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Abstract. This paper is the fourth in a series of six papers devoted to the proof of the Kepler
conjecture, which asserts that no packing of congruent balls in three dimensions has density
greater than the face-centered cubic packing. In a previous paper in this series, a continuous
function f on a compact space was defined, certain points in the domain were conjectured to
give the global maxima, and the relation between this conjecture and the Kepler conjecture
was established. The function f can be expressed as a sum of terms, indexed by regions on
a unit sphere. In this paper detailed estimates of the terms corresponding to general regions
are developed. These results form the technical heart of the proof of the Kepler conjecture,
by giving detailed bounds on the function f . The results rely on long computer calculations.

Introduction

This paper contains the technical heart of the proof of the Kepler conjecture. Its primary
purpose is to obtain good bounds on the score σR(D) when R is an arbitrary standard
region of a decomposition star D. This is particularly challenging, because we have no
a priori restrictions on the combinatorial type of the standard region R. It is not known
to be bounded by a simple polygon. It is not known to be simply connected. Moreover,
there are multitudes of possible geometrical configurations of upright and flat quarters,
each scored by a different rule. This paper deals with these complexities and bounds the
score σR(D) in a way that depends on a simple numerical invariant n(R) of R. When R
is bounded by a simple polygon, the numerical invariant is simply the number of sides
of the polygon. This bound on the score of a standard region represents the turning point
of the proof, in the sense that it caps the complexity of a contravening decomposition
star, and restrains the combinatorial possibilities. Later in the proof it is instrumental in
the complete enumeration of the plane graphs attached to contravening stars.

The first section proves a series of approximations for the score of upright quarters.
The strategy is to limit the number of geometrical configurations of upright quarters by
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showing that a common upper bound (to the scoring function) can be found for quite
disparate geometrical configurations of upright quarters. When a general upper bound
can be found that is independent of the geometrical details of upright quarters, we say
that the upright quarters can be erased. (A precise definition of what it means to erase an
upright quarter appears below.) There are some upright quarters that cannot be treated
in this manner; and this adds some complications to the proofs in this paper.

The second section states the main result of the paper (Theorem 12.1). An initial
reduction reduces the proof to the case that the boundary of the given standard region is
a polygon. A further argument is presented to reduce the proof to a convex polygon.

The third section completes the proof of the main theorem. This part of the proof
relies on a new geometrical decomposition of the part of a V -cell over a standard region.
The pieces in this decomposition are called truncated corner cells.

A final section in this paper collects miscellaneous further bounds that will be needed
in later parts of the proof of the Kepler conjecture.

11. Upright Quarters

11.1. Erasing Upright Quarters

Definition 11.1. A standard region is said to be exceptional if it is not a triangle or
a quadrilateral. The pair (D, R) consisting of a decomposition star and an exceptional
standard region is said to be an exceptional cluster. The vertices of the packing of height
at most 2t0 that are contained in the closed cone over the standard region are called its
corners.

Fix an exceptional cluster R. Throughout this paper, we assume that R lies on a star
of score at least 8 pt. It is to be understood, when we say that a standard region does not
exist, that we mean that there exists no such region on any star scoring more than 8 pt.

In this section we discuss how to eliminate many cases of upright diagonals. The
results are summarized in Section 11.9.

If R is a standard region, we write VR(t) for the intersection of the local V -cell
VR = VC(0)∩C(R)with a ball B(t), centered at the origin, of radius t . We usually take
t = t0. If {0, v}, of length between 2t0 and 2

√
2, is not the diagonal of an upright quarter

in the Q-system, then v does not affect the truncated cell VR(t0) and may be disregarded.
For this reason we confine our attention to upright diagonals that lie along an upright
quarter in the Q-system.

We say that an upright diagonal {0, v} can be erased with penalty π0 ≥ 0, if we have,
in terms of the decomposition of Section 9,∑

Q

σ(Q)+
∑

S

σ(VS(tS))− 4δoct vol(δP(v)) < π0 +
∑

Q

s-vor0(Q)+
∑

S

s-vor0(S).

