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Abstract. Let A be a d by n matrix, d < n. Let C be the regular cross polytope (oc-
tahedron) in Rn . It has recently been shown that properties of the centrosymmetric poly-
tope P = AC are of interest for finding sparse solutions to the underdetermined sys-
tem of equations y = Ax [9]. In particular, it is valuable to know that P is centrally
k-neighborly.

We study the face numbers of randomly projected cross polytopes in the proportional-
dimensional case where d ∼ δn, where the projector A is chosen uniformly at random from
the Grassmann manifold of d-dimensional orthoprojectors of Rn . We derive ρN (δ) > 0
with the property that, for any ρ < ρN (δ), with overwhelming probability for large d, the
number of k-dimensional faces of P = AC is the same as for C , for 0 ≤ k ≤ ρd. This
implies that P is centrally �ρd�-neighborly, and its skeleton Skel�ρd�(P) is combinatorially
equivalent to Skel�ρd�(C). We display graphs of ρN .

Two weaker notions of neighborliness are also important for understanding sparse so-
lutions of linear equations: weak neighborliness and sectional neighborliness [9]; we study
both. Weak (k, ε)-neighborliness asks if the k-faces are all simplicial and if the number
of k-dimensional faces fk(P) ≥ fk(C)(1 − ε). We characterize and compute the criti-
cal proportion ρW (δ) > 0 such that weak (k, ε) neighborliness holds at k significantly
smaller than ρW · d and fails for k significantly larger than ρW · d. Sectional (k, ε)-
neighborliness asks whether all, except for a small fraction ε, of the k-dimensional in-
trinsic sections of P are k-dimensional cross polytopes. (Intrinsic sections intersect P with
k-dimensional subspaces spanned by vertices of P .) We characterize and compute a propor-
tion ρS(δ) > 0 guaranteeing this property for k/d ∼ ρ < ρS(δ). We display graphs of ρS

and ρW .

∗ Partial support was received from NSF DMS 00-77261, and 01-40698 (FRG), ONR-MURI and NIH.
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1. Introduction

1.1. Neighborliness and Central Neighborliness

In the classical theory of convex polytopes, the notion of neighborliness offers a beautiful
glimpse of the surprises of high dimensions. k-Neighborliness asks if every k vertices of a
polytope span a (k−1)-face. In low dimensions this is difficult for beginners to arrange—
outside the trivial case of the simplex—because it seems that some candidate edges easily
get “swallowed up” crossing “inside” the polytope. It can be surprising to students that
in higher dimensions, d > 3, this can be managed easily, by simply taking n > d points
xi = M(ti ) along the moment curve M(t) = (t, t2, . . . , td) [12], [14]. The convex hull
of these points is a polytope with n vertices which is �d/2�-neighborly, for each n > d;
for n > d + 1. this is the maximum possible value. See, e.g., Chapter 7 of [14] for more.

For centrosymmetric polytopes, a modified notion of neighborliness is needed; one
asks if every k vertices not including an antipodal pair span a (k−1)-face. This property is
called central k-neighborliness. The “not including” proviso detracts a bit from the beauty
of the notion; and perhaps also from the interest in studying it. There is no known general
construction of centrally k-neighborly for large n and d, and the achievable upper bound
is smaller: k ≤ �(d + 1)/3�, according to McMullen and Shephard [17]. For n not much
larger than d , Schneider [21] showed the existence of centrally symmetric polytopes
which are centrally k-neighborly for k ≈ 0.2309d; however, Schneider’s polytopes have
only 2d(1 + o(1)) vertices. Burton [4] showed that for fixed d and large enough n, even
2-central-neighborliness is impossible. Until recently, not much else was known.

1.2. Central Neighborliness and Optimization

In a companion paper [9], the author shows that central neighborliness of centrally
symmetric polytopes is important for understanding solvability of certain combinatorial
optimization problems by convex relaxation. Specifically, suppose A is a d by n matrix
with d < n and we are interested in finding the solution to the underdetermined system
y = Ax having fewest nonzeros. Although this problem is NP-hard in general, the
sparsest solution can be often found by solving the convex optimization problem min‖x‖1

subject to y = Ax . The conditions on A and y guaranteeing success are: first, that a
solution with at most k nonzeros exist; and, secondly, that the convex polytope P = AC
be centrally k-neighborly. Here C denotes the cross polytope (�1 ball) in Rn .

The relation to optimization brings new significance into the study of neighborliness
in the centrosymmetric case. As [9] shows, we can interpret recent results in the study of
sparse solutions by �1 optimization as constructions of centrosymmetric polytopes which
are centrally k-neighborly for reasonably large k. For example, a result of the author [8]
relying on Banach space geometry implies that for large d and n, d proportional to n,
if we randomly take points x1, . . . , xn from the uniform distribution on the unit sphere
in Rd , then the centrosymmetric polytope generated by taking the convex hull of these
points and their antipodes is overwhelmingly likely to be k-neighborly, for k < ρd. Here
ρ is a positive constant depending on n/d; until now little was known about the possible
values for ρ.
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Clearly, we would like to know more about the possible/prevalent ranges of neigh-
borliness.

1.3. Analysis in High Dimensions

In this paper we adopt the high-dimensional viewpoint, and construct polytopes by pro-
jecting from n dimensions down to d dimensions, n large, d proportional to n. The
resulting families of high-dimensional centrosymmetric polytopes are proportionally
neighborly, in the sense that for some ρ > 0 and large d, typical realizations are cen-
trally �ρd�-neighborly. Our approach gives quantitative information about the size of ρ
achievable. We present numerical evidence that k ≥ 0.089d when n = 2d and n is large.

Our analysis considers the ensemble of polytopes P = AC where A is a random
projection from Rd to Rn and C = Cn is the standard cross polytope. We study a function
ρN : (0, 1] 
→ [0, 1], depicted in Fig. 1.1 and defined in detail later. The definition is
unfortunately implicit, involving large deviation properties of certain random variables
(see Sections 3.4 and 4.4), but sufficiently concrete that accurate numerical calculations
are possible. ρN provides a lower bound on the degree of central neighborliness of the
random polytope P .

Corollary 1.1. Let A be a uniform random projection from Rn to Rd with d = �δn�.
Fix ε > 0. With overwhelming probability for large n, P = AC is centrally k-neighborly
with k/d ≥ ρN (δ) − ε.
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Fig. 1.1. The lower bound ρN (δ) on the neighborliness threshold, computed by methods of this paper.
MATLAB software available from the author.
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Much of the paper is concerned with introducing the components in the definition of
ρN and proving the validity of its role as a lower bound on neighborliness.

1.4. Face Numbers

In fact, this article does not much discuss neighborliness per se. Instead, we consider the
properties of face numbers of the projected cross polytope, getting the following result:

Theorem 1. Let ρ < ρN (δ) and let A = Ad,n be a uniformly distributed random
projection from Rn to Rd , with d ≥ δn. Let f�(C) and f�(AC) denote the number of
�-dimensional faces of C and AC , respectively. Then

Prob{ f�(AC) = f�(C), � = 0, . . . , �ρd�} → 1, as n → ∞. (1.1)

Central k-neighborliness follows from this equality of face numbers; see Section 2
below.

Our proof of Theorem 1 starts from work of Böröczky and Henk [2], who consid-
ered face numbers of the randomly projected cross polytope with d fixed and n → ∞.
We modify the analysis, letting d and n both go to infinity in a proportional way. The
approach of [2] depends on the framework for computing Grassmann angles of a poly-
tope due to Affentranger and Schneider [1] and Vershik and Sporyshev [23]. This uses
exact analytical work in integral geometry of convex sets by McMullen [16] (nonlinear
angle-sum relations), Grünbaum [13] (Grassmann angles), and Ruben [18] (volumes of
spherical simplices).

Our approach is to develop formulas for the internal and external angles of cross
polytope faces in the n-proportional-to-d setting, obtaining inequalities of a substantially
different form than in the d-fixed setting. We use these inequalities to characterize and
compute ρN (δ).

The study of face numbers in the proportional-dimensional case, where d ∼ δn,
was pioneered by Vershik and Sporyshev [23] in the “projection of simplex” case P =
AT n , with T n the regular simplex in Rn . Most importantly, Vershik and Sporyshev [23]
developed, in addition to the proportional-to-dimension viewpoint, several analytical
tools relevant to the proportional-dimensional case, for studying internal and external
angles of simplices; these are also used here.

1.5. Weaker Notions of Neighborliness

Vershik and Sporyshev [23] were interested in the question of whether, for k in a fixed
proportion to n, the face numbers obeyed fk(AT n) = fk(T n)(1 + oP(1)). (Here we use
standard “order in probability” notation oP ; a sequence of random variables Yn is oP(1)
if it tends to zero in probability, or, equivalently, if for all ε > 0, Prob{|Yn| > ε} → 0,
n → ∞.) Thus, they wanted to know if, for large n, the overwhelming majority of
random projections A, yielded AT n with approximately the same number of k-faces as
T n . The answer exhibited sharp threshold behavior in the vicinity of ρVS · d, for some
implicitly characterized ρVS = ρVS(d/n).
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For comparison with Theorem 1, note that the question of approximate equality of
face numbers fk(AT n) = fk(T n)(1 + oP(1)) is weaker than the exact equality studied
here in Theorem 1; it changes at a different threshold in k/d. The comparable question
in our setting is approximate equality of face numbers fk(AC) = fk(C)(1 + oP(1)).

