

l + 1
Em,n(#(Vl+1)) · n.
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6. The Expected Complexity of the Algorithm

After having an upper bound for El,n(#(V )) and for El,n(#(Vl+1\Vl)), which could even
be sharpened for the special cases of uniform distribution onωn , resp. on�n , we can now
summarize. Insertion of the upper bounds into the complexity formulas delivers—under
ignorance of constants—

Ek
m,n(s) ≤ n3 + n2

m−1∑
l=n

El,n(#(Vl)) (65)

+
m−1∑
l=n

El+1,n(#(Vl+1\Vl)){n3 + n2(l + 1)+ n2 ln(l + 1)}

≤ n3 + n2
m−1∑
l=n

1

n

[
l + (2+ 2k)/(n + 1+ 2k)

n − 1

](n−1)/(n+1+2k)

· 2π(n/2) [n!]1/2

�(n/2)
(n + 1+ 2k)(n−1)/2

·
[

�(k + 1+ n/2)

2
√
π�(k + 1+ (n − 1)/2)

](n−1)/(n+1+2k)

+
m−1∑
l=n

n

l + 1

1

n

[
l + 1+ (2+ 2k)/(n + 1+ 2k)

n

](n−1)/(n+1+2k)

· 2π(n/2) [n!]1/2

�(n/2)
(n + 1+ 2k)(n−1)/2

·
[

�(k+1+n/2)√
2π�(k+1+(n−1)/2)

](n−1)/(n+1+2k)

{n3+n2(l+1)+n2 ln(l+1)}

= n3 + 2πn/2 [n!]1/2

�(n/2)
(n + 1+ 2k)(n−1)/2

·
[

�(k + 1+ n/2)

2
√
π�(k + 1+ (n − 1)/2)

](n−1)/(n+1+2k)

·
{

n
m−1∑
l=n

[
l + (2+ 2k)/(n + 1+ 2k)

n − 1

](n−1)/(n+1+2k)

+ n3
m−1∑
l=n

[
l + 1+ (2+ 2k)/(n + 1+ 2k)

n

](n−1)/(n+1+2k)−1

+ n2
m−1∑
l=n

[
l + 1+ (2+ 2k)/(n + 1+ 2k)

n

](n−1)/(n+1+2k)

+ n2
m−1∑
l=n

[
l + 1+ (2+ 2k)/(n + 1+ 2k)

n

](n−1)/(n+1+2k)−1

ln(l + 1)

}
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≤ n3 + 2π(n/2)
[n!]1/2

�(n/2)
(n + 1+ 2k)(n−1)/2

·
[

�(k + 1+ n/2)

2
√
π�(k + 1+ (n − 1)/2)

](n−1)/(n+1+2k)

·
{

n(2+2k)/(n+1+2k)

(
m + 2+ 2k

n + 1+ 2k

)(n−1)/(n+1+2k)+1 n + 1+ 2k

2n + 2k

+ n2+(2+2k)/(n+1+2k)

(
m + 2+ 2k

n + 1+ 2k

)(n−1)/(n+1+2k) n + 1+ 2k

n − 1

+ n1+(2+2k)/(n+1+2k)

(
m + 2+ 2k

n + 1+ 2k

)(n−1)/(n+1+2k)+1 n + 1+ 2k

2n + 2k

+ n1+(2+2k)/(n+1+2k) (m + (2+ 2k)/(n + 1+ 2k))(n−1)/(n+1+2k)

· n + 1+ 2k

n − 1
(ln m − 1)

}
. (66)

If we are interested only in the order, we may forget about the first summand in brackets,
because it is obviously dominated by the third.

Remark 7. With the use of the Stirling formula, the quotient [n!]1/2/�(n/2) can be
approximated by

(n/e)n/2(2πn)1/4

e(n/2−1/2) ln(n/2)−n/2(2π)1/2
= nn/2+1/4(2π)1/4e(n/2)

e(n/2)(n/2)(n/2−1/2)(2π)1/2
=

(n

2

)3/4
(2π)−1/42n/2−1/2

= n3/4(π)−1/42n/2−3/2

and �(k + 1+ n/2)/�(k + 1+ (n + 1)/2) can be bounded from above by
(k + (n + 1)/2)−1/2.

