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Abstract. The Sylvester–Gallai theorem asserts that every finite set S of points in two-
dimensional Euclidean space includes two points, a and b, such that either there is no other
point in S on the line ab, or the line ab contains all the points in S. Chvátal extended
the notion of lines to arbitrary metric spaces and made a conjecture that generalizes the
Sylvester–Gallai theorem. In the present article we prove this conjecture.

1. Introduction

The following celebrated geometric problem was proposed by Sylvester in 1893 [12].

Prove that it is not possible to arrange any finite number of real points so that a
right line through every two of them shall pass through a third, unless they all lie
in the same right line.

In the twentieth century several proofs were found; the first one, published some
50 years after the problem was proposed and 1 year after Erdős revived it, was due
to Gallai [9]. A very short proof was given by Kelly; this proof uses the notion of
Euclidean distance and can be found in [4], Section 4.7 of [5], and Chapter 8 of [8].
Additional information on the Sylvester–Gallai theorem can be found in [1], [3], [7],
and [11].

In an arbitrary metric space (V, ρ), Menger [10] defined a ternary relation B(ρ) of
metric betweenness on V by

(u, v, w) ∈ B ⇔ u, v, w are all distinct and ρ(u, w) = ρ(u, v)+ ρ(v,w). (1)
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We follow the tradition—adopted by Menger [10]—of writing [uvw] for (u, v, w) ∈ B.
As Chvátal pointed out in [3], if we define the line ab as

{x : [xab]} ∪ {a} ∪ {x : [axb]} ∪ {b} ∪ {x : [abx]}, (2)

then a straightfoward generalization of the Sylvester–Gallai theorem in arbitary finite
metric space is no longer true. Chvátal’s [3] definition of a line in an arbitrary metric
space is a recursive closure of (2); details are as follows.

First, the ternary relation B(ρ) in (1) is transformed into a setH(B(ρ)) of three-point
subsets of V :

H(B(ρ)) = {{a, b, c} : (a, b, c) ∈ B(ρ)}. (3)

Then a family A(H(B(ρ))) of subsets of V is defined by

A(H(B(ρ))) = {S ⊆ V : no T inH(B(ρ)) has |T ∩ S| = 2}. (4)

(It is clear that A(H(B(ρ))) is closed under arbitary intersection.) For any subset W of
V , define C(W ) as

C(W ) =
⋂

W⊆S∈A
S. (5)

Equivalently, if W is finite, then C(W ) is the return value of the program

S = W;
while some T in H(B(ρ)) has |T ∩ S| = 2 do S = S ∪ T end;
return S;

Finally, for any two distinct points a and b of V , the line ab is defined as C({a, b}). Note
that, according to the definition of a line, there may be more than one line containing two
given points; the definition coincides the usual definition of lines in Euclidean spaces.
With this definition, Chvátal made the following conjecture in [3], which is made into a
theorem by the present paper.

Theorem 1. If (V, ρ) is a metric space such that 1 < |V | <∞, then V contains two
distinct points a and b such that the line ab is {a, b} or V .

The original Sylvester–Gallai Theorem is a special case of Theorem 1, where (V, ρ)
is a finite subspace of the Euclidean plane.

For a finite, undirected, connected graph G = (V, E, w) with positive weights, there
is naturally an induced metric space (V, ρ), where ρ(x, y) is defined to be the distance
between x and y in G. Note that every finite metric space is induced by such a graph. So
it suffices to prove the conjecture for finite metric spaces induced by graphs. Although
the proof does not need the notations in graphs, this was the setting where we worked
on the conjecture.

Chvátal [3] proved this conjecture for all metric spaces with at most nine points and
for all (finite) metric spaces induced by connected graphs with unit weights. Chen [2]
proved the conjecture for all (finite) subspaces of 
2

1, the two-dimensional space with
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the 
1-metric. In prior work we developed techniques that allowed us to give a much
simpler proof for the 
2

1 case, as well as proofs for metric spaces induced by graphs with
some special weights. Based on similar techniques, just one week before we found the
proof, Bin Tian proved the conjecture for all finite subspaces of 
3

1 by using a computer
program. Finally, our proof here was built based on these techniques and some other
crucial observations.

2. The Sylvester–Chvátal Theorem

We reserve the letter V for the ground-set of a finite metric space with at least two points
and we reserve the letter ρ for the metric of this space. Our proof of Theorem 1 splits
into two parts.

Theorem 2. If every three points of V are contained in some line, then some line
consists of all points of V .

Theorem 3. If some three points of V are contained in no line, then some line consists
of precisely two points.