This notion may be called weak (central) neighborliness; it asks for the typical k-tuple
of vertices to span a k − 1 face, rather than for every k-tuple of vertices to span a face.

It turns out that weak central neighborliness exhibits sharp threshold behavior in k/d,
in a fashion similar to what Vershik and Sporyshev found in the non-centrosymmetrric
case, but at a different threshold. The threshold function ρW is again implicitly de-
fined in terms of certain large deviation exponents, but is amenable to high-accuracy
numerical calculations. Figure 1.2 displays thresholds computed using the following
result.

Theorem 2. There is a function ρW (δ), characterized below, with the following prop-
erty. Let d = dn ∼ δn and let A = Ad,n be a uniform random projection from Rn to Rd .
Then for any sequence k = kn with k/d → ρ, ρ < ρW (δ), we have

fk(AC) = fk(C)(1 + oP(1)). (1.2)

Theorem 2 is sharp in the sense that for sequences with k/d → ρ > ρW there is no
more the approximate equality (1.2); but we do not prove this here. Thus, we distin-
guish between ρW which is really a threshold and ρN which is a lower bound on a
threshold.
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Fig. 1.2. The threshold ρW (δ) for approximate equality of ρd-dimensional face numbers of C and AC (blue),
and the lower bound ρS(δ) for sectional neighborliness (green). Plot of ρN overlaid in red for comparison.
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The companion paper [9] discusses applications of weak neighborliness. This notion
of neighborliness is easier to satisfy than orthodox central neighborliness and so ρW >

ρN . A notion of sectional neighborliness, intermediate between weak neighborliness and
neighborliness, is also defined in [9]. In this notion we take any k vertices not including
an antipodal pair and section P by the linear subspace spanned by those vertices. If
the overwhelming majority of such sections are k-dimensional cross polytopes, we say
that P is typically sectionally k-neighborly. In Fig. 1.2 we also display a bound on the
sectional neighborliness of quotient polytopes, based on the following result.

Theorem 3. There is a function ρS(δ), characterized below, with the following prop-
erty. Let ρ < ρS(δ) and let A be a uniform random projection from Rn to Rd , with
d = dn ∼ δn. Then for k = kn ∼ ρdn , we have with overwhelming probability for large
n that P = AC is typically sectionally k-neighborly.

All three theorems are proved in more or less the same way; we spend the bulk of
this article on the proof of Theorem 1 and in a final section indicate the changes needed
to prove Theorems 2 and 3.

Figure 1.2 depicts substantial numerical differences in the critical proportion ρW and
the lower bounds ρN and ρS . The most striking differences between ρW and the other
two proportions are that ρW crosses the line ρ = 1

2 near δ = 0.701 and increases to 1 as
δ → 1. This means that if n > d + 1, although the degree of central neighborliness can
never exceed d/2, weak neighborliness can certainly exceed d/2. Although if n > d +1
there must always be collections of d/2 + 2 vertices which do not span d/2 + 1 faces,
for these random polytopes such collections are quite rare. The Appendix proves the
following.

Theorem 4.

lim
δ→1

ρW (δ) = 1. (1.3)

For some δ0 ∈ (0, 1) (numerically δ0 ≈ 0.701)

ρW (δ) > 1
2 , δ0 < δ < 1. (1.4)

For comparison, one can compute that

0.168 ≈ lim
δ→1

ρN (δ) (1.5)

and

0.352 ≈ lim
δ→1

ρS(δ). (1.6)

These comparisons can be very interesting from the applications viewpoint, where
they can be interpreted as saying that average-case behavior is far more favorable than
worst-case behavior. See the discussion in [9].
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1.6. Recent Work

When this research was done, it seemed that the study of high-dimensional centrally
neighborly polytopes was a lonely endeavor; the history such as is was recounted above
at the beginning of the Introduction. While this manuscript was under review, interest
seems to have picked up, driven by activity in signal processing and geometric functional
analysis. As indicated in [9], certain results in the field of signal processing can be
re-interpreted as implicitly establishing the existence of high-dimensional neighborly
polytopes; [9] gives a pointer to activity in that field. That activity led to [8], which
showed combinatorial isomorphism between the k-skeleta of certain high-dimensional
polytopes in Rd with n vertices and the k-skeleton of the cross polytope C ⊂ Rn . This of
course implies k-neighborliness. The key point was that k could be proportional to d: for
some unspecified ρ∗(δ), i.e. that there is k-neighborliness with k ∼ ρ∗(δ)d(1 + oP(1))
and d ∼ δn.

Paper [8] used techniques from geometry of Banach spaces and eigenvalues of random
matrices rather than polytope techniques. It gave weaker, more qualitative information
about neighborliness compared with what has been obtained here. Nevertheless, that
qualitative result gave a hint that geometric Banach space theory and related tools could
be brought to bear on the neighborliness question. In fact, the other recent work relevant
to neighborliness all takes the geometric functional analysis viewpoint.

The author’s papers [8], [7] implicitly showed that ρ∗(δ) ≥ c/log(1/δ), and Candès
and Tao [5] explicitly proved results which can be seen to imply ρ∗(δ) ≥ c/log(1/δ).
After submission of this manuscript, two other manuscripts appeared which cover related
territory. Their methods are again based on geometric Banach space techniques and their
conclusions are again qualitative. Rudelson and Vershynin [20] develop a viewpoint dual
to ours, concerning the number of faces of sections of high-dimensional cubes. Their
work can be seen to imply that for the randomly projected cross polytope P = AC
as studied in this article, k-neighborliness holds for k ≈ c/log(1/δ)(1 + oP(1)), for
unspecified c. Linial and Novik [15] explicitly study neighborliness of projected cross
polytopes and obtain a similar implication, along with a matching upper bound showing
no qualitatively better behavior is possible for small δ.

Incidentally, the success of Banach space techniques in giving qualitative insights on
this problem is a vindication of the intuitions of Vershik and Sporyshev. They had already
suggested in [23] that their results on neighborliness of randomly projected simplices
were in some way connected to ongoing developments in Banach space geometry.

Final note: the very recent papers of the author and Tanner [10], [11] apply the tech-
niques of this article to the study of randomly projected simplices and their applications.

2. Neighborliness and Face Numbers

We first justify our claim that face numbers of the quotient polytope alone are enough
to determine neighborliness.

We also fix notation concerning convex polytopes; see [14] for more details. In dis-
cussing the (closed, convex) polytope P we commonly refer to its vertices v ∈ vert(P)

and k-dimensional faces F ∈ Fk(P). A point v ∈ P will be called a vertex of P if
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there is a linear functional λv separating v from P\{v}, i.e. a value c so that λv(v) = c
and λv(x) < c for x ∈ P , x �= c. We write conv for the convex hull operation; thus
P = conv(vert(P)). Vertices are just 0-dimensional faces, and a k-dimensional face is
a k-dimensional set F for which there exists a separating linear functional λF , so that
λF (x) = c, x ∈ F , and λF (x) < c, x �∈ F . Faces are convex polytopes, each one
representable as the convex hull of a subset vert(F) ⊂ vert(P); thus if F is a face,
F = conv(vert(F)). A k-dimensional face will be called a k-simplex if it has k + 1
vertices. We note the elementary

vert(AC) ⊂ A vert(C),

which implies

f0(AC) ≤ f0(C); (2.1)

in fact, we have more generally fk(AC) ≤ fk(C), 0 ≤ k < d; this hints at the fact
that projections can only “lose faces,” or at least merely preserve them. The following
lemma shows that neighborliness of P = AC is equivalent to not “losing faces” under
the projection C 
→ AC . The statement and proof given here are due to a referee.

Lemma 2.1. Let A be an arbitrary linear transformation. Let P = AC have the same
number of vertices and (k − 1)-faces as C : f�(P) = f�(C), � = 0, k − 1. Then:

• The (k − 1)-skeleton of P is isomorphic to the (k − 1)-skeleton of C ; in particular,
f�(P) = f�(C), and every �-face of P is an �-simplex, for � = 0, . . . , k − 1.

• P is centrally k-neighborly.

Proof. Let Q be a centrosymmetric polytope with 2n vertices in Rd (n ≥ d). Let
Tk be the set of all k-tuples of vertices of Q not containing an antipodal pair. Then
#Tk = 2k

(n
k

)
. Let F ∈ Fk−1(Q). The face F is the convex hull of suitable vertices of Q.

Among these vertices, there are k affinely independent ones, and there is no antipodal
pair. Hence, with each F ∈ Fk−1(Q) we can associate at least one k-tuple in Tk which
affinely spans the affine hull of F . The k-tuples associated with different (k − 1)-faces
are distinct. It follows that fk−1(Q) ≤ 2k

(n
k

)
. If equality holds here, then the vertex set of

each F ∈ Fk−1(Q) contains exactly one affinely independent k-tuple, hence each such
F is a simplex, and every k-tuple of Tk is the vertex set of a (k −1)-face of Q. For � < k,
every �-tuple of vertices of Q containing no antipodal pair is contained in some k-tuple
of Tk and hence determines an (�− 1)-simplex which is a face of Q. It is now clear that
any bijection between the vertices of Q and the vertices of C preserving antipodal pairs
establishes a combinatorial isomorphism between the (k − 1)-skeleta of Q and C . This
implies the assertions of the lemma.

