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Abstract. We prove that four spheres in R3 have infinitely many real common tangents
if and only if they have aligned centers and at least one real common tangent.

1. Introduction

A major issue in geometric computing is to handle degenerate inputs properly in order
to design robust algorithms. This often requires recognizing such an input to begin with.
In three-dimensional visibility problems, which are ubiquitous in computer graphics and
image synthesis, objects with a set of common tangents of improper dimension constitute
degenerate configurations. In this paper we determine all degenerate configurations of
four distinct spheres, that is, all configurations of four spheres with infinitely many
common tangents.

The study of real lines tangent to basic geometric objects has been very active in recent
years. This topic includes two closely related directions of research, namely, the charac-
terization of degenerate configurations and the enumeration of lines satisfying geometric
constraints. Usually, these problems are approached by studying the degeneracies and
counting the number of solutions of some specific polynomial system. The difficulty
often resides in eliminating imaginary solutions, solutions at infinity, and components
of positive dimension of solutions in order to retain only real affine solutions.

The case of lines tangent to spheres has been persistently investigated. Macdonald
et al. [4] proved that four unit spheres have at most 12 common tangents in general, and
infinitely many common tangents if and only if the centers are aligned. The bound of 12
was independently obtained by Devillers et al. [2]. Examples show that, in the finite case,
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Fig. 1. Two examples of quadruples of spheres with infinitely many common tangents.

this bound is tight [2], [4], yet, according to Megyesi [5], it drops to eight in the case of
unit spheres with coplanar but non-collinear centers. However, the upper bound of 12
remains valid when the spheres have arbitrary radii. Sottile and Theobald [8] proved that
there are 3 · 2n−1 complex common tangent lines to 2n − 2 general spheres in Rn , and
that there exists a choice of spheres with all common tangents real.

Recently, progress has also been made in understanding the varieties of common
tangents to spheres and transversals to lines. Theobald [9] described the configurations
of three lines and a sphere having infinitely many common tangents/transversals. Next,
Megyesi et al. [7] characterized the families of two lines and two quadrics of P3(C)with
infinitely many tangents/transversals, and applied their results to the case of two lines
and two spheres of R3. Last, Megyesi and Sottile [6] classified the families of one line
and three spheres of R3 with infinitely many tangents/transversals.

The question of characterizing the positions of four spheres of various radii with in-
finitely many common tangents remained open. Quoting Theobald [9]: “We conjecture
that there does not exist any configuration with four balls of arbitrary radii, non-collinear
centers and infinitely many common tangent lines.” In this paper we confirm this expec-
tation and prove

Theorem 1. Four distinct spheres in R3 have infinitely many real common tangent
lines if and only if they have aligned centers and at least one real common tangent.

More precisely we prove that four spheres with infinitely many common real tangents
either intersect in a circle, possibly degenerating to a point, or each sphere has a circle
of tangency with one and the same quadric of revolution with symmetry axis the line
through all centers (see Fig. 1); such a quadric is unique and can be a cone, a cylinder,
or a hyperboloid of one sheet. Furthermore, the common tangents to the four spheres are
exactly the common tangents to any three of them.

After introducing some notations and preliminaries in Section 2, we treat the case of
four spheres with affinely independent centers in Section 3. Next, we handle in Section 4
the more intricate case of spheres with coplanar centers, no three aligned. Section 5
ends the proof of Theorem 1 with the case of three aligned centers. We obtain, at the
same time, the algebraic and semi-algebraic conditions on radii and mutual distances
between centers, which characterize four spheres with infinitely many common real
tangents.
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2. Preliminaries

Notations. Our proofs use points and vectors from R
n and from the real and complex

projective spaces of dimension n, Pn(R) and Pn(C). We make no distinction between a
point p and the vector from the origin of the frame to p. For more clarity, we denote an
element of Rn by (a1, . . . , an), and an element of Pn(R) or Pn(C) by (a1: · · · : an+1).