Here the sum over Q runs over the upright quarters around {0, v}. The scores σ(Q) are
context-dependent (see Section 7). The second sum runs over simplices S along {0, v}
of type C in the S-system. We define their score σ(VS(tS)) as in Section 9. Also, δP(v)

is the piece of the decomposition defined in Section 9. The right-hand side is scored by
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the truncation function in Section 7 (formula (7.13)). When we erase without mention
of a penalty, π0 = 0 is assumed.

If the diagonal can be erased, an upper bound on the score is obtained by ignoring the
upright diagonal and all of the structures around it coming from the decomposition of
Section 9, and switching to the truncation at t0. The current section shows that various
vertices can be erased, and this will greatly reduce the number of combinatorial possi-
bilities for an exceptional cluster.

11.2. Contexts

Each upright diagonal has a context (p, q), with p the number of anchors and p − q
the number of quarters around the diagonal (Definition 7.1). The dihedral angle of a
quarter is less than24 π , so the context (2, 0) is impossible. There is at least one quarter,
so p ≥ q + 1, p ≥ 2.

The context (2, 1) is treated in Section 10.4. Lemma 10.15 shows that by removing
the upright diagonal, and scoring the surrounding region by a truncated function vor0,
an upper bound on the score is obtained. In the remaining contexts, p ≥ 3. We start
with contexts satisfying p = 3. The context (3, 0) is to be regarded as two quasi-regular
tetrahedra sharing a face rather than as three quarters along a diagonal. In particular, by
Definition 4.8, the upright quarters do not belong to the Q-system.

We recall that the score of an upright quarter is given by

σ(Q, v) = (µ(Q, v)+ µ(Q, v̂)+ s-vor0(Q, v)− s-vor0(Q, v̂))/2,

except in the contexts (2, 1) and (4, 0). Define ν(Q) to be the right-hand side of this
equation. The context (2, 1) has been treated, and the context (4, 0) does not occur in
exceptional clusters. Thus, for the remainder of this section, the scoring rule σ(Q) =
ν(Q) is used.

We have several different variants on the score depending on the truncation, analytic
continuation, and so forth. If f is any of the functions

s-vor0, s-vor, , ν,

we set τ0, τV , τ , τν , respectively, to

τ∗ = − f (S)+ sol(S)ζ pt.

We set τ(S, t) = − s-vor(S, t)+ sol(S)ζ pt. The family of functions τ∗ measure what is
squandered by a simplex. We say that Q has compression type or Voronoi type according
to the scoring of µ(Q). (See Section 7.1.)

Crowns and anchor correction terms are used in Section 10.4 to erase upright quarters.
We imitate those methods here. The functions crown and anc are defined and discussed
in Section 10.4. If S = S(y1, . . . , y6) is a simplex along {0, v}, set

κ(S(y1, . . . , y6)) = crown(y1/2) dih(S)/(2π)+ anc(y1, y2, y6)+ anc(y1, y3, y5).

24 CALC-971555266.
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κ(S) is a bound on the difference in the score resulting from truncation around v. Assume
that S is the simplex formed by {0, v} and two consecutive anchors around {0, v}. Assume
further that the circumradius of S is at least η0(y1/2). Then we have

κ(S) = −4δoct vol(δP(W
e)),

where W e is the extended wedge constructed in Section 9.2. To see this, it is a matter of
interpreting the terms in κ . The function crown enters the volume through the region over
the spherical cap D0 of Section 9.2, lying outside B(t0). By multiplying by dih(S)/(2π),
we select the part of the spherical cap over the unextended wedge W between the anchors.
The terms anc adjust for the four Rogers simplices lying above the extension W e.

11.3. Three Anchors

Lemma 11.2. The upright diagonal can be erased in the context (3, 2).

Proof. Let v1 and v2 be the two anchors of the upright diagonal {0, v} along the quarter.
Let the third anchor be v3.

