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Abstract. The maximal area of a polygon with n = 2m edges and unit diameter is not
known when m ≥ 5, nor is the maximal perimeter of a convex polygon with n = 2m edges
and unit diameter known when m ≥ 4. We construct improved polygons in both problems,
and show that the values we obtain cannot be improved for large n by more than c1/n3 in
the area problem and c2/n5 in the perimeter problem, for certain constants c1 and c2.

1. Introduction

The isoperimetric problem in the plane asks for the maximal area of a closed curve
with fixed perimeter. If one fixes the diameter instead of the perimeter, one obtains two
similar isodiametric problems: first, maximize the area, and second, for convex curves,
maximize the perimeter. The circle is optimal in all three of these problems. Its optimality
in the isodiametric area problem was established by Bieberbach [4], and in the perimeter
problem by Rosenthal and Szász [12].

We can ask the same three questions for polygons. In the isoperimetric problem, it is
again well known that the regular n-gon alone has maximal area among all n-gons with
the same perimeter. We can express this as an inequality: the area A of a polygon with
n sides and perimeter L satisfies

A ≤ L2

4n
cot

(
π

n

)
. (1)

The isodiametric problems for polygons however are more complicated, and both
problems are described in problem B6 of [6]. In the area problem, Reinhardt [11] (see
also [10]) proved that the regular n-gon alone is optimal when n is odd. When n = 4,
the square achieves the largest possible area, but in this case there are an infinite number
of quadrilaterals with the same diameter and area. Another optimal quadrilateral for
example is shown in Fig. 1(a). Lenz posed the problem of determining the maximal area
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(a) n = 4. (b) n = 6. (c) n = 8.

Fig. 1. Some optimal polygons.

when n is even and n ≥ 6 in [8]. Reinhardt in fact proved that the regular n-gon is never
optimal for such n, and Schäffer [13] published another proof of this fact. Neither proof
however establishes a quantitative improvement in the area problem when n is even.

The optimal area is known for some small values of n. In 1975 Graham [7] determined
the optimal hexagon, displayed in Fig. 1(b). This hexagon also appeared in 1961 in a
note of Bieri [5], who showed it was optimal among hexagons with an axis of symmetry.
Its area is approximately 3.9% larger than the regular hexagon with the same diameter.
Graham also conjectured that the line segments of maximal length in any optimal n-
gon with n even form a similar shape: a circuit of length n − 1, together with a single
additional line segment attached to one vertex. Audet et al. [3] verified this conjecture
for n = 8 in 2002, computing the unique optimal octagon, shown in Fig. 1(c). Its area is
about 2.8% larger than the regular octagon.

The isodiametric problem for the perimeter was likewise investigated by Reinhardt
in [11]. He proved that the regular n-gon is again optimal among all convex n-gons if
n is odd. More generally, he determined the optimal perimeter in the case that n has an
odd factor, and it follows from his paper that a unique polygon achieves this value only
if n = p or n = 2p, for some odd prime p. Reinhardt also established an upper bound
on the perimeter L of a convex polygon with n sides and diameter d:

L ≤ 2dn sin

(
π

2n

)
. (2)

Reinhardt’s proof is also described in [10], and another proof of this inequality appears
for instance in [9]. Let Ln denote the value of this upper bound for the case of polygons
with unit diameter,

Ln := 2n sin

(
π

2n

)
. (3)

By combining (1) and (2), we can record an inequality relating the area of a convex
polygon to its diameter and number of sides:

A ≤ d2n

2
cos

(
π

n

)
tan

(
π

2n

)
. (4)

This is then slightly stronger than the classical isodiametric inequality for planar curves,
A ≤ πd2/4. Let An denote the upper bound on the area from (4) for polygons with unit
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diameter,

An := n

2
cos

(
π

n

)
tan

(
π

2n

)
. (5)

Tamvakis [14] (see also [10]) found that the maximal perimeter of a convex quadri-

lateral with unit diameter is 2(1 +
√

2−√3), and this value is achieved only by the
quadrilateral shown in Fig. 1(a). Reinhardt proved that the upper bound (2) is never
achieved when n is a power of 2 (this is also established in just the special case n = 8 in
[14]). It appears that little additional information on this problem was known, until very
recently. In 2005 Audet et al. [1] determined the convex octagon with unit diameter and
maximal perimeter. This octagon is precisely the polygon U8 shown in Fig. 5(a) and was
found independently here, though with no proof of global optimality. We remark also that
Vincze posed a similar problem in [15], asking in effect for the maximal perimeter of an
equilateral convex octagon with fixed diameter, and this question was recently answered
by Audet et al. [2]. It is worth noting that all optimal configurations are equilateral when
n has an odd factor.