For any two vectors a, b ofRn , Pn(R), or Pn(C), we denote by a · b their dot product,
by a × b their cross product, and by |a|2 the dot product a · a (note that |a|2 is not the
square of the norm of a when a has imaginary coordinates).

Let Si denote the sphere of R3 with center ci and radius ri > 0, for i = 1, . . . , 4, and
let (e1, e2, e3) be an orthonormal frame of R3. Without loss of generality, we assume
that c1 is the origin of our frame. The axis of a set of spheres with aligned centers is
the line going through these centers.

Tangents to Four Spheres. We begin by reviewing the description of the common
tangent lines to four spheres as solutions of a polynomial system, as in [4]. We represent
a line in R3 by its closest point to the origin p ∈ R3 and its direction vector v ∈ P2(R).
Let M denote the matrix [c2, c3, c4]T and let �0 and �2(v) be the vectors

�0 =

|c2|2 + r2

1 − r2
2

|c3|2 + r2
1 − r2

3
|c4|2 + r2

1 − r2
4


 , �2(v) = −


(c2 · v)2
(c3 · v)2
(c4 · v)2


 .

Lemma 1. The lines tangent to the four spheres S1, . . . ,S4 are the common solutions
(p, v) in R3 × P2(R) of the equations

p · v = 0, (1)

|p|2 = r2
1 , (2)

2|v|2 Mp = �2(v)+ |v|2�0. (3)

Proof. A couple (p, v) ∈ R3 × P2(R) represents a line if and only if (1) is satisfied. A
line (p, v) is tangent to sphere Si if and only if its squared distance to ci is r2

i , that is, if
and only if

|(ci − p)× v|2 = r2
i |v|2.

Expanding this equation yields

|ci × v|2 + |p × v|2 − 2(ci × v) · (p × v) = r2
i |v|2. (4)

Applying to (ci × v) · (p× v) the scalar triple product identity a · (b× c) = b · (c× a),
then the vector triple product identity a× (b× c) = (a · c) b− (a ·b) c, and finally using
(1) we get

(p × v) · (ci × v) = ci · (v × (p × v)) = ci · ((v · v) p − (v · p) v) = |v|2 ci · p.

Since p and v are orthogonal, |p × v|2 = |p|2|v|2 and thus (4) becomes

2|v|2ci · p = |ci × v|2 + |v|2(|p|2 − r2
i ).
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As |ci × v|2 + (ci · v)2 = |ci |2|v|2, we finally get that

2|v|2ci · p = −(ci · v)2 + |v|2(|ci |2 + |p|2 − r2
i ). (5)

Equation (5) for i = 1 is equivalent to (2) since c1 is the origin of the frame. It follows
that the four equations (5) for i = 1, . . . , 4 are equivalent to the two equations (2)
and (3).

The approach used to show that infinitely many tangent lines to spheres can only
happen when the centers of the spheres are aligned is as follows. We eliminate p among
(1)–(3), giving two curves1 in the two-dimensional projective space of directions, whose
intersection contains all directions along which a common tangent line to the four spheres
is observed. We then prove that, when the centers are non-collinear, the two curves
intersect in a finite number of points.

The key idea behind the proofs of Section 3 (affinely independent centers) and Sec-
tion 4 (coplanar centers) is that if the two curves, envisaged as complex projective curves,
had a common component of positive dimension, this component would intersect the
imaginary conic |v|2 = 0 and we show that this is not the case. Intersecting the curve
with |v|2 = 0 is inspired by the relation of the Grassmannian of lines in P3(C) with the
(p, v) coordinate system, well adapted to the representation of lines in the affine part
R

3 ⊂ P3(R).
It should be stressed that any solution to the problem of characterizing sets of four

spheres with infinitely many tangent lines must be computational to some extent, because
while we are interested in real lines, the “native” system of equations is over C. Any
understanding of the system should involve sensitivity to complex degeneracies. In our
proof, computations flow towards revealing such complex degeneracies, but are short-
circuited by use of reality assumptions.

3. Affinely Independent Centers

We first investigate the case of spheres with affinely independent centers.

Proposition 1. Four spheres with affinely independent centers have at most 12 common
tangent lines.