Assume first that |v| ≥ 2.696. If Q is of compression type, then25 the score is
dominated by the truncated function s-vor0. Assume Q is of Voronoi type. If |v1|, |v2| ≤
2.45, then a calculation26 gives the result. Take |v2| ≥ 2.45. By symmetry, |v − v1| or
|v − v2| ≥ 2.45. The case |v − v1| ≥ 2.45 is treated by another calculation.27 We take
|v−v2| ≥ 2.45. Let S = {0, v, v2, v3}. If S is of type C , the result follows.28 S is of type
C , if and only if y4 ≤ 2.77 (because η456 ≥ η(2.45, 2, 2.77) >

√
2). If S is not of type

C , we argue as follows. The function h2(η(2h, 2.45, 2.45)−2 − η0(h)−2) is a quadratic
polynomial in h2 with negative values for 2h ∈ [2.696, 2

√
2]. From this we find

rad(S) ≥ η(2h, 2.45, 2.45) ≥ η0(h), where 2h = |v|,
and this justifies the use of κ (see Section 9.2, Case (2)). That the truncated function
dominates the score now follows from a calculation.29

Now assume that |v| ≤ 2.696. If the simplices {0, v, v1, v3} and {0, v, v2, v3} are of
type C , the bound follows from a calculation.30,31 If say S = {0, v, v2, v3} is not of type
C , then

rad(S) ≥
√

2 > η0(2.696/2) ≥ η0(h),

justifying the use of κ . The bound follows from further calculations.32–34 ( + κ <
octavor0, etc.)

25 CALC-73974037.
26 CALC-764978100.
27 CALC-764978100.
28 CALC-764978100.
29 CALC-618205535.
30 CALC-73974037.
31 CALC-764978100.
32 CALC-618205535.
33 CALC-73974037.
34 CALC-764978100.
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Lemma 11.3. The upright diagonal can be erased in the context (3, 1), provided the
three anchors do not form a flat quarter at the origin.

Proof. In the absence of a flat quarter, truncate, score, and remove the vertex v as in the
context (3, 1) of Lemma 10.15. If there is a flat quarter, by the rules of Definition 4.8, v
is enclosed over the flat quarter. We do nothing further with them for now. This unerased
case appears in the summary, Section 11.9. See Lemma 11.27.

11.4. Six Anchors

Lemma 11.4. An upright diagonal has at most five anchors.

Proof. The proof relies on constants and inequalities from two calculations.35,36 If
between two anchors there is a quarter, then the angle is greater than 0.956, but if there
is not, the angle is greater than 1.23. So if there are k quarters and at least six anchors,
they squander more than

k(1.01104)− [2π − (6− k)1.23]0.78701 > (4πζ − 8) pt,

for k ≥ 0.

11.5. Anchored Simplices

Let {0, v} be an upright diagonal, and let v1, v2, . . . , vk = v1 be its anchors, ordered
cyclically around {0, v}. This cyclic order gives dihedral angles between consecutive
anchors around the upright diagonal. We define the dihedral angles so that their sum is
2π , even though this will lead us to depart from our usual conventions by assigning a
dihedral angle greater than π when all the anchors are concentrated in some half-space
bounded by a plane through {0, v}. When the dihedral angle of S = {0, v, vi , vi+1} is
at most π , we say that S is an anchored simplex if |vi − vi+1| ≤ 3.2. (The constant
3.2 appears throughout this section.) All upright quarters are anchored simplices. If an
upright diagonal is completely surrounded by anchored simplices, the upright diagonal
is sometimes called a loop. If |vi − vi+1| > 3.2 and the angle is less than π , we say there
is a large gap around {0, v} between vi and vi+1.

To understand how anchored simplices overlap we need a bound satisfied by vertices
enclosed over an anchored simplex.

Lemma 11.5. A vertex w of height between 2 and 2
√

2, enclosed in the cone over an
anchored simplex {0, v, v1, v2}with diagonal {0, v} satisfies |w−v| ≤ 2t0. In particular,
if |w| ≤ 2t0, then w is an anchor.