Proof of Theorem 2. Consider a line, L , which is maximal with respect to set-inclusion;
we claim that L = V . To justify this claim, assume to the contrary that: some point, c,
of V lies outside L . Line L is generated by two points, a and b, of V . By assumption,
a, b, c are contained in some line; this line contains L∪{c}, contradicting the maximality
of L .

Proof of Theorem 3. By a simple edge, we mean any edge—ab—of the complete graph
with vertex-set V such that no point x of V satisfies [axb]. By a simple triangle, we
mean any three points—a, b, c—of V such that all of ab, bc, ca are simple edges. Now
consider the following statements:

(i) some three points of V are contained in no line,
(ii) some simple triangle is contained in no line,

(iii) some line consists of precisely two points.

(i)⇒ (ii) By (i), there are three points—a, b, c—of V such that

no line contains {a, b, c}; (6)

among all such triples, choose one that minimizes ρ(a, b)+ρ(b, c)+ρ(a, c); we claim
that a, b, c is a simple triangle.

To justify this claim, assume to the contrary that, without loss of generality, there is
a point d such that [adb]. Note first that d �= c (else (6) is contradicted by [acb]) and
then that ρ(d, c) < ρ(d, b) + ρ(b, c) (else (6) is contradicted by [dbc] and [adb]). It
follows that

ρ(a, d)+ ρ(d, c)+ ρ(a, c) < ρ(a, d)+ ρ(d, b)+ ρ(b, c)+ ρ(a, c)

= ρ(a, b)+ ρ(b, c)+ ρ(a, c);
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Fig. 1. If line L(a, c) consists of at least three points, the point d will cause infinite trouble. This point
guarantees the existence of special paths. As we shall prove, we can always find shorter and shorter special
paths.

now minimality of a, b, c implies that some line contains {a, d, c}; by [adb], the same
line contains {a, b, c}, contradicting (6).

(ii)⇒ (iii) For each ordered triple u, v, w of points of V , we write

�(u, v, w) = ρ(u, v)+ ρ(v,w)− ρ(u, w).
By (ii), some simple triangle—a, b, c—satisfies (6); among all such simple triangles,
choose one that minimizes �(a, b, c); we claim that line L(a, c) consists of precisely
two points.

To justify this claim, assume to the contrary that line L(a, c) consists of at least three
points. This means that some point d satisfies [dac] or [adc] or [acd]; since ac is a
simple edge, [adc] is excluded; now symmetry allows us to assume [acd]. Among all
such points d , we choose one that minimizes ρ(c, d); this property of d guarantees that
cd is a simple edge (Fig. 1) .

Let us show that

bd is not a simple edge. (7)

If (7) is false, then (b, c, d) is a simple triangle; [acd] and (6) guarantee that this simple
triangle is contained in no line. It follows that �(b, c, d) ≥ �(a, b, c), which means
ρ(c, d)− ρ(b, d) ≥ ρ(a, b)− ρ(a, c); since [acd], we conclude [abd]; but then (6) is
contradicted.

In addition, observe that

ρ(a, b)+ ρ(b, d) < ρ(a, d)+�(a, b, c); (8)

if (8) is false, then [acd] guarantees ρ(b, d) ≥ ρ(b, c)+ ρ(c, d), and so [bcd]; but then
(6) is contradicted.

By a path, we mean any sequence—(a1, a2, . . . , ak)—of points of V ; we define its
length as

k−1∑

i=1

ρ(ai , ai+1);

if the path is denoted P , then we denote its length 
(P). By a special path, we mean a
path (a1, a2, . . . , ak) such that a1 = a, k ≥ 3, ak = d,

(α) no line contains {a1, a2, a3}, and
(β) at least one of a1a2 and a2a3 is not a simple edge.
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Fig. 2. Three cases of the special path P .

Note that (a, b, d) is a special path: here, (α) follows from [acd] with (6) and (β) follows
from (7). Now we can choose a shortest special path, (a1, a2, . . . , ak); we denote it P .
Since (a, b, d) is a special path, (8) guarantees that


(P) < ρ(a, d)+�(a, b, c). (9)

To complete the proof of (ii)⇒ (iii), we distinguish between three cases (Fig. 2).