Proof. First note that matrix M is invertible since the spheres have affinely independent
centers. Considering (p, v) in R3 × P2(R), we have |v|2 �= 0 and thus (1)–(3) are
equivalent to the three equations

p = M−1

(
�2(v)

2|v|2 +
1

2
�0

)
, (6)

(
M−1

(
�2(v)+ |v|2�0

)) · v = 0, (7)∣∣M−1
(
�2(v)+ |v|2�0

)∣∣2 = 4r2
1 |v|4. (8)

1 A cubic and a quartic when the centers are affinely independent, a conic and a sextic when the centers
are coplanar with no three aligned.
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Equation (6) expresses the point p in terms of the direction vector v, proving that there
is at most one line tangent to the four spheres with a given direction. The remaining
equations are a cubic (7) and a quartic (8) in v, and their intersection represents the
directions v ∈ P2(R) along which there is a tangent to the four spheres. We want to
prove that the cubic and the quartic intersect in at most 12 points in P2(R). For that
purpose we prove this property in P2(C), by contradiction.

If the cubic and the quartic have inP2(C) a common component of positive dimension,
this component intersects the conic |v|2 = 0; this is a property of any two curves inP2(C)

which does not dispute the fact that the real solutions of (6)–(8) satisfy |v|2 �= 0. We
now prove that the intersection in P2(C) of the cubic (7), the quartic (8) and the conic
|v|2 = 0 is empty. This system simplifies to


|v|2 = 0,

(M−1�2(v)) · v = 0,

|M−1�2(v)|2 = 0.

The first two equations express the fact that M−1�2(v) is on the tangent at v to the
smooth conic |v|2 = 0, and the last that M−1�2(v) is itself on that conic. It follows that
M−1�2(v) and v are one and the same projective point. Thus there exists µ �= 0 in C
such that

M−1�2(v) = µv, that is �2(v) = µMv.

Expanding this last equality yields−(ci · v)2 = µ ci · v, for i = 2, . . . , 4, which implies
that every term ci · v is 0 or −µ. This leads to

Mv = −µ

a2

a3

a4


 , (9)

where each ai is equal to 0 or 1. Let a denote the vector of the ai . Plugging v = µM−1a
in the equation of the conic |v|2 = 0 yields

µ2|M−1a|2 = 0.

The vector M−1a is real, thus µ = 0 or a = 0. In both cases, (9) implies v = 0. Thus
there is no common solution in P2(C) for the system of the conic, the cubic, and the
quartic, hence the cubic (7) and quartic (8) cannot intersect in a curve. By Bezout’s
theorem, they intersect in at most 12 points, and since there is at most one line tangent
to the four spheres with a given direction by (6), this completes the proof.

4. Coplanar Centers

We now treat the more intricate case of four spheres whose centers are coplanar but such
that no three centers are aligned.

Proposition 2. Four spheres with coplanar centers, no three aligned, have at most 12
common tangents.
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Let (p, v) ∈ R3 × P2(R) represent a line tangent to the four spheres S1, . . . ,S4. By
Lemma 1, (p, v) is a solution of (1)–(3). As in Section 3, we start by extracting from
these equations two equations in v.

Without loss of generality, we may assume that the sphere centers span the plane
(e1, e2):

M =

c21 c22 0

c31 c32 0
c41 c42 0


 .

Let M12 be the 2×2 upper left sub-matrix of M , which is invertible since no three centers
are aligned. For any vector a, let a12 be the vector that consists of the first two rows of
a and let a3 be its third row.

We first assume that v3 �= 0. It follows from p · v = 0 that

p3 = − p12 · v12

v3
, (10)

and p12 is characterized using (3):

2|v|2 p12 = M−1
12

(
(�2(v))12 + |v|2(�0)12

)
.

Let 
2(v) = M−1
12 (�2(v))12 and 
0 = M−1

12 (�0)12. As�2(v) and 
2(v) do not depend
on v3, we may write them as �2(v12) and 
2(v12). Then

2|v|2 p12 = 
2(v12)+ |v|2
0. (11)

Substituting the expression of p3 from (10) in (2) gives

|p12|2 +
(

p12 · v12

v3

)2

− r2
1 = 0.