3. Random Projections of Cross Polytopes

We now outline the proof of Theorem 1. Key lemmas and inequalities are justified in
later sections.
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3.1. Angle Sums

As remarked in the Introduction, our proof proceeds by refining a line of research in
convex integral geometry. Affentranger and Schneider [1] (see also [23] and [2]) studied
the properties of random projections R = AQ where Q is an n-polytope and R is its
d-dimensional orthogonal projection. They [1] derived the formula

Ef k(R) = fk(Q) − 2
∑
s≥0

∑
F∈Fk (Q)

∑
G∈Fd+1+2s (Q)

β(F, G)γ (G, Q);

where E denotes the expectation over realizations of the random orthogonal projection,
and the sum is over pairs (F, G) where F is a face of G. In this display, β(F, G) is
the internal angle at face F of G and γ (G, Q) is the external angle of Q at face G; for
definitions of these terms see, e.g. Chapter 14 of [14].

The slogan underlying the formula is that each face F ∈ Fk(Q) will either “survive”
under projection, so that AF is a k-face of R, or it will get “swallowed up” inside R.
The expected number of faces in R is thus the number of faces in Q minus the expected
number of faces “swallowed up” in projection. The chance of a particular face’s getting
“swallowed up” is exactly the chance that the subspace spanned by columns of At in
Rn intersects trivially with the cone of separating linear functionals associated to face
F ∈ Q. The chance that a uniform random subspace hits a cone is precisely the so-called
Grassmann angle as defined by Grünbaum [13]. Hence the expected number of faces
fk(R) involves a sum of Grassmann angles, one for each k-face F of Q, evaluating the
probability that AF is a k-face of R. McMullen [16] developed nonlinear angle-sum
relations which are used to decompose these Grassmann angles into the above sums
involving internal and external angles.

Specializing to the case where Q = C , the n-dimensional cross polytope, we write

Ef k(P) = fk(C) − �(k, d, n) (3.1)

with

�(k, d, n) = 2
∑
s≥0

∑
F∈Fk (C)

∑
G∈Fd+1+2s (C)

β(F, G)γ (G,C). (3.2)

3.2. Exact Equality from Expectation

Because of (2.1) we view (3.1) as showing that on average fk(P) is about the same as
fk(C), except for a nonnegative ‘discrepancy’ �. We will show that under the stated
conditions on k,d , and n, for some ε > 0,

�(k, d, n) ≤ n exp(−nε), n > n0(ρ, δ, ε). (3.3)

Now as fk(P) ≤ fk(C),

Prob{ fk(P) �= fk(C)} ≤ E( fk(C) − fk(P)) = �(k, d, n).

The valid range for k in (3.3) includes k as in the statement of the theorem. Thus
with overwhelming probability we get equality of fk(P) with fk(C), as claimed in
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the theorem. To extend this into the needed simultaneous result—that f�(P) = f�(C),
� = 0, . . . , k − 1—one defines events E� = { f�(P) �= f�(C)} and notes that by Lemma
2.1, the event (E0 ∪ Ek)

c implies (E0 ∪ . . . ∪ Ek)
c. Hence by Boole’s inequality

Prob

(
k⋃
0

E�

)
≤ Prob(E0) + Prob(Ek) ≤ �(0, d, n) + �(k, d, n).

The analog of (3.3) also holds for �(0, d, n). Hence by establishing (3.3) we get

Prob{ f�(P) = f�(C), � = 0, . . . , k − 1} → 1,

as is to be proved.
To establish (3.3), we rewrite (3.2) as

�(k, d, n) =
∑
s≥0

Ds,

where, for � = d + 1 + 2s, s = 0, 1, 2, . . . ,

Ds = 2 ·
∑

F∈Fk (C)

∑
G∈F�(C)

β(F, G)γ (G,C).

We will show that, for a sequence (k, d) = (kn, dn) with kn/dn → ρ, dn/kn → δ, where
ρ < ρN (δ) (the function ρN still to be defined) and for sufficiently small ε > 0, then for
n > n0(ρ, δ; ε),

n−1 log(Ds) ≤ −ε, s = 0, 1, 2, . . . .

This implies (3.3) and hence our main result follows.

3.3. Decay and Growth Exponents

Böröczky and Henk [2] studied exactly the setting P = AC with C the cross polytope—
though for a different range of k, d, n (they considered k, d fixed and n → ∞), and also
used a different formula for Ef k(P), so they did not directly study the term �(k, d, n).
They did, however, make the following useful observations:

• There are 2k+1
( n

k+1

)
k-faces of C .

• For � > k, there are 2�−k
(n−k−1

�−k

)
�-faces of C containing a given k-face of C .

• The faces of C are all simplices, and for faces F ∈ Fk(C), G ∈ F�(C), the internal
angle β(F, G) = β(T k, T �), where T d denotes the standard d-simplex.

• The external angle γ (G,C) is the same for all �-faces G of C ; it has a closed form
integral expression very similar to γ (T �, T n).

Thus we can write

Ds = 2 · 2�+1 ·
(

n

k + 1

)(
n − k − 1

� − k

)
β(T k, T �)γ (F�,C)

= αs β(T
k, T �)γ (F�,C),

say, with αs the combinatorial prefactor.
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We now plan to estimate n−1 log(Ds), decomposing it into a sum of terms involving
logarithms of the combinatorial prefactor, the internal angle and the external angle. This
viewpoint turns our problem into the study of exponents of exponentially growing and
decaying terms. To get a first taste, consider the Shannon entropy:

H(p) = p log(1/p) + (1 − p) log(1/(1 − p));
noting that here the logarithm base is e, rather than the customary base 2. As did Vershik
and Sporyshev [23], we also remark that

n−1 log

(
n

�pn�
)

→ H(p), p ∈ [0, 1], n → ∞, (3.4)

so that H(p) measures the exponential growth of combinatorial terms. Relations of this
kind can be developed for αs and for the internal and external angles. We introduce the
new variable ν = �/n ≥ δ, and we suppose that k/d ≈ ρ and d/n ≈ δ. Operating
formally, we obtain

n−1 log(αs) = ν log(2) + H(ρδ) + H

(
ν − ρδ

1 − ρδ

)
(1 − ρδ) + R1 (3.5)

with remainder R1 = R1(s, k, d, n, ρ, δ). Next, we introduce the growth exponent

�com(ν; ρδ) ≡ ν log(2) + H(ρδ) + H

(
ν − ρδ

1 − ρδ

)
(1 − ρδ),

and claim that it describes the exponential growth of the combinatorial factor αs . To
make this notion precise, we describe bounds on R1 uniform in various parameters. By
refining the analysis behind (3.4) one can easily show that, for fixed ε > 0, ρ ∈ (0, 1)
and δ ∈ (0, 1), there is η > 0 and n1(ρ, δ; ε, η) so that

n−1 log(αs) ≤ �com(ν; ρδ) + ε,

uniformly in n > n1(ρ, δ; ε, η), |k/d − ρ| < η , |d/n − δ| < η and � = d + 1 + 2s,
s = 0, 1, 2, . . . , �(n − d − 1)/2�.

Section 4.1 below defines a so-called decay exponent �ext(ν). Section 5 shows that
γ (F�,C) decays exponentially at least at the rate �ext(ν); for each ε > 0,

n−1 log(γ (F�,C)) ≤ −�ext(ν) + ε,

uniformly in � ≥ δn, n ≥ n2(δ; ε). The graph of �ext is depicted in Fig. 4.1.
Similarly, Section 4.2 below defines a decay exponent �int(ν; ρδ). Section 6 below

shows that the internal angle β(T k, T �) indeed decays with this exponent; thus

n−1 log(β(T k, T �)) ≤ −�int(ν; ρδ) + ε,

uniformly in n > n3(ρ, δ; ε, η), |k/d − ρ| < η, |d/n − δ| < η and � ≥ δn.
(Remark: these upper bounds on the αs’s β’s and γ ’s possess matching lower bounds,

but we have no need for them in this article.)
Hence for any fixed choice of ρ, δ, for ε > 0, and for n ≥ n0(ρ, δ; ε) we have the

inequality

n−1 log(Ds) ≤ �com(ν; ρδ) − �int(ν; ρδ) − �ext(ν) + 3ε, (3.6)

valid uniformly in s.
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3.4. Defining ρN

Now define the net exponent �net(ν; ρ, δ) = �com(ν; ρδ) − �int(ν; ρδ) − �ext(ν). We
can define at last the mysterious ρN as the threshold where the net exponent changes sign.
We will see that the components of �net are all continuous over sets {ρ ∈ [ρ0, 1], δ ∈
[δ0, 1], ν ∈ [δ, 1]}, and so �net has the same continuity properties.

Definition 1. Let δ ∈ (0, 1]. The critical proportion ρN (δ) is the supremum of ρ ∈
[0, 1] obeying

�net(ν; ρ, δ) < 0, ν ∈ [δ, 1).