In Section 2 we describe a method to search for polygons with an even number of
sides, fixed diameter, and large area, and with this we construct an n-gon with area
larger than the regular polygon for each even n ≤ 20. We then describe two general
constructions that produce larger polygons for any even n, and these results allow us to
derive a quantitative improvement in the isodiametric area problem for polygons when
n is even. We find in fact that there exist polygons with n sides whose areas differ from
the upper bound of (4) by just O(1/n3), while the regular polygon has an error term
of O(1/n2). Let A(P) denote the area of the polygon P , and let Pn denote the regular
polygon with n sides and unit diameter. We prove the following theorem in Section 2.

Theorem 1. Let n be an even integer. Let Pn denote the regular n-gon with unit diam-
eter, and let An denote the upper bound on the area of an n-gon with unit diameter given
by (5). Then there exists a polygon Sn with n sides and unit diameter satisfying

A(Sn)− A(Pn) = π3

16n2
+ O

(
1

n3

)

and

An − A(Sn) = (5545− 456
√

114)π3

5808n3
+ O

(
1

n4

)

<
2π3

17n3
+ O

(
1

n4

)
.

In Section 3 we obtain some improvements in the isodiametric problem for the perime-
ter of polygons in the open cases when n is a power of 2. Tamvakis [14] described a
polygon Tn whose perimeter exceeds that of the regular n-gon, and differs from the
upper bound (2) by O(1/n4). Tamvakis asked if this polygon is in fact best possible
when n = 2m . We answer this question in the negative by constructing a polygon with
2m sides whose perimeter differs from the upper bound by O(1/n5). Let L(P) denote
the perimeter of the polygon P . We prove the following theorem in Section 3.
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Theorem 2. Suppose n = 2m with m ≥ 3. Let Tn denote the n-gon of unit diameter
described in Section 3, and let Ln denote the upper bound on the perimeter of a convex
n-gon with unit diameter given by (3). Then there exists a convex polygon Vn with n
sides and unit diameter satisfying

L(Vn)− L(Tn) = π3

4n4
+ O

(
1

n5

)

and

Ln − L(Vn) = π5

16n5
+ O

(
1

n6

)
.

2. The Area Problem

We consider the problem of constructing a polygon P with n = 2m sides, unit diameter,
and large area. Define the skeleton of P to be the set of its vertices, together with all the
line segments of maximal length connecting two of its vertices. Also, define the diameter
graph of P to be the graph on the vertices of P represented by its skeleton. We consider
only polygons having the diameter graph of Graham’s conjecture, and further we assume
the presence of an axis of symmetry in the skeleton like that suggested by the optimal
examples for n = 6 and n = 8.

2.1. Decagons to Icosagons

Suppose then that P has the structure described. Let v0 denote the lone vertex of P that
has degree 1 in the diameter graph, and let v1 denote the vertex adjacent to it in the
skeleton, so that v0v1 is an axis of symmetry for P . Label the remaining vertices so that
v0, v1, v2, . . . , vn−1 forms a path in the skeleton, as shown in Fig. 2.

Let αk denote the angle formed at vertex vk by the segments vk−1vk and vkvk+1. Since

1

v5 v4

v0

v2

v3 v
6

v7

α2

α1

v

Fig. 2. Constructing a symmetric 2m-gon given m − 2 angles.
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the polygon is symmetric, it may appear that we need to specify m−1 angles to construct
the polygon. However, the position of vm is determined once v0, . . . , vm−1 are placed,
since vm must have distance 1 from vm−1 and vmvm+1 must be a horizontal segment of
length 1. Thus, P is in fact specified completely by the values of the angles α1, . . . ,
αm−2.

Place v0 at (0,− 1
2 ) in the plane and v1 at (0, 1

2 ). Then for each k we may compute
the position of (xk, yk) of vertex vk in terms of the angles. Let Rθ denote the standard
rotation matrix through the angle θ . Since[

xk+1 − xk

yk+1 − yk

]
= −Rαk

[
xk − xk−1

yk − yk−1

]
,

it follows that [
xk+1

yk+1

]
=
[

xk

yk

]
− (−1)kR∑k

1
αi

[
0
1

]
for 1 ≤ k ≤ m − 2. Thus,

xk+1 = xk − (−1)k sin

(
k∑

i=1

αi

)
,

yk+1 = yk + (−1)k cos

(
k∑

i=1

αi

)
.