Then multiplying by 4|v|4v2
3 and substituting 2|v|2 p12 by its expression from (11) gives

the following sextic equation in v:

v2
3 |
2(v12)+ |v|2
0|2 + ((
2(v12)+ |v|2
0) · v12)

2 − 4|v|4v2
3 r2

1 = 0. (12)

For any p, q in P3(C), we have, by transposition:

(Mp) · q = p · (MT q).

Let ω be a non-zero kernel vector of MT . Then (Mp) ·ω = p · (MTω) = 0. Substituting
the expression of Mp from (3), we obtain that v must be on the following conic:

�2(v12) · ω + |v|2�0 · ω = 0. (13)

Notice that (12) and (13), obtained for v3 �= 0, are still valid for v3 = 0 by continuity.
We thus get the following lemma.

Lemma 2. The direction v ∈ P2(R) of a line tangent to the four spheres S1, . . . , S4

satisfies the sextic (12) and the conic (13).



Common Tangents to Spheres in R3 293

Lemma 3. If the sextic (12) and the conic (13) admit a component of positive dimension
of common solutions in P2(C), then it intersects the conic |v|2 = 0 and any point v in
the intersection satisfies

∃λ ∈ C, 
2(v12) = λ v12, (14)

�2(v12) · ω = 0. (15)

Proof. If (12) and (13) share a component of positive dimension in P2(C), then this
component, seen as a curve of P2(C), intersects the conic |v|2 = 0. Let v ∈ P2(C)

be in this intersection. Then (13) becomes (15). Now, it follows from |v|2 = 0 that
v2

3 = −|v12|2, and thus (12) becomes

−|v12|2|
2(v12)|2 + (
2(v12) · v12)
2 = 0.

Since |x |2|y|2 − (x · y)2 = det(x, y)2 for any x, y ∈ C2, the equation is equivalent to
det(v12, 
2(v12)) = 0 which is equivalent to (14) (v is on |v|2 = 0 so we cannot have
v12 = 0).

In the following we consider the centers c1 = 0, c2, c3, c4 as two-dimensional points
(i.e., we forget the third coordinate, which is 0). For any vector x ∈ R2 we denote by x⊥

its orthogonal vector obtained by a rotation of angle π/2.

Lemma 4. If (14) and (15) have a common solution v12 in P1(C), it must satisfy
v12 = c⊥i and v12 · (cj − ck) = 0, with {i, j, k} = {2, 3, 4} (which implies that c1, c2, c3,
c4 are the vertices of a trapezoid).

Proof. From MTω = 0 we get

MTω =
(

MT
12 c4

0 0

)(
ω12

ω3

)
=
(

MT
12ω12 + ω3c4

0

)
= 0.

Thus ω12 = −ω3(MT
12)
−1c4 and ω3 �= 0 (otherwise, ω12 = 0 thus ω = 0 contradicting

its definition). Now, we can write (15) as (�2(v12))12 · ω12 − (c4 · v12)
2ω3 = 0, and

substituting our expression of ω12 yields

−ω3 (�2(v12))12 · ((MT
12)
−1c4)− (c4 · v12)

2ω3 = 0,

which simplifies, by transposition, into

(M−1
12 (�2(v12))12) · c4 + (c4 · v12)

2 = 0.

Hence, an equivalent expression for (15) is


2(v12) · c4 + (c4 · v12)
2 = 0. (16)

Substituting 
2(v12) = λv12 from (14) into (16) leads to

(c4 · v12)
2 = −λ c4 · v12.
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By a similar reasoning, we can express the conic (15) using c2 or c3 in expressions similar
to (16), and the above argument yields that

(ci · v12)
2 = −λ ci · v12, i = 2, 3, 4. (17)

If ci ·v12 �= 0 for i = 2, 3, and 4 then (c2−c3) ·v12 = (c2−c4) ·v12 = 0 and, since c2, c3,
and c4 are not aligned, v12 = 0 contradicting v12 ∈ P1(C). Hence, v12 must be orthogonal
to some ci , i ∈ {2, 3, 4}. Since v12 ∈ P1(C), we can assume that v12 = c⊥i . Since no
three centers are aligned, v12 is orthogonal to neither cj nor ck , with {i, j, k} = {2, 3, 4}.
Thus (17) yields

−λ = cj · c⊥i = ck · c⊥i , and so c⊥i · (cj − ck) = 0.