Continuity of �net shows that if ρ < ρN then, for some ε > 0,

�net(ν; ρ, δ) < −4ε, ν ∈ [δ, 1).

Combine this with (3.6). Then for all s = 0, 2, . . . , �(n − d − 1)/2� and all n >

n0(δ, ρ; ε),
n−1 log(Ds) ≤ −ε.

This implies (3.3) and our main result follows.

4. Properties of Exponents

We now define the exponents �int and �ext and discuss properties of ρN .

4.1. Exponent for External Angle

Let G denote the cumulative distribution function of a half-normal HN(0, 1
2 ) random

variable, i.e. a random variable X = |Z | where Z ∼ N (0, 1
2 ), and G(x) = Prob{X ≤ x}.

It has density g(x) = 2/
√
π exp(−x2). Writing this out,

G(x) = 2√
π

∫ x

0
exp(−y2) dy; (4.1)

so G is just the classical error function erf. For ν ∈ (0, 1], define xν as the solution of

2xG(x)

g(x)
= 1 − ν

ν
. (4.2)

Since xG is a smooth strictly increasing function on [0,∞) with value 0 at x = 0 and
g(x) is strictly decreasing, the function 2xG(x)/g(x) is one–one on the positive axis. So
xν is well-defined, and a smooth, decreasing function of ν. See Fig. 4.1 for a depiction.

This has limiting behavior xν → 0 as ν → 1 and xν ∼ √
log((1 − ν)/(2ν)) as ν → 0.

Define now

�ext(ν) = −(1 − ν) log(G(xν)) + νx2
ν .

This is depicted in Fig. 4.1.
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Fig. 4.1. (a) The minimizer xν of ψν (see (5.3)), as a function of ν (red) and the asymptotic approximation√
log(1/

√
πν) (green). (b) The exponent �ext, a function of ν.
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This function is smooth on the interior of (0, 1) and concave, with endpoints�ext(1) =
0, �ext(0) = 0. A useful fine point is the asymptotic

�ext(ν) ∼ ν log

(
1

ν

)
− 1

2
ν log

(
log

(
1

ν

))
+ O(ν), ν → 0. (4.3)

4.2. Exponent for Internal Angle

Let Y be a standard half-normal random variable HN(0, 1); this has cumulant generating
function �(s) = log(E exp(sY )). Very convenient for us is the exact formula

�(s) = s2/2 + log(2�(s)),

where � is the usual cumulative distribution function of a standard normal N (0, 1). The
cumulant generating function � has a rate function (Fenchel–Legendre dual [6])

�∗(y) = max
s

sy − �(s).

This is smooth and convex on (0,∞), strictly positive except at µ = EY = √
2/π .

More details are provided in Section 6. See Fig. 4.2.
For γ ∈ (0, 1) let

ξγ (y) = 1 − γ

γ

y2

2
+ �∗(y).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0
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1
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1.4

*(y) vs. y

y

Fig. 4.2. �∗(y), rate function for half-normal distribution; only the ‘left half” 0 < y < µ is depicted. The
function diverges at zero.
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The function ξγ (y) is strictly convex and positive on (0,∞) and has a minimum at a
unique yγ in the interval (0,

√
2/π). We define, for γ = ρδ/ν ≤ ρ,

�int(ν; ρδ) = ξγ (yγ )(ν − ρδ) + log(2)(ν − ρδ).

This is depicted in Fig. 4.3. For fixed ρ, δ, �int is continuous in ν ≥ δ. Most importantly,
in Section 6.4 below we get the asymptotic formula

ξγ (yγ ) ∼ 1
2 · log

(
1 − γ

γ

)
, γ → 0. (4.4)

Since γ = ρδ/ν ≤ ρ, (4.4) implies that for given η > 0 and small ρ,

�int(ν; ρδ) ≥
(

1
2 · log

(
1 − ρ

ρ

)
(1 − η) + log(2)

)
(ν − ρδ), ν ∈ [δ, 1]. (4.5)

4.3. Combining the Exponents

We now consider the combined behavior of �com, �int and �ext. We think of these as
functions of ν with ρ, δ as parameters. The combinatorial exponent �com is the sum
of a linear function in ν, and a scaled, shifted version of the Shannon entropy, which
is a symmetric, roughly parabolic shaped function. This is the exponent of a growing
function which must be outweighed by the sum �ext + �int. It is depicted in Fig. 4.3.
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2

 
com

 (red)  
int

 (green) 
ext

 (blue) 

nu

Fig. 4.3. The exponents �com(ν; ρδ) (red) and �int(ν; ρδ) (green), for ρ = 0.095, δ = 0.5555. For compar-
ison, �ext is displayed in blue.
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Fig. 4.4. The exponents �com(ν; ρδ) and �int(ν; ρδ) + �ext(ν), for ρ = 0.095, δ = 0.5555. The graph of
�com (red) falls below that of �int + �ext (green) and so �net < 0.

Figure 4.4 shows both �com and �ext + �int with δ = 0.5555 and ρ = 0.095. The
desired condition �net < 0 is the same as �com < �ext + �int, and this is distinctly
obeyed except near ν = δ, where the two curves are close. We have ρN (δ) ≈ 0.095.

4.4. Properties of ρN

The asymptotic relations (4.5) and (4.3) allow us to see two key facts about ρN , both
proved in the Appendix. Firstly, the concept is nontrivial:

Lemma 4.1.

ρN (δ) > 0, δ ∈ (0, 1). (4.6)

This result was to be expected. Exploiting [9], [8] and [5] it could have previously been
inferred that, for some ρ = ρ(δ) > 0, such random polytopes are, with overwhelming
probability, �ρd�-neighborly. Effectively, (4.6) shows that the techniques of this paper
are at least as strong as those of [8] and [5].

Secondly, one can show that, although ρN (δ) → 0 as δ → 0, it goes to zero slowly.
We prove the following in the Appendix.
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Lemma 4.2. For η > 0,

ρN (δ) ≥ log(1/δ)−(1+η), δ → 0.

Again this result could have been anticipated. Exploiting the connection with studies
of �1 optimization [9], we could have inferred from [7] and [5], that in the case n ∼ dγ ,
γ > 1, AC is centrally k-neighborly with k ≥ cd/log(n).

5. Bounds on the External Angle

We now justify the use of �ext.

Lemma 5.1. Fix δ, ε > 0.

n−1 log(γ (F�,C)) ≤ −�ext(�/n) + ε, (5.1)

uniformly in � ≥ δn, n ≥ n0(δ, ε).

We start from an exact identity. Böröczky and Henk [2], building on work of Vershik
and Sporyshev [22] and ultimately of Ruben [18], give the integral formula

γ (F�,C) =
√

� + 1

π

∫ ∞

0
exp{−(� + 1)x2}

(
2√
π

∫ x

0
exp(−y2) dy

)n−�−1

dx .

We recognize the term in the large parentheses as the error function G from (4.1). Set
ν�,n = (� + 1)/n. The integral formula can be rewritten as√

nν�,n
π

∫ ∞

0
exp{−nν�,n x2 + n(1 − ν�,n) log G(x)} dx . (5.2)

The appearance of n in the exponent suggests using Laplace’s method, i.e. using the fact
that such an integral behaves in n roughly like the integrand at its maximum. This is
now often called Varadhan’s lemma in the large deviations literature [6]. (It is sometimes
also called the saddlepoint approximation, for example in quantum field theory, but this
is misleading as it really represents only the “tip of the iceberg” of the full saddlepoint
method). We define, for ν fixed,

fν,n(y) = exp{−nψν(y)} ·
√

nν

π

with

ψν(y) ≡ νy2 − (1 − ν) log G(y). (5.3)

We note that ψν is smooth and convex and (in the Appendix) develop expressions for
its second and third derivatives. Applying Laplace’s method to ψν in the usual way, but
taking care about regularity conditions and remainders, gives a result with the uniformity
in ν, which is crucial for us.
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Lemma 5.2. For ν ∈ (0, 1) let xν denote the minimizer of ψν . Then∫ ∞

0
fν,n(x) dx ≤ exp{−nψν(xν)}(1 + Rn(ν)),

where, for δ, η > 0,

sup
ν∈[δ,1−η]

Rn(ν) = o(1) as n → ∞.

Of course the minimizer xν mentioned in this lemma is the same xν defined earlier in
(4.2) in terms of the error function, and the minimum value identified in this lemma as
driving the exponential rate is the same as our exponent �ext:

�ext(ν) = ψν(xν). (5.4)

In fact Lemma 5.2 easily leads to Lemma 5.1. We first note that �ext(ν) → 0 as
ν → 1. For given ε > 0 in the statement of the lemma, there is (a largest) νε < 1 with
�ext(νε) = ε. Note that γ (F�,C) ≤ 1, so that for � > νεn,

n−1 log(γ ) ≤ 0 < −�ext(ν) + ε,

for n ≥ 1. Consider now � ∈ [δn, νεn). Taking into account (5.2), we now have

γ (F�,C) =
∫ ∞

0
fν�,n (x) dx .