(6)

To determine the position of vm , note that vmvm+1 is a horizontal line segment, so

xm = (−1)m

2
,

ym = ym−1 − (−1)m
√

1− (xm−1 − xm)2.

(7)

We may then determine a formula for the area of P as a sum of m determinants whose
entries are given by the points (xk, yk). We can then construct a polygon with a rather large
area by optimizing over the parameters α1, . . . , αm−2. We use a heuristic optimization
algorithm in Mathematica (the principal axis method, available using the FindMaximum
command) to perform these calculations.

For example, when n = 6 we have a single parameter α1, and choosing α1 =
0.3509301888 · · · produces the Bieri–Graham hexagon of Fig. 1(b). When n = 8, we
construct the optimal octagon of Fig. 1(c), assuming it indeed has an axis of symmetry,
by choosing α1 = 0.2652408673 · · · and α2 = 0.4706314236 · · ·.

We perform this analysis for even values of n up to n = 20, and obtain the polygons
shown in Fig. 3. Table 1 shows the values of the angles {αk} used to obtain these shapes,
and Table 2 summarizes the improvements obtained in the area. For each n, the
second column in the second table shows the area of the regular n-gon, A(Pn) =
(n/8) sin(2π/n). Subsequent columns display the area of the polygon Qn that we con-
struct with this method, the upper bound on the area An from (5), the percentage gain in
the area of Qn compared with that of Pn , and the fraction gn of the length of the interval
[A(Pn), An] where A(Qn) lies, so

gn = A(Qn)− A(Pn)

An − A(Pn)
.
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Fig. 3. Improved polygons Qn for n = 10 through n = 20.

Table 1. Angles for constructing Qn .

n α1 α2 α3 α4 α5 α6 α7 α8

6 0.35093
8 0.26524 0.47063

10 0.21261 0.36813 0.31861
12 0.17709 0.30260 0.26295 0.27946
14 0.15158 0.25703 0.22390 0.23763 0.23244
16 0.13243 0.22345 0.19497 0.20672 0.20229 0.20401
18 0.11753 0.19766 0.17265 0.18294 0.17907 0.18058 0.18000
20 0.10563 0.17723 0.15492 0.16408 0.16064 0.16198 0.16146 0.16166

Table 2. Areas of the improved polygons.

n A(Pn) A(Qn) An Gain (%) gn

6 0.6495190528 0.6749814429 0.6961524227 3.920 0.546
8 0.7071067812 0.7268684828 0.7350842599 2.795 0.706

10 0.7347315654 0.7491373459 0.7531627703 1.961 0.782
12 0.7500000000 0.7607298734 0.7629992851 1.431 0.825
14 0.7592965435 0.7675310111 0.7689359584 1.084 0.854
16 0.7653668647 0.7718613220 0.7727913493 0.849 0.875
18 0.7695453225 0.7747881651 0.7754356273 0.681 0.890
20 0.7725424859 0.7768587560 0.7773275822 0.559 0.902
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It is not surprising that the percentage area gained in the polygons we construct
diminishes with n. After all,

An = π

4
− 5π3

48n2
+ π5

480n4
+ O

(
1

n6

)
, (8)

and, for n even,

A(Pn) = π

4
− π3

6n2
+ π5

30n4
+ O

(
1

n6

)
, (9)

so An − A(Pn) ∼ π3/16n2. However, it is interesting to note that the last column of
Table 2 indicates that A(Qn) appears to approach An much faster than A(Pn) does as
n increases. In fact, a least-squares fit on the data for 10 ≤ n ≤ 20 suggests that the
quantity An − A(Qn) behaves like 5.05/n3.10. We can verify this trend, and establish a
quantitative improvement in the isodiametric problem for the area when n is even.

2.2. General Construction

The method just described requires optimizing an expression in (n/2) − 2 variables to
determine a favorable area for a polygon with n sides, so clearly we must modify this
technique for the general case.

Studying the examples in Fig. 3 and the data in Table 1, we see that most of the angles
α2, α3, . . . , αm−2 have rather similar values. In fact, these values appear to exhibit a
pattern of damped oscillation, converging in an alternating manner to some mean value.
For large n, then, we expect most of these angles to be very nearly equal, so as a first
approximation, we assume that in fact α2 = α3 = · · · = αm−2. Denote this value by β,
and for simplicity we use α to denote the value of the angle α1. We may then ask for the
optimal values of α and β, for fixed n, that maximize the area of an n-gon constructed
in this way.