35 CALC-729988292.
36 CALC-83777706.
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Proof. As in Lemma 4.16, the vertex w cannot lie inside the anchored simplex. If
|v1 − v2| ≤ 2

√
2, the result follows from Lemma 5.16. In fact, if |w| ≤ 2

√
2, the

Voronoi cells at 0 and w meet, so that Lemma 5.16 forces {0, v1, v2, w} to be a quarter.
(This observation gives a second proof of Lemma 4.34.)

Assume that a figure exists with |v1 − v2| > 2
√

2. Suppose for a contradiction that
|v − w| > 2t0. Pivot v1 around {0, v2} until |v − v1| = 2t0 and v2 around {0, v1} until
|v − v2| = 2t0. Rescale w so that |w| = 2

√
2. Set x = |v1 − v2|. If, through geometric

considerations, w is not deformed into the plane of {0, v2, v1}, then we are left with
the one-dimensional family |w′| = |w′ − w| = 2, for w′ = v2, v1, |v − w| = |v| =
|v1 − v| = |v2 − v| = 2t0, depending on x . This gives a contradiction

π ≥ dih(v2, v1, 0, v)+ dih(v2, v1, v, w)

= 2 dih(S(x, 2, 2t0, 2t0, 2t0, 2)) > π,

for x > 2
√

2. (Equality is attained if x = 2
√

2.)
Thus, we may assume that w lies in the plane P = {0, v1, v2}. Take the circle in P

at distance 2t0 from v. The vertices 0 and w lie on or outside the circle. The vertices v1

and v2 lie on the circle, so the diameter is at least x > 2
√

2. The distance from v to P is

less than x0 =
√

2t2
0 − 2. The edge {0, w} cannot pass through the center of the circle,

because |w| is less than the diameter. Reflect v through P to get v′. Then |v− v′| < 2x0.
Swapping v1 and v2 as necessary, we may assume that w is enclosed over {0, v, v′, v2}.
The desired bound |v − w| ≤ 2t0 now follows from geometric considerations and the
contradiction

2
√

2 = |w| > E(S(2, 2t0, 2t0, 2x0, 2t0, 2t0), 2, 2t0, 2t0) = 2
√

2.

Corollary 11.6. A vertex of height at most 2t0 is never enclosed over an anchored
simplex.

Proof. If so, it would be an anchor to the upright diagonal, contrary to the assumption
that the anchored simplex is formed by consecutive anchors.

11.6. Anchored Simplices Do Not Overlap

Definition 11.7. Consider an upright diagonal that is not a loop. Let R be the standard
region that contains the upright diagonal and its surrounding quarters. Assume we are
in the context (4, 1) or (5, 1). In the context (4, 1), suppose that there does not exist a
plane through the upright diagonal such that all three quarters lie in the same half-space
bounded by the plane. Then we say that the context is 3-unconfined. If such a plane
exists, we say that the context is 3-crowded. We call the context (5, 1) a 4-crowded
upright diagonal. Sections 11.3 and 11.4 reduce everything to contexts with four or five
anchors around each vertex. If there are five anchors, Lemma 11.14 and Remark 11.13
show that we can assume at most one large gap. This gives contexts (5, 0) and (5, 1).
If there are four anchors, then Lemma 11.21 will dismiss all contexts except (4, 0) and
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(4, 1). Thus, every upright diagonal is exactly one of the following: a loop, 3-unconfined,
3-crowded, or 4-crowded.

Definition 11.8. The Cayley–Menger determinant expresses the volume of a simplex
S(y1, . . . , y6) in the form

√
�(x1, . . . , x6)/12, where xi = y2

i , and � is a polynomial
with integer coefficients. The polynomial � will be used frequently.

This lemma is a consequence of the two others that follow. The context of the lemma
is the set of anchored simplices that have not been erased by previous reductions.

Lemma 11.9. Anchored simplices do not overlap.