This means that the segments c1ci and cj ck are parallel and thus the centers of the spheres
are the vertices of a trapezoid.

Lemma 5. If the sextic (12) and the conic (13) have a common component of positive
dimension in P2(C), (14) and (15) have at least two distinct solutions in P1(C).

Proof. Assume that the sextic (12) and the conic (13) share a component of positive
dimension. Then by Lemmas 3 and 4, (14) and (15) admit a common solution v12 = c⊥i
for i = 2, 3, or 4. By relabeling if necessary, we can assume v12 = c⊥4 . Suppose, for a
contradiction, that c⊥4 is the unique common solution of (14) and (15).

By Lemma 3, any point in the intersection of the conic |v|2 = 0 and the common
component of the sextic (12) and the conic (13) satisfies (14) and (15). Thus any such
point satisfies v12 = c⊥4 and |v|2 = 0, and is equal to one of the two points of coordinates
(c⊥4 : ±i |c4|). Hence the common component contains at least one of these two points.

The common component of the sextic (12) and the conic (13) is either the conic
itself or a line. In the latter case the equation of the line is real because otherwise its
conjugate is also contained in the conic and in the sextic (since their equations are real);
the sextic then contains the conic, which corresponds to the first case. Hence the equation
of the common component is real in both cases. Thus, since the common component
contains one of the two points (c⊥4 : ±i |c4|), it also contains its conjugate, hence the two
points.

We now discard the case where the common component is the conic by deriving
a contradiction with our assumption that no three centers are collinear. If the conic is
contained in the sextic, it meets |v|2 = 0 in the two points (c⊥4 : ±i |c4|), which are
therefore tangency points. This means that (16), which is our conic modulo |v|2 = 0,
has a double root at v12 = c⊥4 . Since any degree-two polynomial in v12 ∈ P1(C) that has
c⊥4 as double root is proportional to (c4 · v12)

2, we get that


2(v12) · c4 = α(c4 · v12)
2

for some α ∈ C and all v12 ∈ P1(C). Computing det(M12)M
−1
12 gives the matrix with

columns [−c⊥3 c⊥2 ], thus our equation becomes


2(v12) · c4 = 1

det(M12)
[(c⊥3 · c4)(c2 · v12)

2 − (c⊥2 · c4)(c3 · v12)
2] = α(c4 · v12)

2.
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Since the four centers form a trapezoid we have c4 = ν(c2 − c3) for some ν ∈ R3.
Replacing c4 by its expression and simplifying by factor c⊥3 · c2 = −c⊥2 · c3 yields

(c2 · v12)
2 − (c3 · v12)

2 = κ((c2 − c3) · v12)
2,

for some κ ∈ C. Writing v12 = xc⊥2 + yc⊥3 we obtain

(c2 · c⊥3 )2(y2 − x2 − κ(x + y)2) = 0

for all (x, y) ∈ P1(C), which forces the proportionality of c2 and c3 and their alignment
with c1. Thus, if no three centers are aligned the conic cannot be contained in the sextic.

Now we examine the second alternative, when the common component of the sextic
(12) and the conic (13) is a line. This line contains the two points (c⊥4 : ±i |c4|) and thus
contains the point (c⊥4 : v3) for all v3 ∈ C. Thus all the coefficients of the sextic (12)
viewed as an equation in v3 with coefficients depending on v12 = c⊥4 must vanish. In
particular, the constant and the coefficient of v2

3 minus |c4|4 times the coefficient of v6
3

both vanish and are equal to


2(c
⊥
4 ) · c⊥4 + |c4|2
0 · c⊥4 = 0,

|
2(c
⊥
4 )|2 + 2|c4|2
2(c

⊥
4 ) ·
0 = 0.