Case 1: Neither a1a2 nor a2a3 is a simple edge. By assumption of this case, there is a
point b12 such that [a1b12a2]. Among all such points b12, we choose one that minimizes
ρ(b12, a2); this property of b12 guarantees that b12a2 is a simple edge. Similarly, there is
a point b23 such that [a2b23a3] and such that a2b23 is a simple edge. Note that

no line contains {b12, a2, b23}; (10)

else [a1b12a2], [a2b23a3] would guarantee that the same line contains {a1, a2, a3}, contra-
dicting property (α) of P . Let P ′ denote the path (a1, b12, b23, a3, . . . , ak). From [a1b12a2]
and [a2b23a3], we have


(P)− 
(P ′) = �(b12, a2, b23);
(10) guarantees that �(b12, a2, b23) > 0, and so P ′ is shorter than P; now the min-
imality of P implies that P ′ is not special. Since no line contains {a1, b12, b23} (else
[a1b12a2] would guarantee that the same line contains {b12, a2, b23}, contradicting (10))
and yet P ′ is not special, both a1b12 and b12b23 are simple edges. Since b12b23 is a simple
edge, b12, a2, b23 is a simple triangle, and so (10) implies �(b12, a2, b23) ≥ �(a, b, c).
However, then


(P) = 
(P ′)+�(b12, a2, b23) ≥ ρ(a, d)+�(a, b, c),

contradicting (9).

Case 2: a1a2 is a simple edge and a2a3 is not. As in Case 1, there is a point b23 such that
[a2b23a3] and such that a2b23 is a simple edge. Note that

no line contains {a1, a2, b23}: (11)

else [a2b23a3] would guarantee that the same line contains {a1, a2, a3}, contradicting
property (α) of P . Let P ′ denote the path (a1, b23, a3, . . . , ak). From [a2b23a3], we have


(P)− 
(P ′) = �(a1, a2, b23);
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(11) guarantees that �(a1, a2, b23) > 0, and so P ′ is shorter than P; now minimality of
P implies that P ′ is not special. Since no line contains {a1, b23, a3} (else [a2b23a3] would
guarantee that the same line contains {a1, a2, b23}, contradicting (11)) and yet P ′ is not
special, both a1b23 and b23a3 are simple edges. Since a1b23 is a simple edge, a1, a2, b23

is a simple triangle, and so (11) implies �(a1, a2, b23) ≥ �(a, b, c). However, then


(P) = 
(P ′)+�(a1, a2, b23) ≥ ρ(a, d)+�(a, b, c),

contradicting (9).

Case 3: a2a3 is a simple edge and a1a2 is not. As in Case 1, there is a point b12 such that
[a1b12a2] and such that b12a2 is a simple edge. Note that

no line contains {b12, a2, a3}; (12)

else [a1b12a2] would guarantee that the same line contains {a1, a2, a3}, contradicting
property (α) of P . Let P ′ denote the path (a1, b12, a3, . . . , ak). From [a1b12a2], we have


(P)− 
(P ′) = �(b12, a2, a3);
(12) guarantees that �(b12, a2, a3) > 0, and so P ′ is shorter than P; now minimality of
P implies that P ′ is not special. Since no line contains {a1, b12, a3} (else [a1b12a2] would
guarantee that the same line contains {b12, a2, a3}, contradicting (12)) and yet P ′ is not
special, both a1b12 and b12a3 are simple edges. Since b12a3 is a simple edge, b12, a2, a3

is a simple triangle, and so (12) implies �(b12, a2, a3) ≥ �(a, b, c). However, then


(P) = 
(P ′)+�(b12, a2, a3) ≥ ρ(a, d)+�(a, b, c),

contradicting (9).

3. An Application in Block Designs

Recall that a (v, k, λ) design is a hypergraph on a set V of v points with the property
that any pair of two points is contained in exactly λ edges with k points in each edge. We
say a block design on V is realizable as a metric space if there is a metric space (V, ρ)
such that for any three points a, b, c ∈ V we have

{a, b, c}∈H(B(ρ)) if and only if {a, b, c} is contained in some edge of the design.

Recall that a finite projective plane of order n is an (n2+ n+ 1, n+ 1, 1) design, a finite
affine plane of order n is an (n2, n, 1) design, and a Steiner triple system is a (v, 3, 1)
design. If a (v, k, 1) design is realizable as a metric space, then every line in the metric
space contains exactly k points. Therefore, immediately following Theorem 1 we have

Corollary 4. No (v, k, 1) design with k ≥ 3 and v > k is realizable as a metric space.
In particular, no projective plane of order higher than 1, nor any affine plane of order
higher than 2, nor any Steiner triple system with more than three points is realizable as
a metric space.
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Mario Szegedy, in a discussion of this subject, first asked the question whether there
is a short proof of the fact that no projective plane of order higher than 1 is realizable as
a metric space. To the best of the author’s knowledge, no simple proof is available; even
the question is new. The special case of the Fano plane was solved by Chvátal in [3]; the
proof was not simple.

Acknowledgments
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