We have seen that for ωn- and�n-uniform distributions sharper bounds are available
(approximately n1/4 can be saved). Here the results are

Ek→−1
m,n (s) ≤ n3 + n2

m−1∑
l=n

1

n
l(n − 1)n−3

(
1

n − 2

)(n−1)/2

· (2π)(n−1)/2 2√
π

√
n2 − 2n + 1

2

+
m−1∑
l=n

n

l + 1

1

n
(l + 1)(n − 1)n−3

(
1

n − 2

)(n−1)/2

· (2π)(n−1)/2 2√
π

√
n2 − 2n + 1

2

· {n3 + n2(l + 1)+ n2 ln(l + 1)}
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≤ n3 + 1

n
(n − 1)n−3

(
1

n − 2

)(n−1)/2

(2π)(n−1)/2 2√
π

√
n2 − 2n + 1

2

·
{

m−1∑
l=n

n2l + n4 + n3(l + 1)+ n3 ln(l + 1)

}

≤ n3 + 1

n
(n − 1)n−3

(
1

n − 2

)(n−1)/2

(2π)(n−1)/2 2√
π

√
n2 − 2n + 1

2

·
{

n2 m(m − 1)

2
+ mn4 + n3 m(m − 1)

2
+ n3m(ln(m)− 1)

}
. (67)

Again, the third summand in brackets seems to dominate.
For the �n-distribution we obtain

Ek=0
m,n (s) ≤ n3 + n2

m−1∑
l=n

(
l + 2/(n + 1)

n − 1

)(n−1)/(n+1) 1

n

2√
π

·
√

n2 + 1

2
[n + 1]n−2+2/(n+1)

√
2π

n

n−1+2/(n−1)

+
m−1∑
l=n

n

l + 1

1

n

(
l + 1+ 2/(n + 1)

n − 1

)(n−1)/(n+1)

· 2√
π

√
n2 + 1

2
(n + 1)n−2+2/(n+1)

√
2π

n

n−1+2/(n−1)

· {n3 + n2(l + 1)+ n2 ln(l + 1)}

≤ n3+ 1

n

2√
π

√
n2+1

2
(n+1)n−2+2/(n+1)

√
2π

n

n−1+2/(n−1)

(n−1)−(n−1)/(n+1)

·
{

n2

(
m + 2

n + 1

)1+(n−1)/(n+1) 2n

n + 1

+ n4

(
m + 2

n + 1

)(n−1)/(n+1) n + 1

n − 1

+ n3

(
m + 2

n + 1

)1+(n−1)/(n+1) 2n

n + 1

+ n3

(
m + 2

n + 1

)(n−1)/(n+1) n + 1

n − 1
·
(

ln m − n + 1

n − 1

)}
. (68)

Here again, the third summand in brackets is dominating.
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7. Conclusions

Let us compare this outcome with the result for Gift-Wrapping (analyzed in [7]). This
was a sequential algorithm, which worked as follows for the primal problem:

After having one vertex available, perform Simplex-Steps to adjacent vertices and
note the incident edges. If the adjacent vertex is already known, declare the connecting
edge as saturated.

Try to leave the vertex via an unsaturated edge (which leads to a new vertex) and repeat
the same at the new vertex. The edge will now be saturated. If there is no unsaturated
edge to leave the vertex, then perform a reverse pivot step along the Simplex-Path, as
being used so far, until you meet a vertex with at least one unsaturated edge.

For each new vertex we have to determine all edges and to decide whether they are
saturated or unsaturated. We have to store that information for access at all time. The
drawback of this algorithm is the need to store the Simplex-Path and to keep track over
all edges found so far.

The complexity amounted to a formula

O(#(Vm)+ n)[mn + nm + nn ln m]

(the first summand in the second bracket for the pivot steps, the second for edges/quotients
and the last for storing the necessary information).

The expected complexity amounted to

Em,n(#(Vm)) · O(nm + n2 ln m). (69)

This should be compared with our result derived before (38), (65), which amounts to

n3 + n2 ·
m−1∑
l=n

El,n(#(Vl))+
m−1∑
l=n

n

l + 1
El,n(#(Vl)){n3 + n2(l + 1)+ n2 ln(l + 1)}. (70)

Crucial for that comparison is the behaviour in l and the need to sum up m − 1 stages.
This is a drawback for our incremental algorithm. This drawback becomes more and
more dramatic when the growth of El,n(#(Vl)) gets slower (with respect to l), as we shall
see.

In all the distributions from our family, we have proven upper bounds on the behaviour
of El,n(#(V )) in l of the kind (l + (2+ 2k)/(n + 1+ 2k))(n−1)/(n+1+2k), that means that
the behaviour is extremely sublinear for large k. At the borderline, we have the ωn-
distribution with k →−1 and almost linear behaviour as l · Cn,k = l · Cn,−1.