Applying the uniformity in ν given in Lemma 5.2, we conclude

n−1 log(γ (F�,C)) = ψν�,n (xν�,n ) + o(1), � ≥ δn.

Then invoking the identity (5.4) and the uniform continuity of ψν in x and of xν in
ν ∈ [δ, 1], we get

n−1 log(γ (F�,C)) ≤ −�ext(�/n) + o(1).

Lemma 5.1 follows.

6. Bounds on the Internal Angle

In this section we justify

Lemma 6.1. For ε > 0, and n > n0(ε, δ, ρ),

n−1 log(β(T k, T �)) ≤ −�int(�/n; k/n) + ε,

uniformly in � ≥ δn, k ≤ ρδn.
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6.1. Background

By definition, the internal angle β(F, G) is the fraction of the vector space span(G −x F )

taken up by the positive cone pos(G − x F ) where x F is the barycenter of face F . Let now
Vm−1 denote (m − 1)-dimensional surface measure on the sphere Sm−1, while �m−1(α)

denotes the regular spherical simplex (a generalization of triangle) with m vertices on
the sphere and sides of angle α. Böröczky and Henk [2] give the formula

β(T k, T �) = V�−k(��−k(1/(k + 2)))

V�−k(S�−k)
; (6.1)

see also [1] and [23].
Defining

B(α,m) = Vm−1(�m−1(α))

Vm−1(Sm−1)

it is thus of interest to evaluate/bound B(1/(k + 2), � − k + 1). By [2],

B(α,m) = θ(m−1)/2
√
(m − 1)α + 1π−m/2α−1/2 J (m, θ), (6.2)

where θ ≡ (1 − α)/α and

J (m, θ) = 1√
π

∫ ∞

−∞

(∫ ∞

0
exp(−θv2 + 2ivλ) dv

)m

exp(−λ2) dλ. (6.3)

Vershik and Sporyshev [23] also considered β(T k, T �) in the proportional-dimensional
setting k ∼ ρn and � ∼ ρn. They analyzed a seemingly different integral expression
based on contour integration. They sketched an approach to the asymptotics of that
integral by the saddlepoint method. We pursue here a probabilistic approach, and later
correlate our findings to theirs.

6.2. Probabilistic Analysis

Seemingly taking a different tack from previous authors, we recognize in the expression
for J (m, θ) a convolution of m + 1 probability densities being expressed in the Fourier
domain. This leads to the following probabilistic interpretation, proved in the Appendix.

Lemma 6.2. Put θ = (1 − α)/α. Let T be a random variable with the N (0, 1
2 ) distri-

bution, and let Wm be a sum of i.i.d. half-normals Ui ∼ HN(0, 1/2θ). Let T and Wm be
stochastically independent, and let gT +Wm denote the probability density function of the
random variable T + Wm . Then

B(α,m) =
√

α(m − 1) + 1

1 − α
· 21−m · π1/2 · gT +Wm (0). (6.4)

Using the probabilistic interpretation, and applying large deviations techniques, we
obtain effective bounds on gT +Wm (0). By the convolution formula, symmetry of the
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standard normal, support properties of the half-normal and integration by parts we have

gT +Wm (0) =
∫ ∞

−∞
gT (0 − v)gWm (v) dv =

∫ ∞

0
gT (v)gWm (v) dv

=
∫ ∞

0
(−g′

T (v))GWm (v) dv,

where GWm denotes the cumulative distribution function of the random variable Wm .
Since g′

T (t) = (−2t)gT (t),

gT +Wm (0) = 2
∫ ∞

0
vgT (v)GWm (v) dv.

Let µm = EWm denote the mean of Wm . The part of the integral occurring above µm

obeys

2
∫ ∞

µm

vgT (v)GWm (v) dv ≤ 2
∫ ∞

µm

vgT (v) dv = gT (µm) ≤ exp(−µ2
m) · 2/

√
π. (6.5)

Since µm = m · √
1/πθ , it turns out that this part of the integral is typically negligible.

The part of the integral below the mean can be controlled by the basic inequalities of
large-deviations theory [6]; for v ≤ µm ≡ E(Wm),

GWm (v) ≤ exp(−�∗
Wm

(v)). (6.6)

Here �∗
Wm

is the rate function of the random variable Wm (i.e. the Fenchel–Legendre
dual of the cumulant generating function �Wm ).

Now as Wm = U1 + · · · + Um with the Ui i.i.d., then �∗
Wm

(v) = m�∗
U1
(v/m); also

�∗
aU1

(av) = �∗
U1
(v). Combining these, we have that if Y denotes a standard half-normal

random variable Y ∼ HN(0, 1), and if �∗ denotes the rate function associated to Y , then
from U1 = Y/

√
2θ we get

gT +Wm (0) ≤ 2√
π

·
∫ µm

0
v exp

(
−v2 − m�∗

(√
2θ

m
v

))
dv + exp(−µ2

m) · 2√
π

= Im + IIm, say.

We have already argued that IIm is negligible. We now change variables y = (
√

2θ/m)v,
getting

Im ≤ 2√
π

· m2

2θ
·
∫ √

2/π

0
y exp

(
−m

( m

2θ

)
y2 − m�∗(y)

)
dy. (6.7)

6.3. Laplace’s Method

The m in the exponent of (6.7) was defined by m = � − k + 1 which we think of
as (ν − ρδ)n. Thus m is growing with n, suggesting again a recourse to Laplace’s
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method. We recognize that essentially the function ξγ appears in the exponent, with
γ = θ/(m + θ − 1). Recalling that θ = (1 − α)/α = k + 1, and m = � − k + 1 this
then has the form γk,� = (k + 1)/(� + 2); for k ∼ ρδn and � ∼ νn this is essentially the
constant γ = ρδ/ν. So define the integral

fγ,m =
∫ ∞

0
y exp(−mξγ (y)) dy.

Again applying Laplace’s method with careful attention to uniformity gives

Lemma 6.3. For γ ∈ (0, 1), let yγ ∈ (0, 1) denote the minimizer of ξγ . Then∫ ∞

0
fγ,m(x) dx ≤ exp(−mξγ (yγ )) · Rm(γ ),

where, for η > 0,

m−1 sup
γ∈[η,1]

log(Rm(γ )) = o(1) as m → ∞.

The proof is very similar to that of Lemma 5.2 and we omit it.
We conclude that

gT +Wm (0) ≤ exp(−mξγ (yγ ))Rm(γ ),

where n−1 log(Rm(γk,�)) = o(1). Applying (6.2) we get

n−1 log(β(T k, T �)) ≤ −(ξγ (yγ ) + log(2))(ν − ρδ) + o(1),

where the o(1) is uniform over a range of k and �. Arguing much as in the section on
Internal Angles, we get Lemma 6.1.

6.4. Properties of ξγ

We now briefly review the properties of ξγ relevant to computing �int.
By standard convex duality, associated to the cumulant generating function �(s) and

its dual �∗, we have the duality relations

y = �′(s), s = (�∗)′(y), (6.8)

defining a one–one relationship s = s(y) and y = y(s) between s < 0 and 0 < y <√
2/π .
In particular, from �(s) = s2/2 + ζ0(s), ζ0(s) = log(2�(s)),

y(s) = s + ζ1(s), ζ1 = d

ds
ζ0 = ϕ

�
, (6.9)

where again ϕ and � are the normal density and cumulative. It is common culture in
probability and statistics that the normal density and cumulative are closely related, with
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�(s) nearly ϕ(s)/|s| for s large negative. To refine this insight, we define a variant of
“Mills’ Ratio” [19]; a function M(s) with domain s < 0 having 0 < M(s) < 1 and
M(s) → 1 as s → −∞ defined by

�(s) = M(s) · (ϕ(s)/|s|) , s < 0.

Ruben studies series expansions for M which we use farther below; there are convenient
rational approximations to M(s) in Bryc’s article [3] which we found essential for
numerical work. It follows that ζ1(s) = |s|/M(s). Using (6.9) we conclude

y(s) = s · (1 − 1/M(s)), s < 0. (6.10)

We can also obtain a useful identity for ζ0:

ζ0(s)= log(2�(s))= log(2·M(s)·(ϕ(s)/|s|))= log(M(s))+log(2/π)/2−s2/2−log(|s|).
Substituting in �∗(y) = ys − �(s) = ys − s2/2 − ζ0(s), s = s(y), gives

�∗(y(s)) = s2(1 − 1/M(s)) − log(M(s)) − log(2/π)/2 + log(|s|). (6.11)

Applying duality (6.8) to (d/dy)ξγ (y) = 0, we see that the minimizer yγ of ξγ obeys

1 − γ

γ
yγ = −sγ . (6.12)

Inserting this in (6.10) gives the convenient characterization

M(sγ ) = 1 − γ.

Combining with (6.11) we obtain the exact formula

�∗(yγ ) = −y2
γ

1 − γ

γ
− log(2/π)

2
+ log

(
yγ
γ

)
,

and the identity

ξγ (yγ ) = −1

2
y2
γ

1 − γ

γ
− log(2/π)

2
+ log

(
yγ
γ

)
. (6.13)

We now consider asymptotics as γ → 0. We have

E exp(sY ) ∼
√

2

π
· −1

s
, s → −∞.