To compute this, we derive a formula for the area of the polygon in terms of α and
β. Fix an even integer n = 2m. Again, write (xk, yk) for the location of vertex vk , and
place v0 at (0, h − 1) and v1 at (0, h), where h is a parameter to be selected later. We
find from (6) that

xk =
k−2∑
j=0

(−1) j sin(α + jβ)

= Im

(
k−2∑
j=0

(−1) j ei(α+ jβ)

)

= Im
(
eiα(1+ (−1)kei(k−1)β)(1+ e−iβ)

)
2(1+ cosβ)

for 1 ≤ k < m. Define rk and sk by

2rk = 1+ (−1)k cos((k − 1)β)+ (−1)k
sinβ

1+ cosβ
sin((k − 1)β)
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and

2sk = (−1)k sin((k − 1)β)− sinβ

1+ cosβ
(1+ (−1)k cos((k − 1)β)).

We find that

xk = rk sinα + sk cosα, (10)

and a similar computation reveals that

yk = h − rk cosα + sk sinα (11)

for 1 ≤ k < m. The values of xm and ym are given by (7), and we now select h so that
ym = 0, so

h = rm−1 cosα − sm−1 sinα + (−1)m
√

1− (xm−1 − (−1)m/2)2.

Let Ak denote the area of the parallelogram with corners at the origin, the vertices
vk−1 and vk+1, and the point (xk−1 + xk+1, yk−1 + yk+1), so that the area of the polygon
determined by α and β is

∑m
k=1 Ak . Now

A1 = det

[
x0 x2

y0 y2

]
= det

[
0 sinα

h − 1 h − cosα

]
= (1− h) sinα.

Next, by the construction and the fact that ym = 0, we see that xk and yk have opposite
signs for 2 ≤ k < m, and further that |yk+1| < |yk−1| and |xk+1| > |xk−1| for 2 ≤ k < m,
so xk−1 yk+1 > xk+1 yk−1 in this range. Thus, for 2 ≤ k ≤ m − 2, we find that

Ak = det

[
xk−1 xk+1

yk−1 yk+1

]
= (rk−1 − rk+1)h sinα + (sk−1 − sk+1)h cosα + rk−1sk+1 − rk+1sk−1.

The value of rk−1sk+1 − rk+1sk−1 is

sin(2β)+ (−1)k−1(sin(kβ)− sin((k − 2)β))

2(1+ cosβ)
,

so

m−2∑
k=2

Ak = (r1 + r2 − rm−2 − rm−1)h sinα + (s1 + s2 − sm−2 − sm−1)h cosα

+ 1

2(1+ cosβ)

(
(m − 3) sin(2β)−

m−2∑
k=2

(−1)k sin(kβ)+
m−4∑
k=0

(−1)k sin(kβ)

)

= (1− rm−2 − rm−1)h sinα − (sm−2 + sm−1)h cosα + (m − 3) sin(2β)

2(1+ cosβ)

− 1

2(1+ cosβ)

(
sinβ + (−1)m(sin((m − 2)β)− sin((m − 3)β))

)
.
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(a) (0.1, 0.24) (b) (0.17, 0.29) (c) (0.2, 0.34)

Fig. 4. Dodecagons constructed for certain (α, β).

Finally, since (xm, ym) = ((−1)m/2, 0) and (xm+1, ym+1) = ((−1)m−1/2, 0), we have

Am−1 + Am = (−1)m(ym−1 − ym−2)/2.

Combining these expressions, we obtain a closed formula for the area in terms of α
and β.

Figure 4 shows three dodecagons obtained using different values for α and β when
n = 12. The areas of these polygons are approximately 0.75354, 0.75981, and 0.75478,
respectively.

We may now search for values of α and β (depending on n) that produce especially
good values for the area. Since the sum of the angles at the points of a star is π , we
certainly require β = π/n + O(1/n2). Consider then setting α = sπ/n + tπ/n2 and
β = π/n+uπ/n2, where s, t , and u are free parameters. Using Mathematica to compute
the asymptotic expansion in n for the resulting area, we find that the optimal expression
occurs when s = t = 1

2 and u = 1, which produces

m∑
k=1

Ak = π

4
− 5π3

48n2
− 7π3

48n3
− π

3(60− π2)

480n4
+ O

(
1

n5

)
. (12)

Comparing this with (8) and (9), we see that the value here is substantially better than
the area of the regular n-gon, and substantially closer to the upper bound An .