From the proof of Lemma 4, we know that
2(c⊥4 ) = λ c⊥4 with λ = −c2 ·c⊥4 = −c3 ·c⊥4 .
Thus, the relations become

|c4|2(λ+
0 · c⊥4 ) = 0,

λ|c4|2(λ+ 2
0 · c⊥4 ) = 0.

Since no three centers are aligned, λ �= 0 and |c4|2 �= 0, and these two equations imply
λ = 0, a contradiction.

Lemma 6. The sextic (12) and the conic (13) cannot have a component of positive
dimension of common solutions.

Proof. Assume that the sextic (12) and the conic (13) have a common component of
positive dimension. Lemmas 4 and 5 yield that (14) and (15) then have at least two
distinct solutions among {c⊥2 , c⊥3 , c⊥4 }. By relabeling the centers, we may assume these
solutions are c⊥2 and c⊥3 . Lemma 4 gives that

c⊥2 · (c4 − c3) = 0 and c⊥3 · (c4 − c2) = 0.

Thus, c2 is proportional to c4−c3, and c3 is proportional to c4−c2. Therefore, c2+c3 = c4

and the centers form a parallelogram. By translating our frame to the center of that
parallelogram, we may assume that the centers are at a = (a1, a2, 0), b = (b1, b2, 0),
−a, and−b, with corresponding radii ri , i = 1, . . . , 4. On occasion, we abuse notation,
and allow a and b to stand for (a1, a2), respectively (b1, b2).

Subtracting (5) for i = 1 from its expression for i = 3 leads to

4 (a · p) = r2
3 − r2

1 ,
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and the same operation for i = 2 and i = 4 yields

4 (b · p) = r2
4 − r2

2 .

This shows that the first two coordinates p12 of p are determined by centers and radii
alone, and remain constant. Thus, all the common tangents to the four spheres meet the
line perpendicular to the plane of the centers in p12.

Megyesi and Sottile [6] address a situation of this nature and show that the common
tangents/transversals to three spheres and a line cannot be infinitely many unless the
three spheres have collinear centers. We give here an independent proof which continues
the above line of thought.

Recall that (12) and (13) were obtained from (1)–(3) by eliminating p. Operating “in
reverse,” it is easy to see that a one-dimensional component of solutions for (12) and
(13) would produce a one-dimensional family of solutions for (1)–(3). We now show
this cannot happen.

Rewriting (5) for the centers a and b gives

(a · v)2 = |v|2 (|a|2 + |p|2 − 1
2 (r

2
1 + r2

3 )
)
, (18)

(b · v)2 = |v|2 (|b|2 + |p|2 − 1
2 (r

2
2 + r2

4 )
)
. (19)

Let α = |a|2 − 1
2 (r

2
1 + r2

3 ) and β = |b|2 − 1
2 (r

2
2 + r2

4 ). Subtracting (19) from (18) gives
the conic

((a + b) · v12)((a − b) · v12) = |v|2(α − β). (20)

Multiplying (18), (19), and v2
3 together and dividing by |v|2 gives

(a · v12)
2(β + |p12|2 + p2

3)v
2
3 = (b · v12)

2(α + |p12|2 + p2
3)v

2
3,

or, equivalently, using (10),

(|p12|2v2
3+(p12 ·v12)

2)((a+b) ·v12)((a−b) ·v12) = v2
3(α(b ·v12)

2−β(a ·v12)
2). (21)

For the conic (20) and the quartic (21) to have a common one-dimensional component,
it is necessary that equality holds for any v12 ∈ P1 and some adequate value(s) for v3.
Indeed, the projection v �→ v12 of the common component cannot be constant, for with
fixed v12 and (already known) fixed p12, (10) and (18) (or (19)) would determine only a
finite number of solutions v3.