Hence�(s) ∼ − log(|s|)+log(2/π)/2 as s → −∞. Strengthening this with remainders
shows �′(s) ∼ −1/s. Duality then implies the crude asymptotics

y(s) ∼ −1

s
, s → −∞; s(y) ∼ − 1

y
, y → 0,

as well as

yγ ∼
√

γ

1 − γ
, sγ ∼ −

√
1 − γ

γ
, γ → 0. (6.14)

From this the leading-order asymptotics of ξγ (yγ ) given in (4.4) follow immediately.
Compare also Lemma A.3.
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6.5. Reconciliation with Vershik and Sporyshev

As we have pointed out, Vershik and Sporyshev, in pioneering work [23], considered (in
our notation) the internal angle β(T k, T �) with k ∼ ρδn, � ∼ νn, n → ∞. (To compare
our papers, use the dictionary: ν ↔ β, ρ ↔ ε, δ ↔ α and sγ ↔ tε, our paper ↔
[23].) They work with an expression apparently different from (6.3) defined by contour
integration and sketch a saddlepoint procedure. Their results are not stated in terms
of large-deviations properties of half-normal random variables. From the viewpoint of
this paper, we understand their results as implicitly working with what we call the dual
variables sγ . It appears that their formula can be rewritten using our notation as

n−1 logβ(T k, T �) ≤ ρδs2
γ

2
+ log

(
1 − γ√
2π |sγ |

)
(ν − ρδ) + o(1).

Our results can be re-expressed, using (6.11) and (6.12), as follows:

n−1 logβ(T k, T �) + o(1) ≤ −�int

(
�

n
,

k

n

)
= −(ξγ (yγ ) + log(2))(ν − ρδ)

= −
(

− γ

1 − γ

s2
γ

2
+log

(√
π

2
· |sγ |

1−γ

)
+log(2)

)
(ν−ρδ)

= γ

1 − γ

s2
γ

2
(ν − ρδ) − log

(√
2π |sγ |

1 − γ

)
(ν − ρδ)

= ρδs2
γ

2
+ log

(
1 − γ√
2π |sγ |

)
(ν − ρδ). (6.15)

Thus the two answers agree—as of course they would if both approaches were equally
precise in determining exponential order. Our systematic approach, based on a probabilis-
tic interpretation, provides a sound motivation for the correctness of this answer. It also
provides detailed information useful in other ways, for example in proving Lemmas 4.1
and 4.2.

7. Theorems 2 and 3

Given our lengthy proof of Theorem 1, it may be a welcome relief to learn that no serious
work is required to get the other results announced in the Introduction.

7.1. Proof of Theorem 2

Observe that fk−1(C) = 2k
(n

k

)
; this combinatorial factor has exponential growth with n

according to an exponent �face(ρδ) ≡ ρδ log(2) + H(ρδ); thus, if k = k(n) ∼ ρδn,

n−1 log( fk−1(C)) → �face(ρδ), n → ∞.

We again define �net as in the proof of Theorem 1.
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Definition 2. Let δ ∈ (0, 1]. The critical proportion ρW (δ) is the supremum of ρ ∈
[0, 1] obeying

�net(ν; ρ, δ) < �face(ρδ), ν ∈ [δ, 1). (7.1)

Recall Section 3’s definition �(k, d, n) = fk−1(C) − fk−1(AC) ≥ 0. The proof of
Theorem 2 is based on observing that (7.1) implies

�(k, d, n) = o( fk−1(C)). (7.2)

We immediately get (1.2). Showing that (7.1) implies (7.2) requires no new ideas; one
proceeds as in Section 3 almost line-by-line; we omit the exercise.

7.2. Proof of Theorem 3

We retrace slightly the discussion of sectional neighborliness in [9]. With probability
one, the projected cross polytope P = AC has 2n vertices. Every subset K of k of these
vertices which does not contain an antipodal pair defines a k-dimensional subspace VK

of Rd . Every such VK defines a so-called intrinsic section PK = VK ∩ P . There are
(n

k

)
different intrinsic sections of P . Define the exponent �sect = H(ρδ). Then for k ∼ ρδn,
we have

n−1 log(#{intrinsic k-sections}) → �sect (ρδ), n → ∞.

We again define �net as in the proof of Theorem 1.

Definition 3. Let δ ∈ (0, 1]. ρS(δ) is the supremum of ρ ∈ [0, 1] obeying

�net(ν; ρ, δ) < �sect (ρδ), ν ∈ [δ, 1). (7.3)

Recall again the definition �(k, d, n) = fk−1(C) − fk−1(AC) ≥ 0. The proof of
Theorem 3 is based on the observation that (7.3) implies, for k ∼ ρδn,

�(k, d, n) = o(#{intrinsic k-sections}). (7.4)

We have with probability one that the columns of A are in general position. As in Section 6
of [9], it follows that all the k-faces of P are k-simplices, k < d/2. In order for a given
section PK not to be a k-dimensional cross polytope, it must have

fk−1(PK ) < fk−1(C
k),

where Ck denotes the k-dimensional cross polytope. In words, to not have a cross poly-
tope, a section must “lose at least one (k − 1)-face.” However, as there are

(n
k

)
intrinsic

sections PK , and the condition (7.4) permits us to “lose” only o(1) faces per section, we
conclude that there are relatively few sections which can “lose” any faces. Hence the
overwhelming majority are intact cross polytopes.
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Appendix

Proof of Lemma 4.1

Fix δ > 0. Apply (4.5) with η = 1
2 . For small enough ρ, the lower bound forces

�int(ν; ρδ) to be quite big, uniformly in ν ∈ [δ, 1] and δ < δ0, simply by picking ρ

small.
For δ < δ0 small positive, the terms �com and �ext can be bounded independently of

ρ < ρ0 and ν ≥ δ. Hence, for ρ small, the large size of �int can be big enough to force
the net exponent �net negative, uniformly in ν.

Proof of Lemma 4.2

Proof. We will show that, with ρ(δ) = log(1/δ)−1−η and δ0 > 0 to be chosen below,

�net(ν; ρ(δ), δ) < −δ, δ < δ0, ν ∈ [δ, 1). (A.1)

Hence ρN (δ) ≥ ρ(δ) for δ < δ0.
Define �(ν) = H(ν) − �ext(ν). This is concave; see Fig. A.1.
Based on H(ν) ∼ ν log(1/ν) as ν → 0 and (4.3), we have the following asymptotic

as ν → 0:

�(ν) ∼ 1
2 · log(log(1/ν))ν, ν → 0. (A.2)

Also define K (ν; ρ, δ) = �(ν) − ξγ (yγ )(ν − ρδ). Our proof of (A.1) will be reduced
to showing, via (A.2), that K < 0 for small ν.

Note the combinatorial identity(
n

k + 1

)(
n − k + 1

� − k

)
=
(

n

�

)(
�

k + 1

)
.

This implies

H(ν) + H

(
ρδ

ν

)
ν = H(ρδ) + H

(
ν − ρδ

1 − ρδ

)
(1 − ρδ). (A.3)

Use this to rewrite the net exponent as

�net(ν; ρ, δ) = K (ν; ρ, δ) + ρδ log(2) + H(ρδ/ν)ν.
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Fig. A.1. (a) �(ν) = H(ν) − �ext(ν) is concave; (b) �′′ < 0.
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Lemma A.1 gives for δ < δ1 that H(ρδ/ν)ν ≤ H(ρ)δ + 2ρ(ν − δ). Then

�net ≤ K (ν; ρ, δ) + [
ρδ log(2) + H(ρ)δ

]+ 2ρ(ν − δ), (A.4)

say. Lemma A.2 establishes concavity of K in ν. Suppose that for δ < δ1, K ′(δ) ≤ 0,
then we would have

K (ν; ρ, δ) ≤ K (δ), ν ∈ [δ, 1).

Additionally, suppose that for some ε2 > 0, K ′(δ) ≤ −ε2 < 0, then we would have for
any ε1 > 0,

K (ν; ρ, δ) + ε1 + ε2(ν − δ) ≤ K (δ) + ε1, ν ≥ δ. (A.5)

Below we will show that for δ < δ2,

K ′(δ; ρ, δ) ≤ −η/4 log(log(1/δ)), (A.6)

K (δ; ρ, δ) ≤ −δ · η/4 · log(log(1/δ)), (A.7)

where K ′(ν; ρ, δ) ≡ (∂/∂ν)K (ν; ρ, δ). If follows, recalling (A.4) and setting ε1 =
ρδ log(2) + H(ρ)δ and ε2 = 2ρ, that

K ′(δ; ρ, δ) ≤ −ε2, δ < δ3,

and so (A.5) gives, for δ < δ3,

�net(ν; ρ, δ) ≤ K (ν; ρ, δ) + ε1, ν ∈ [δ, 1).

Now (A.7) shows that K (δ)/δ → −∞ as δ → 0 while evidently ε1 = O(δ), hence
K (δ) + ε1 < −δ for δ < δ4. Inequality (A.1) follows with δ0 = min(δ1, δ2, δ3, δ4).