The first four terms of the expression (12) are unaffected when terms of higher order
are added to the values for α and β, so setting

β = π

n

∑
k≥0

n−k = π

n − 1

and α = π/(2n−2) produces the same asymptotic expression. However, in this case the
star formed by the circuit of diagonals of maximal length in the polygon agrees precisely
with the skeleton of the regular polygon with n−1 sides. The polygon we obtain thus has
a very simple description: it is produced by adding a single vertex at distance 1 antipodal
to an existing vertex in the regular polygon Pn−1. We denote this polygon by Rn; note
that Fig. 1(a) shows the polygon R4. We find that

A(Rn) = 1
2 tan

(
π

2n − 2

)(
(n − 2) cos

(
π

n − 1

)
+ 2 cos

(
π

2n − 2

)
− 1

)
.



372 M. J. Mossinghoff

Observing that

An − A(Rn) ∼ 7π3

48n3

confirms our observations from the data in Table 2.
It is natural then to ask if the polygon Rn might itself be optimal for large n, but in

fact this is not the case. By perturbing the values of the 1/n3 terms in the expressions
for α and β, we may improve the coefficient of the 1/n5 term in the expression for the
area by 9π3(13π2+ 12π + 20)/1792. However, we can improve our construction more
significantly by amending our analysis, introducing another free variable to allow for
some oscillation in the angles like the pattern we observed in Table 1.

2.3. Proof of Theorem 1

Table 1 shows that most of the variation in the angles αk occurs for small k, so as a
second approximation to these numbers, we set α2 = β + γ and α3 = β − γ , where γ
is a third free parameter, and maintain αk = β for 4 ≤ k ≤ m − 2. Following our earlier
strategy, we may then derive a formula for the area of the polygon in terms of α, β, and
γ . Let (x ′k, y′k) denote the coordinates of the vertex v′k of the polygon. Using (10) and
(11), we find that (x ′k, y′k) = (xk, yk) for 0 ≤ k ≤ 2, then

x ′k = xk + sin(α + β)− sin(α + β + γ ),
y′k = yk − cos(α + β)+ cos(α + β + γ )

for 3 ≤ k < m, and (x ′m, y′m) is calculated in the same manner as (xm, ym). The areas
A′k of the associated parallelograms are

A′1 = A1,

A′2 = A2 − h(sin(α + β)− sin(α + β + γ )),
A′3 = A3 − x2(cos(α + β)− cos(α + β + γ ))− y2(sin(α + β)− sin(α + β + γ )),

and

A′k = Ak + (sin(α + β)− sin(α + β + γ ))(yk+1 − yk−1)

+ (cos(α + β)− cos(α + β + γ ))(xk+1 − xk−1)

for 4 ≤ k ≤ m − 2, so

m−2∑
k=4

A′k =
m−2∑
k=4

Ak + (sin(α + β)− sin(α + β + γ ))(ym−1 + ym−2 − y4 − y3)

+ (cos(α + β)− cos(α + β + γ ))(xm−1 + xm−2 − x4 − x3).

Finally, choosing h again so that y′m = 0, we have

A′m−1 + A′m =
(−1)m(y′m−1 − y′m−2)

2
= Am−1 + Am .
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We set

α = sπ

n
+ tπ

n2
,

β = π

n
+ uπ

n2
, and

γ = vπ

n
+ wπ

n2
,

(13)

with s, t , u, v, and w free parameters. With these parameters, the asymptotic expansion
for the area as n grows large is

π

4
−
(
π(2s − 1− 4v)

2n

)3/2

+ O

(
1

n2

)
,

and we therefore set v = (2s − 1)/4 to obtain a series at least as good as the one for
the area of Rn . Heuristic optimizations in the remaining parameters, combined with
observations on the terms in the asymptotic expansion for the area, then suggest the
additional relations u = 2(1− s) andw = (s+ t − 1)/2. With these simplifications, the
expression for the area is

π

4
− 5π3

48n2
− π3

192n3

(
88s3 + 84s2 − 222s + 107

)+ O

(
1

n4

)
,

and the 1/n3 term is maximized for s > 0 when s = (2√114−7)/22 = 0.65246165 · · ·,
and thus u = 0.69507668 · · · and v = 0.076230829 · · ·. After this, the final free param-
eter, t , first affects the 1/n5 term of the series, but its value is still significant for small
n. This term is maximized by selecting

t = 44(103104
√

114− 998743)+ (−1)n/275π(347
√

114− 714)

8811220
,

so t = 0.58986270 · · · and w = 0.12116218 · · · when n ≡ 0 mod 4, and t =
0.42990185 · · · andw = 0.041181759 · · ·when n ≡ 2 mod 4. We then obtain a polygon
Sn whose area satisfies

A(Sn) = π

4
− 5π3

48n2
− (5545− 456

√
114)π3

5808n3
+ O

(
1

n4

)
.