For the asymptotic case (l → ∞, n and k fixed) it can be shown that there are also
lower bounds on the behaviour in l of the same order. We have discussed this only for
the special uniform distributions on ωn and on �n . A proof for the case of general k’s
would extend this paper too much. Even for the factors reflecting the behaviour in n we
got precision on ωn and on �n and obviously a “slight” overestimation for the general
case. If we rely on our upper bounds, interpreting them as the “true” behaviour, then a
comparison gives interesting insights.

For the ωn-distribution, summing up leads to a quadratic term

m−1∑
l=n

lCn,−1 ≈ m(m − 1)

2
Cn,−1
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combined with a factor n2. In the second sum (over the vertices of the difference set) a
linear term in m is combined with a factor n4. In Gift-Wrapping that m2-term was only
combined with a factor n. So, even in the most harmless case, we have to spend n times
more effort. This is the most harmless case, because for other distributions the growth
in l will be sublinear.

The example of the ωn-distribution already explains very well why the idea of incre-
mental solution does not pay per se. Here we have seen that the true behaviour of the
expected number of vertices, seen as a function of m, approximates a linear function of
m from below with increasing precision for growing m. So take every number given in
the following paragraphs as “approximately”.

For ωn , in each stage (e.g. stage l + 1), the expected number of vertices grows
from lCn,−1 to (l + 1)Cn,−1, which means that after that we have Cn,−1 vertices more.
However, the truth is that among the (l + 1)Cn,−1 vertices now available, we have even
(l + 1)Cn,−1(n/(l + 1)) = nCn,−1 completely new vertices (of the x0-kind, where al+1

is active). To keep the balance (we have a total increment of only Cn,−1 in stage l+1), an
expected number of (n−1)Cn,−1 vertices had to be deleted in that stage (i.e. for each l+1).
So all our work devoted to these (n−1)Cn,−1 deleted vertices (and (m−n)(n−1)Cn,−1

vertices summarized over all stages) was completely in vain.
Finally, we calculate the overproduction quotient for the ωn-distribution:

E(newly produced vertices)

E( net increment in the number of vertices)

≡ Em,n(#(Vl+1\Vl))

Em,n(#(Vl+1))− Em,n(#(Vl))
= n. (71)

For general k-distributions this is even worse:
In stage l + 1 an expected set of

(n/(l + 1))(l + 1+ (2+ 2k)/(n + 1+ 2k))(n−1)/(n+1+2k)Cn,k

vertices is new, and the total expected number grows from

(l + (2+ 2k)/(n + 1+ 2k))(n−1)/(n+1+2k)Cn,k

to

(l + 1+ (2+ 2k)/(n + 1+ 2k))(n−1)/(n+1+2k)Cn,k .

This means that the overproduction factor amounts to

(n/(l + 1))(l + 1+ (2+ 2k)/(n + 1+ 2k))(n−1)/(n+1+2k)Cn,k

(l+1+(2+2k)/(n+1+2k))(n−1)/(n+1+2k)Cn,k−(l+(2+2k)/(n+1+2k))(n−1)/(n+1+2k)Cn,k

= n/(l + 1)

1− (1− 1/(l + 1+ (2+ 2k)/(n + 1+ 2k)))(n−1)/(n+1+2k)
.

The denominator is of the type 1−(1−1/(l + 1+ κ(k)))1−κ(k), with κ(k) := (2+ 2k)/
(n + 1+ 2k) being an increasing function of k. Note that an increasing k increases κ and
so the term in brackets increases, too. Simultaneously, the exponent decreases, while the
bracket-value is between 0 and 1. This leads to an increment of that term. However, that
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increment makes the global quotient larger. This global quotient becomes exactly n for
k → −1 and it gets larger for growing k. Hence the overproduction factor or quotient
becomes higher for larger values of k.

So, in the case of our Rotation-Symmetry Model (with absolute emphasis on nonde-
generate problems) incremental algorithms lose the competition on the average behaviour
against pivoting algorithms.

In degenerate problems, this advantage may get totally reversed, because there a
certain danger of overproduction arises on the side of the pivoting algorithm. Since here
one vertex may be associated with many bases, we observe a (perhaps) dramatic over-
production of bases. Because the pivoting algorithm actually has to generate a walk over
bases (rather than over vertices) this will deteriorate its behaviour significantly.

The advantage may turn around even under nondegeneracy, if additional information
about the vectors ai is exploited (as for instance in Quickhull), where the ai ’s are sorted
in such a way that with high probability the extremals of these ai ’s are among the first
in the queue. Then it may be achievable that in a very early stage X is almost ready or
in its final shape (all the vertices of X are already known, and very few are still to be
deleted). However, from the view of a probabilistic analysis, such a change in the order
of handling the vectors would bring dependencies between the ai ’s into the game. So
far, we are not able to handle these dependencies sufficiently.
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