It remains to verify (A.6)–(A.7). Writing

�(ν) = 1
2ν log

(
log

(
1

ν
+ R(ν)

))
+ (1 − ν) log

(
1

(1 − ν)

)

+ ν log

(
1 − ν√

π

)
− log

(
2√
π

)
,

where R(ν) = − log(xνG(xν)), we compute that

�′(ν) ∼ 1
2 log

(
log

(
1

ν

))
, ν → 0.

We also recall (A.2). Now by (6.13)–(6.14), we have that as δ → 0,

ξρ(yρ) ∼ 1

2
log

1

ρ
∼ 1

2
log

(
log

1

δ

)
(1 + η).

Hence for δ < δ1,1,

ξρ(yρ)(1 − ρ) ≥ (1 + η/2)�(δ)/δ, (A.8)

ξρ(yρ)(1 − ρ) ≥ (1 + η/2)�′(δ). (A.9)
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This gives

K (δ; ρ(δ), δ) < −(η/2) log(log(1/δ))(1 + o(1));
and of course for δ < δ1,2, the (1 + o(1)) factor on the right-hand side exceeds 1

2 . Hence
(A.7) holds for δ1 = min(δ1,1, δ1,2).

Lemma A.1. For 0 ≤ ρ < 1
2 ,

H(ρδ/ν)ν ≤ H(ρ)δ + 2ρ(ν − δ), ν ∈ [δ, 1). (A.10)

Proof. One can compute that, with γ = ρδ/ν,

∂

∂ν
[H(γ )ν] = − log(1 − γ ).

Now for 0 ≤ ρ < 1
2 , − log(1 − ρ) ≤ 2ρ. Also γ = ρδ/ν ≤ ρ for ν ≥ δ. Hence

∂

∂ν
[H(γ )ν] ≤ 2ρ, ν ∈ [δ, 1).

Equation (A.10) follows.

Lemma A.2. For ρ < ρ0 and δ < δ0, K (ν; ρ, δ) is concave as a function of ν.

Proof. Let

!(ν; ρ, δ) ≡ ξγ (yγ )(ν − ρδ).

Then K = � − !. Since � is concave, it is sufficient to show that ! is convex. This
involves properties of ξγ (yγ ); the reader may be helped by Fig. A.2.

Using ∂γ /∂ν = −γ /ν we write

∂

∂ν
!(ν; ρ, δ) = ξγ (yγ ) + ∂

∂γ
ξγ (yγ ) · ∂γ

∂ν
· (ν − ρδ)

= ξγ (yγ ) − ∂

∂γ
ξγ (yγ ) · γ (1 − γ ).

Hence

∂2

∂ν2
!(ν; ρ, δ) = ∂

∂γ
ξγ (yγ )

∂γ

∂ν
− ∂2

∂γ 2
ξγ (yγ ) · ∂γ

∂ν
· γ · (1 − γ )

− ∂

∂γ
ξγ (yγ ) · ∂γ

∂ν
· (1 − γ ) − ∂

∂γ
ξγ (yγ ) · ∂γ

∂ν
· (−γ )

= − ∂2

∂γ 2
ξγ (yγ ) · ∂γ

∂ν
· γ · (1 − γ ) + 2

∂

∂γ
ξγ (yγ )

∂γ

∂ν
γ

= ∂2

∂γ 2
ξγ (yγ ) · γ 2 · 1 − γ

ν
− 2

∂

∂γ
ξγ (yγ )

γ 2

ν
.



High-Dimensional Centrally Symmetric Polytopes 645

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 (y ) 

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

50

100

150

200

250

300

350

400

’’(y )

(b)

Fig. A.2. (a) ξγ (yγ ) is convex; (b) (d2/dγ 2)ξγ (yγ ) > 0.
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We next show that the first term is positive for all small γ ; it will also emerge that it
dominates the second, and the claimed convexity follows. The key to evaluating the
required derivatives is to express ξγ (yγ ) in terms of the dual variables sγ , as in (6.15).
We then have

ξγ (yγ ) = log(|sγ |) + R(γ ), (A.11)

where the remainder R(γ ) involves other terms, also explicitly expressed in terms of γ
and sγ :

R(γ ) = log(
√

2π/(1 − γ )) − s2
γ /2 · (γ /(1 − γ )).

The term log(|sγ |) gives rise to large derivatives. Thus, using (A.11) and Lemma A.3,

∂

∂γ
log(|sγ |) = s−1

γ

d

dγ
sγ ∼ (−γ 1/2)( 1

2γ
−3/2) ∼ −γ−1

2
, γ → 0, (A.12)

while

∂2

∂γ 2
log(|sγ |) = ((d/dγ )sγ )2

s2
γ

+ (d2/dγ 2)sγ
sγ

∼ γ−4

4
, γ → 0. (A.13)

The remainder R turns out to have relatively negligible influence—principally because
s2
γ γ = O(1) does not have such large derivatives in γ ; indeed,

∂2

∂γ 2
s2
γ γ = 2s ′′

γ sγ γ + 2(s ′
γ )

2γ + 4s ′
γ sγ ;

applying Lemma A.3 below, this is O(γ−2) � O(γ−4). Hence we conclude that for
some γ0 > 0 sufficiently small, (∂2/∂γ 2)ξγ (yγ ) is positive uniformly in γ ≤ γ0, and,
since γ ≤ ρ, uniformly in ρ ≤ ρ0 ≡ γ0. The dominance of this term flows from the
different asymptotic orders of (A.12)–(A.13).

Lemma A.3. As γ → 0,

sγ ∼ −γ−1/2,

d

dγ
sγ ∼ 1

2γ
−3/2,

d2

dγ 2
sγ ∼ − 3

4γ
−5/2.

Proof. We use the classical asymptotic series

Rx ≡ �(−x)

ϕ(x)
∼ 1

x
− 1

x3
+ 1 · 3

x5
− 1 · 3 · 5

x7
+ · · · , x > 0;

Ruben [19] attributes this to Laplace. Since M(s) = |s|R|s|, we have

M(−x) ∼ 1 − 1

x2
+ 1 · 3

x4
− 1 · 3 · 5

x6
+ · · · , x > 0.
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Because there is no 1/x term in this formula, the solution sγ of

M(sγ ) = 1 − γ (A.14)

obeys

s−2
γ ∼ γ, γ → 0,

i.e. sγ ∼ −γ−1/2. To take derivatives of sγ we use the inverse function theorem:

d

dγ
sγ = − 1

M ′(sγ )
; d2

dγ 2
sγ = M ′′(sγ )

(M ′(sγ ))3
.

We can explicitly compute the derivatives of N (x) = M(−x), getting

N ′ = N/x + x + x N ; N ′′ = 1 + (N − 1)(3 + x2).

Using this and the asymptotic series for M given above, we obtain asymptotic expressions
for M ′(sγ ) and M ′′(sγ ), which give the desired result.

Proof of Lemma 5.1

The uniform Laplace method ultimately boils down to this statement:

Lemma A.4. Letψ be convex and let C2 be on an interval I and suppose that it takes its
minimum at an interior point x0 ∈ I where ψ ′′ > 0 and that in a vicinity (x0 − ε, x0 + ε)

of x0,

|ψ ′′(x) − ψ ′′(x0)| ≤ C |ψ ′′(x0)||x − x0|. (A.15)

Let ψ̄ be the quadratic approximation ψ(x0) + ψ ′′(x0)(x − x0)
2/2. Then∫

I
exp(−nψ(x)) dx ≤

∫ ∞

−∞
exp(−nψ̄(x)) dx · (S1,n + S2,n),

where

S1,n = exp(nψ ′′(x0)Cε2/6),

S2,n = 2/(nε(|ψ ′′(0)|2π)1/2(1 − Cε2/2)).

We defer the proof to the next subsection.
The constant C referred to in the lemma is effectively a (scaled) third derivative, since

if ψ is C3, we may take in (A.15)

C = C(ε) = sup
(x0−ε,x0+ε)

ψ(3)(x)/ψ ′′(x).

The lemma has the following significance for Lemma 5.2. Pick εn = n−2/5. Pick n0 =
n0(ψ

′′(x0),C) so that

ψ ′′(x0)Cn−1/5/6 < 1, Cn−2/5/3 < 1
2 .



648 D. L. Donoho

Then for n > n0, exp(u) ≤ 1 + (e − 1)u gives

S1,n ≤ 1 + (e − 1)(ψ ′′(x0)C/6) · n−1/5

while (1 − Cn−2/5/3) > 1
2 gives

S2,n ≤ 2/ψ ′′(0)1/2n−3/5.

Hence

S1,n + S2,n ≤ 1 + o(1).

We conclude that∫
I

exp(−nψ(x)) dx ≤
∫ ∞

−∞
exp(−nψ̄(x)) dx · (1 + o(1)). (A.16)

Here the o(1) is uniform over any collection of convex functions with prescribed
bounds on ψ ′′(x0) and C . Now we consider the collection of convex functions ψν defined
in Section 5. Recall η > 0 and δ > 0 in the statement of Lemma 5.2. Over the interval
ν ∈ [δ, 1 − η), they obey uniform bounds on ψ ′′

ν and ψ ′′′
ν of the type needed for Lemma

A.4. We record this in the next lemma. Lemma 5.2 then follows from this and the
uniformity in (A.16).