Since

5545− 456
√

114

5808
= 0.11643462 · · · < 2

17 ,

the area of Sn thus shows a significant improvement over the value (12) for Rn , relative
to the maximum value An .

Last, we verify that Sn indeed has unit diameter. We calculate that the distance between
vertices vj and vk is

∥∥vj − vk

∥∥ =



cos2

(
( j − k)β

2

)
sec2

(
β

2

)
, if j �≡ k mod 2,

sin2

(
( j − k)β

2

)
sec2

(
β

2

)
, if j ≡ k mod 2
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Table 3. Areas of the improved polygons.

n A(Rn) A(Sn) A(Qn)

6 0.6722882584 0.6741124756 0.6749814429
8 0.7253199909 0.7262806311 0.7268684828

10 0.7482573378 0.7490291363 0.7491373459
12 0.7601970055 0.7606471438 0.7607298734
14 0.7671877750 0.7675035228 0.7675310111
16 0.7716285345 0.7718386481 0.7718613220
18 0.7746235089 0.7747776809 0.7747881651
20 0.7767382147 0.7768497848 0.7768587560

for integers j and k with 3 ≤ j, k < m, where β is given in (13), and this distance is less
than 1 when | j − k| > 1. Additional calculations verify that the distance from a vertex
v to one of the vertices v0, v1, v2, or vm is less than 1 − c/n2 for a positive constant c,
provided of course that v is not adjacent to the vertex in question in the diameter graph.
Other pairs of vertices may be checked by using symmetry and geometric arguments.
This establishes Theorem 1.

Table 3 shows the area of Sn , along with the areas of the polygons Qn from Fig. 3
and Rn from Section 2.2, for 6 ≤ n ≤ 20.

Table 4 displays the coordinates of (n/2) − 1 vertices of each polygon Qn , placing
the vertices that lie on the line of symmetry at (0, 0) and (0, 1). The table lists only
the vertices having positive x-coordinate, and shows ten digits of accuracy. We include

Table 4. Vertices (x, y) of Qn with x > 0.

4 ( 1
2 , 1−√3/2)

6 ( 1
2 , 0.5976493037) (0.3437714530, 0.06094665323)

8 (0.4090922743, 0.7762161353) ( 1
2 , 0.3596213239) (0.2621417200, 0.03497061254)

10 (0.3376320746, 0.8585725386) ( 1
2 , 00.5626799009) (0.4452924921, 0.2364558913)

(0.2110120385, 0.02251653743)

12 (0.2853427808, 0.9027767489) (0.4623140789, 0.6876660959) ( 1
2 , 0.4157256362)

(0.3908898116, 0.1660885646) (0.1761613676, 0.01563869815)

14 (0.2463303123, 0.9291410859) (0.4195768715, 0.7673152402) ( 1
2 , 0.5476706379)

(0.4728001271, 0.3160245442) (0.3448430847, 0.1225965957) (0.1510029070, 0.01146668136)

16 (0.2163699626, 0.9460975354) (0.3801143684, 0.8205295739) (0.4793490590, 0.6426819513)
( 1

2 , 0.4405052446) (0.4389874374, 0.2468813961) (0.3070352165, 0.09401360842)
(0.1320413758, 0.008755794432)

18 (0.1927387186, 0.9576351273) (0.3456144726, 0.8576246712) (0.4519510495, 0.7119805008)
( 1

2 , 0.5385383592) (0.4838177682, 0.3593663778) (0.4055713556, 0.1975338808)
(0.2759883164, 0.07429206451) (0.1172628713, 0.006899089214)

20 (0.1736677084, 0.9658354978) (0.3159107016, 0.8844267027) (0.4234853329, 0.7635680874)
(0.4869692602, 0.6150850237) ( 1

2 , 0.4541761074) (0.4612553307, 0.2974844489)
(0.3748185315, 0.1613132078) (0.2502635809, 0.06014114427) (0.1054326202, 0.005573550940)
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the coordinates for the polygons from Fig. 1 as well for completeness, and also because
some of the coordinates for n = 8 differ slightly from those reported in [3], which has for
example (0.40980, 0.77558)where we obtain (0.40909, 0.77622). However, the optimal
area for an octagon computed here agrees with the value in [3], up to the precision stated
in that article.