Evaluating (20) and (21) at v12 = (a + b)⊥, we find no possible value for v3, unless
α = β. Returning this necessary condition into (20) implies v12 = (a±b)⊥ contradicting
the fact that (20) and (21) hold for all v12 ∈ P1.

We now conclude the case of spheres with coplanar centers.

Proof of Proposition 2. By Lemmas 2 and 6, there are finitely many directions along
which the spheres have a common tangent. For each such direction v, a line tangent to
the four spheres projects onto a plane orthogonal to v into a point that lies on the common
intersection of the four circles obtained as the boundary of the projection of each sphere.
There are thus at most two lines tangent to the four spheres per direction. Hence there
are finitely many lines tangent to the four spheres. Now, the bound of 12 directly follows
from the non-coplanar case (Proposition 1) by continuity.
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5. Collinear Centers

In this section we conclude the proof of Theorem 1. We first establish the following
lemma.

Lemma 7. The common tangents to three distinct spheres with collinear centers and
no common intersection are, if any, the ruling(s) of a single quadric of revolution with
symmetry axis the line through all centers. This quadric can be a cone, a cylinder, or a
hyperboloid of one sheet.

Proof. Suppose that three distinct spheres with collinear centers admit a common
tangent. Such a tangent is not orthogonal to the axis of the three spheres since they have
no common intersection. Furthermore, such a tangent remains tangent after a rotation
about this axis. Thus the common tangents to the three spheres are the rulings of a
collection Q of quadrics of revolution with symmetry axis the line through all centers
(see Fig. 1); these quadrics have to be cylinders, cones, or hyperboloids of one sheet.
Assume for a contradiction that Q consists of more than one quadric.

We take the line through the centers to be the y-axis in some (x, y)-plane. This plane
intersects the quadrics of Q into a collection C of conics symmetric with respect to the
y-axis which have equations of the following form:

x2 + Ay2 + By + C = 0, A ≤ 0, B2 − 4AC ≤ 0. (22)

The (x, y)-plane also intersects the three spheres into three circles, with centers (0, αi )

and radii ri , i = 1, ..., 3, that are tangent to the conics of C. Since these conics and
circles are symmetric with respect to the y-axis, two of them are tangent if and only if
they intersect in exactly two points with the same y-coordinate. Thus a conic (22) and a
circle of center (0, αi ) and radius ri are tangent if and only if

(x2 + Ay2 + By + C)− (x2 + (y − αi )
2 − r2

i ) = 0

has a double solution in y, i.e., the discriminant vanishes:

δi = (B + 2αi )
2 − 4(A − 1)(C + r2

i − α2
i ) = 0. (23)

For the three circles, this gives a system of three equations in the three indeterminates
(A, B,C). This system is linear in C (with a non-zero coefficient since A ≤ 0) and thus
has more than one solution only if the linear system in (A, B),{

δ1 − δ2 = ((α2
1 − α2

2)− (r2
1 − r2

2 ))A + (α1 − α2)B + r2
1 − r2

2 = 0

δ1 − δ3 = ((α2
1 − α2

3)− (r2
1 − r2

3 ))A + (α1 − α3)B + r2
1 − r2

3 = 0

does, that is, only if the determinant of the coefficients of A and B, and the determinant
of the constant coefficients and the coefficients of B both vanish. The sum of these
determinants also vanishes and is equal to∣∣∣∣α2

1 − α2
2 α1 − α2

α2
1 − α2

3 α1 − α3

∣∣∣∣ = (α1 − α2)(α1 − α3)(α2 − α3).
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Hence at least two centers are equal which implies that one sphere is strictly contained
in another. The three spheres thus have no common tangent, a contradiction.

Remark. Actually solving the system (23), i = 1, 2, 3, yields, in terms of radii and
oriented distances between centers di j = αj − αi :

A = 1

D
(r2

1 d23 + r2
2 d31 + r2

3 d12),

B2 − 4AC = −1

d23d31d12 D
(r1 d23 + r2 d31 + r3 d12)(r1 d23 + r2 d31 − r3 d12)

∗ (r1 d23 − r2 d31 + r3 d12)(−r1 d23 + r2 d31 + r3 d12),

where D = d23 d31 d12 + r2
1 d23 + r2

2 d31 + r2
3 d12.