Lemma A.5. The function ψν is C∞ with the second derivative at the minimum

ψ ′′
ν (xν) = 2ν

(
1 + x2

ν

4ν

1 − ν

)
(A.17)

and the third derivative at the minimum

ψ(3)
ν (xν) = (1 − ν)((2 − 4x2

ν )z + 6xνz2 + 2z2), (A.18)

where z = zν = 2νxν/(1 − ν). We have

0 < 2δ ≤ inf
ν∈(δ,1]

ψ ′′
ν (xν).

For ε < min(δ/2, η/2), the ratio

C(ε; δ, η) = sup
ν∈(δ,1−η]

sup
|x−xν |<ε

ψ(3)
ν (x)/ψ ′′

ν (x)

is finite.

Proof. We calculate that

ψ ′(x) = −(1 − ν)g/G + 2νx; ψ ′′(x) = −(1 − ν)(g′/G − g2/G2) + 2ν;

ψ(3)(x) = −(1 − ν)(g′′/G − 3g′g/G2 − 2g3/G3).
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We also remark that g′ = (−2x)g and g′′ = (−2 + 4x2)g. At the point xν , we have

g(xν)/G(xν) = 2νxν/(1 − ν) = zν, say.

We combine these to get (A.17) and (A.18).
The formula for ψ ′′

ν (xν) immediately gives ψ ′′
ν (xν) ≥ 2ν, so it is bounded away from

zero on any interval ν ∈ [δ, 1], δ > 0.
Now as for ψ(3), we note that clearly zν and xν are continuous functions on (0, 1).

Note that as ν → 1,

zν ∼
√

2ν/(1 − ν),

which diverges, and as ν → 0,

xν ∼
√

log((1 − ν)/2ν),

which also diverges. However, both are bounded on any interval ν ∈ [δ, 1 − η]. As
a polynomial in ν, xν and zν , ψ ′′′

ν (xν) is also bounded. Boundedness also holds, by
inspection if we consider the behavior at x near to xν .

Proof of Lemma A.4

We start with a preliminary lemma.

Lemma A.6. Let ψ(x) be a C2 function defined on [−ε, ε] so that

ψ(0) = ψ ′(0) = 0, ψ ′′(0) > 0, |ψ ′′(x) − ψ ′′(0)| ≤ C · ψ ′′(0)|x |.
Then

‖ψ − ψ ′′(0)x2/2‖L∞(−ε,ε) ≤ Cψ ′′(0)ε3/6 (A.19)

and

|ψ ′(x)| ≥ ψ ′′(0)|x |(1 − Cx2/2), x ∈ [−ε, ε]. (A.20)

This involves standard estimates, and we omit the proof.
To apply this lemma, we split the integral∫

I
exp(−nψ(x)) dx =

∫ ε

−ε

+
∫

[−ε,ε]c

= I + II.

Near x0, we use (A.19), i.e. the fact that the quadratic approximation has ε3-order accu-
racy:

I ≤
(∫ ε

−ε

exp(−nψ̄(x)) dx

)
· exp{n‖ψ − ψ̄‖L∞(−ε,ε)}

≤
(∫ ∞

−∞
exp(−nψ̄(x)) dx

)
· exp{nψ ′′(0)Cε3/6}.



650 D. L. Donoho

Away from x0 we use convexity. To simplify notation, suppose x0 = 0. Convexity gives

ψ(x) ≥ ψ(ε) + ψ ′(ε)(x − ε), x > ε.

Hence, using the formula
∫∞

0 exp(−n(a + bu)) du = exp(−na)/(nb),

∫ ∞

ε

exp(−nψ(x)) dx ≤ exp(−nψ(0))/(nψ ′(ε)).

Now by (A.20), ψ ′(ε) ≥ ψ ′′(0)ε(1 − Cε2/2). Also,

exp(−nψ(0)) =
∫

exp(−nψ̄(x)) dx ·
√
ψ ′′(0)/2π

so that∫ ∞

ε

exp(−nψ(x)) dx ≤ exp(−nψ(0))/(nε|ψ ′′(0)|1/2(2π)1/2(1 − Cε2/2)).

The lemma follows.

Proof of Lemma 6.2

Define half-normal random variables Ui = |Zi | and Zi ∼iid N (0, 1/2θ), and the
scaled normal T ∼ N (0, 1

2 ). Use the notation gX for the probability density of ran-
dom variable X and ĝX for the characteristic function (Fourier transform) ĝX (λ) =∫

exp(iλx)gX (x) dx . We remark that

gU1(u) =

exp(−θu2)

√
2θ

π
, u ≥ 0,

0, u < 0,

and

ĝU1(λ) = 2

√
θ

π

∫ ∞

0
exp(−θu2 + iuλ) du.

Hence

J (m, θ) = 2−m

(√
π

θ

)m
1√
π

∫ ∞

−∞
ĝT (λ)(ĝU1(2λ))

m dλ.

Now we define Wm = 2
∑

Ui and note that the convolution theorem gives

ĝWm (λ) = ĝU1(2λ)
m .

Hence

J (m, θ) = 2−m(π/θ)m/2π−1/2
∫ ∞

−∞
ĝT (λ)ĝWm (λ) dλ.



High-Dimensional Centrally Symmetric Polytopes 651

Again by the convolution theorem ĝT +Wm = ĝT ĝWm , and from the Fourier inversion
formula gX (0) = (2π)−1

∫
ĝX (λ) dλ we recognize that∫ ∞

−∞
ĝT (λ)ĝWm (λ) dλ = 2πgT +Wm (0),

giving

J (m, θ) = 2−m(π/θ)−m/22
√
πgT +Wm (0).

Proof of Theorem 4

Using (A.3) in the same way as in the proof of Lemma 4.2, we have

�net − �face = H

(
ν − ρδ

1 − ρδ

)
(1 − ρδ) − ξγ (yγ ) · (ν − ρδ) − ψν(xν).

We make three elementary observations:

0 = lim
δ→1

sup
ν∈[δ,1)

H

(
ν − ρδ

1 − ρδ

)
(1 − ρδ), (A.21)

0 = lim
δ→1

sup
ν∈[δ,1)

ψν(xν), (A.22)

ξγ (yγ ) · (ν − ρδ) ≥ ξρ(yρ) · (1 − ρ)δ, ν ≥ δ. (A.23)

At the same time ξρ(yρ) > 0 for ρ < 1; see Fig. A.2. Now fix ρ < 1 and 0 < ε <

ξρ(yρ)(1 − ρ)/2. Combining (A.21)–(A.23), we have for sufficiently large δ < 1,

�net(ν; ρ, δ) − �face(ν; ρ, δ) < ε − ξρ(yρ)(1 − ρ)δ

< −ξρ(yρ)(1 − ρ)/2 < 0, ν ∈ [δ, 1).(A.24)

We conclude from the definition ofρN thatρN (δ) > ρ. The desired relation (1.3) follows.
It follows in particular from (A.24) that for some δ < 1, there is ρ > 1

2 with

�net(ν; ρ, δ) − �face(ν; ρ, δ) < 0, ν ∈ [δ, 1),

taking δ0 to be the infimum of all such δ gives (1.4).
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2. Károly Böröczky, Jr. and Martin Henk. Random projections of regular polytopes. Arch. Math. (Basel),
73(6):465–473, 1999.

3. Wlodzimierz Bryc. A uniform approximation to the right normal tail integral. Appl. Math. Comput.,
127(2–3):365–374, 2002.



652 D. L. Donoho

4. Geoffrey R. Burton. The nonneighbourliness of centrally symmetric convex polytopes having many ver-
tices. J. Combin. Theory Ser. A, 58(2):321–322, 1991.

5. Emmanuel J. Candès and Terence Tao. Near optimal signal recovery from random projections and universal
encoding strategies. Technical report, Applied and Computational Mathematics, California Institute of
Technology, 2004.

6. Amir Dembo and Ofer Zeitouni. Large Deviations Techniques and Applications, second edition. Volume 38
of Applications of Mathematics (New York). Springer-Verlag, New York, 1998.

7. David L. Donoho. Compressed sensing. Technical report, Department of Statistics, Stanford University,
2004. Accepted IEEE Trans. Inform. Theory, pending revision.

8. David L. Donoho. For most large systems of underdetermined equations, the minimum �1-norm solution
is the sparsest solution. Technical report, Department of Statistics, Stanford University, 2004. Accepted
Comm. Pure Appl. Math., pending revision.

9. David L. Donoho. Neighborly polytopes and sparse solutions of underdetermined linear equations. Tech-
nical report, Department of Statistics, Stanford University, 2004.

10. David L. Donoho and Jared Tanner. Neighborliness of randomly-projected simplices in high dimensions.
Proc. Natl. Acad. Sci. USA, 102:9452–9457, 2005.

11. David L. Donoho and Jared Tanner. Sparse nonnegative solutions of underdetermined linear equations by
linear programming. Proc. Natl. Acad. Sci. USA, 102:9446–9451, 2005.

12. David Gale. Neighboring vertices on a convex polyhedron. In Linear Inequalities and Related Systems,
pages 255–263. Annals of Mathematics Studies, no. 38. Princeton University Press, Princeton, NJ, 1956.
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