3. The Perimeter Problem

Recall that a Reuleaux polygon is a closed curve of constant width in the plane whose
boundary consists of a finite number of circular arcs. In particular, a Reuleaux triangle
with unit width can be constructed by replacing each edge of an equilateral triangle
having unit edge length with a convex circular arc of radius 1. Let Tn denote the convex
polygon with n sides obtained by subdividing each bounding arc of such a Reuleaux
triangle into either �n/3� or �n/3� subarcs of equal length, then taking the convex hull
of the endpoints of these arcs. For example, Fig. 1(a) illustrates T4. If 3 | n, then the
polygon Tn achieves the upper bound in the isodiametric problem for the perimeter.
Tamvakis asked if this polygon is also optimal in the open case when n is a power of 2.
Its perimeter is

L(Tn) =




4
3 (n − 1) sin

(
π

2n − 2

)
+ 2

3 (n + 2) sin

(
π

2n + 4

)
if n ≡ 1 mod 3

2
3 (n − 2) sin

(
π

2n − 4

)
+ 4

3 (n + 1) sin

(
π

2n + 2

)
if n ≡ 2 mod 3

= π − π3

24n2
+
(
π5

1920
− π

3

4

)
1

n4
+ O

(
1

n5

)
.

From (3), we have that the upper bound on the perimeter of a convex polygon of unit
diameter satisfies

Ln = π − π3

24n2
+ π5

1920n4
+ O

(
1

n6

)
.

Thus,

Ln − L(Tn) ∼ π3

4n4
.

We next describe the construction of better polygons in the isodiametric problem for the
perimeter in three specific cases, then using this information we analyze the general case
and establish Theorem 2.

3.1. Octagons, Hexadecagons, and Triacontakaidigons

We describe the construction of some improved examples in the perimeter problem for
n = 8, n = 16, and n = 32. When n = 8, we find that Q8 in Fig. 1(c) already has a larger
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(a) U8 (b) U16 (c) U32

Fig. 5. Improved perimeters.

perimeter than T8, as L(Q8) = 3.11924 · · · and L(T8) = 3.11905 · · ·. We can improve
this further by adjusting the angles α1 and α2 from our parameterization of Section 2.1
to maximize the perimeter rather than the area, creating a polygon Q′8 with still larger
perimeter, L(Q′8) = 3.11959 · · ·. However, we can improve this value still further by
considering polygons with a very different diameter graph.

Suppose then that the line segments of maximal length in the polygon form a circuit
of length (n/2)+1, plus (n/2)−1 additional pendant edges, arranged so that all but two
particular vertices of the circuit have a pendant edge attached. For example, Fig. 1(a)
exhibits this diameter graph when n = 4, and Fig. 5 illustrates it in the cases n = 8,
n = 16, and n = 32.

We assume again the existence of an axis of symmetry, and we also assume that
each pendant edge in the skeleton incident to a vertex bisects the angle formed by the
circuit at that vertex. Suppose n = 8m. Then describing a polygon of unit diameter
having a skeleton of this shape requires specifying 2m − 1 angles. The coordinates of
the vertices of the star shape may then be computed in terms of the parameters α1, . . . ,
α2m−1 using (6) and (7) as in Section 2.1. The coordinates of most of the pendant edges
can be calculated in a similar way by modifying (6) slightly, replacing one angle αk with
αk/2. Determining the last pair of pendant edges requires first calculating the final angle
α2m of the star, but this is easily done.

We may then use the heuristic optimization methods in Mathematica to determine
values for the angles that maximize the perimeter of this family of polygons. Our calcu-
lations produce the polygons Un for n = 8, n = 16, and n = 32, and these are displayed
in Fig. 5. The angles used to construct each of these polygons appear in Table 5, and the
coordinates of (n/2)− 1 vertices of each Un are shown in Table 6. In this table we again
place the polygon in the plane so that the line of symmetry lies on the y-axis, with one

Table 5. Angles for constructing Un .

n α1 α2 α3 α4 α5 α6 α7

8 0.43528
16 0.20123 0.38396 0.39975
32 0.098779 0.19517 0.19747 0.19535 0.19721 0.19569 0.19682
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Table 6. Vertices (x, y) of Un with x > 0.