We can now prove Theorem 1.

Proof of Theorem 1. Consider four distinct spheres with infinitely many real common
tangents. By Propositions 1 and 2, the centers of at least three of the spheres are aligned.

If these three spheres intersect in a circle, their common tangents are the tangents to
that circle in its plane. To be tangent to infinitely many of these lines, the fourth sphere
has to contain that circle (and, if that circle is degenerate to a point, the four spheres
must have the same tangent plane at this point). Thus all four spheres have aligned
centers.

If the three spheres with aligned centers do not have a common intersection, then by
Lemma 7 their common tangents are the rulings of a single quadric having their axis
as axis of revolution. To be tangent to infinitely many lines contained in this quadric,
the fourth sphere must have its center on the axis of the quadric (and adequate radius as
determined below), hence the four spheres have aligned centers.

Conversely, four spheres with aligned centers and at least one common tangent have
infinitely many common tangents, by symmetry of revolution. This concludes the proof
of Theorem 1 and provides the finer geometric characterization stated in Section 1.

As shown above, four spheres with collinear centers and no common intersection
admit infinitely many real common tangents if and only if there exists a conic (22)
whose coefficients A, B,C satisfy (23) for all i = 1, . . . , 4. These four equations admit
a solution if and only if the relation obtained by eliminating A, B,C is satisfied. One
can put the result in the permutation invariant form in terms of the oriented distances
di j = αj − αi and the radii rk :

4∑
k=1

r2
k∏

i �=k dki
= 0. (24)

In order to obtain infinitely many real common tangents, the coefficients A, B,C must
also satisfy the semi-algebraic conditions

A ≤ 0, B2 − 4AC ≤ 0 (25)
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noted in (22). A and B2− 4AC can be obtained in terms of the di j and rk by solving the
system of equations, as illustrated after Lemma 7.

The case of four spheres intersecting in a common circle or tangent in a common
point is a limit case of the situation above, and thereby subject to the same algebraic and
semi-algebraic conditions.

Remark. When a configuration of four spheres is given in terms of the Cartesian
coordinates of the four centers ci = (xi , yi , zi ) and the corresponding radii ri , expressing
the collinearity of the centers involves quadratic equations in their coordinates, and, in
view of

di j

dik
= xj − xi

xk − xi
= yj − yi

yk − yi
= zj − zi

zk − zi

and d2
i j = (xj − xi )

2+ (yj − yi )
2+ (zj − zi )

2, testing conditions (24) and (25) amounts
to evaluating polynomials of degree at most five in the Cartesian coordinates and radii.

6. Conclusion

This paper answers a question left open for several years by characterizing the sets of
four spheres of various radii with infinitely many common tangent lines. This completes
the description of degeneracies for common tangents to spheres in R3.

Some of our results generalize to the case of quadric surfaces. In a companion paper [1]
we characterize the families of quadrics inP3(C)whose common tangents sweep another
quadric surface. The result of the present paper appears as a particular case obtained by
considering real tangents to real spheres. Extending our characterization to quadruples
of quadrics with infinitely many real common tangents remains an open problem.

Results of the kind proved in this paper have applications in the field of three-
dimensional visibility. Given a three-dimensional scene, combinatorial changes appear-
ing in the view of a moving observer occur when traversing special surfaces known as
visual event surfaces. Such surfaces are swept by lines having prescribed contact with
the objects of the scene. Various data structures based on visual events, like the visibility
complex or the visibility skeleton [3], have been proposed to speed up visibility com-
putations. The zero-dimensional elements of these structures appear as discrete lines
tangent to four objects. Failing to recognize that four objects admit infinitely many tan-
gent lines leads to errors in the computations of these types of data structures. Hence,
recognizing configurations of four objects with infinitely many tangent lines is crucial to
the robustness of visibility computations. Our theorem settles the case of four spherical
objects in R3.
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