8 (0.2983440841, 0.7872130729) ( 1
2 , 0.4812353606) (0.4216647815, 0.09324820816)

16 (0.1832794476, 0.9438638727) (0.3524809686, 0.8537890926) (0.4437023491, 0.6821605336)
( 1

2 , 0.4961275338) (0.4807511593, 0.3008657515) (0.3543830964, 0.1464396785)
(0.1998703223, 0.02017764147)

32 (0.09648737439, 0.9856569151) (0.1911182156, 0.9619811598) (0.2748506417, 0.9117602541)
(0.3532863039, 0.8536129803) (0.4115300344, 0.7750405408) (0.4618195463, 0.6911541570)
(0.4856218616, 0.5960644423) ( 1

2 , 0.4991011855) (0.4951841855, 0.4010785508)
(0.4620535223, 0.3084551197) (0.4199827788, 0.2195349680) (0.3538052126, 0.1464909348)
(0.2807583222, 0.08031652227) (0.1915518678, 0.03809609805) (0.09861807059, 0.004874642996)

vertex at (0, 0) and another at (0, 1). Only the vertices with positive x-coordinate are
listed in the table.

Table 7 displays the perimeter of each Un , along with the perimeters of some other
polygons, and the upper bound Ln .

3.2. Proof of Theorem 2

The data in Table 5 suggest that the optimal values for the angles α2, . . . , α2m−1 in the
polygon Un again exhibit a pattern of damped oscillation, with mean value approximately
2π/n. So, just as in the area problem, as an approximation we set α2 = · · · = α2m−1.
Denote this value by β, and write α for α1. Then we can determine an expression for the
perimeter in terms of α and β. For convenience, we consider the edges on just one side
of the axis of symmetry. Let n = 8m.

The edge directly opposite the angle α has length 2 sin(α/2), and 4m − 4 edges lie
opposite an angle of size β/2, each one with length 2 sin(β/4). This leaves just three
edges to compute. In Fig. 5 these edges are the two just above the horizontal line segment
on one side of the axis, and the single edge just below it. Referring to Fig. 6, we see that
the coordinates of v2m−1 = (x2m−1, y2m−1) and v2m = (x2m, y2m) are given by (10) and
(11) (taking h = 1

2 ), and that v2m+1 = (− 1
2 , y2m+1), where

y2m+1 = y2m +
√

1− (x2m + 1
2 )

2,

and v2m+2 = ( 1
2 , y2m+1). Also, we may obtain w by rotating v2m−1 about v2m by αm/2,

so

w − v2m = Rθ (v2m−1 − v2m),

Table 7. Perimeters of the improved polygons.

n L(Pn) L(Tn) L(Vn) L(Un) Ln

8 3.061467459 3.119054312 3.120975785 3.121147134 3.121445152
16 3.121445152 3.136438178 3.136532024 3.136543956 3.136548491
32 3.136548491 3.140323421 3.140330614 3.140331086 3.140331157
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w

2m−1

v
2m+1

v
2m+2

v
2m

v

Fig. 6

where

θ = αm

2
= sin−1

(‖v2m−1 − v2m+1‖
2

)
and ‖v2m−1 − v2m+1‖ denotes the distance between v2m−1 and v2m+1. Therefore, the
perimeter of the polygon is

Lα,β = 4 sin

(
α

2

)
+ 16(m − 1) sin

(
β

4

)
+ 4 ‖v2m+1 − w‖ + 2 ‖v2m+2 − v2m‖ .

Choosing α = π/n and β = 2π/n produces a polygon whose perimeter differs
from the upper bound Ln by O(1/n3), so this is slightly worse than Tn . However, we
can improve the perimeter by making small adjustments to the parameters. Studying the
asymptotic expansions shows that choosing α = π/n + π2/2n2 and maintaining β =
2π/n produces polygons with an error term of just O(1/n5), and a further adjustment
optimizes the coefficient of this term. Selecting

α = π

n
+ π2

2n2
− π

2

n3

and

β = 2π

n
− 2π2

n3

produces a family of polygons Vn whose perimeters satisfy

Ln − L(Vn) ∼ π5

16n5
.

Last, we verify that the polygon Vn has diameter 1. Let V ′n denote the convex hull of
the (n/2)+ 1 vertices of Vn lying on the circuit in its diameter graph. We verify first that
V ′n has unit diameter by using the same strategy employed to check the polygons Sn in
the proof of Theorem 1. We then observe that a Reuleaux polygon of unit width may be
circumscribed about V ′n by connecting its vertices with circular arcs. Then Vn may be
inscribed in this Reuleaux polygon as well, so Vn has unit diameter.

The values of L(V8), L(V16), and L(V32) are included in Table 7. We venture that
U16 is the optimal hexadecagon in the isodiametric problem for the perimeter, and ask if
the maximal perimeter when n = 2m is always achieved by a polygon with the diameter
graph of Vn .
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