The remaining contexts have four or five anchors. Let w and the anchored simplex
S = {0, v, v1, v2} be as in Section 11.5. Our object is to describe the local geometry
when an upright diagonal is enclosed over an anchored simplex. If |v1− v2| ≤ 2

√
2, we

have seen in Lemma 4.32 that there can be no enclosed upright diagonal with four or
more anchors over the anchored simplex S.

Assume |v1 − v2| > 2
√

2. Let w1, . . . , wk , k ≥ 4, be the anchors of {0, w}, indexed
consecutively. The anchors of {0, w} do not lie in C(S), and the triangles {0, w,wi } and
{0, v, vj } do not overlap. Thus, the plane {0, v1, v2} separates w from {w1, . . . , wk}. Set
Si = {0, w,wi , wi+1}. By a calculation37

π ≥ dih(S1)+ · · · + dih(Sk−1) ≥ (k − 1)0.956.

Thus, k = 4. The common upright diagonal of the three simplices {Si } is 3-crowded.
We claim that {v1, v2} = {w1, w4}. Suppose to the contrary that, after reindexing as nec-
essary, S0 = {0, w,w1, v1} is a simplex, with v1 �= w1, that does not overlap S1, . . . , S3.
Then π ≥ dih(S0)+ · · · + dih(S3). So 0.28 ≥ π − 3(0.956) ≥ dih(S0). A calculation38

now implies that |w − v1| ≥ 2
√

2.
Assume that {0, w, v1, v2} are coplanar. Disregard the other vertices. We minimize

|v1 − v2| when

|w| = 2
√

2, |v2| = |v1| = |w − v2| = 2, |w − v1| = 2
√

2.

This implies 3.2 ≥ |v1 − v2| ≥ x , where x is the largest positive root of the polynomial
�(8, 4, 4, x2, 4, 8). However, x ≈ 3.36, a contradiction.

Since {0, w, v1, v2} cannot be coplanar vertices, geometric considerations apply and

2
√

2 ≥ |w| ≥ E(S(2, 2, 2, 2, 2, 3.2), 2
√

2, 2, 2) > 2
√

2.

This contradiction establishes that v1 = w1.

Lemma 11.10. Around a 3-crowded upright diagonal, all of the anchored simplices
are quarters.

37 CALC-83777706.
38 CALC-83777706.
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Proof. The proof makes use of constants and inequalities from several different calcu-
lations.39–41 The dihedral angles are at most π −2(0.956) < 1.23. This forces y4 ≤ 2t0,
for each simplex S. So they are all quarters.

Lemma 11.11. If there is 3-crowded upright diagonal, then the three anchored sim-
plices squander more than 0.5606 and score at most −0.4339.

Proof. The proof makes use of constants and inequalities from several different
calculations.42–44 The three anchored simplices squander at least

3(1.01104)− π(0.78701) > 0.5606.

The bound on the score follows similarly from ν < −0.9871+ 0.80449 dih.

Lemma 11.12. If a simplex at a 3-crowded upright diagonal overlaps an anchored
simplex, the decomposition star does not contravene.

Proof. Suppose that {0, v, v1, v2} is an anchored simplex that another anchored simplex
overlaps, with {0, v} the upright diagonal. Let {0, w} be a 3-crowded upright diagonal.
We score the two simplices S′i = {0, v, w, vi } by truncation at

√
2. Truncation at

√
2 is

justified by face-orientation arguments or by geometric considerations:

E(S(2, 2t0, 2t0, 2t0, 2t0, 2t0), 2, 2, 2) > 2
√

2.

A calculation45 gives

τV (S
′
1,
√

2)+ τV (S
′
2,
√

2) ≥ 2(0.13)+ 0.2(dih(S′1)+ dih(S′2)− π) > 0.26.

Together with the three simplices around the 3-crowded upright diagonal that squander
at least 0.5606, we obtain the stated bound.

11.7. Five Anchors

When there are five anchors of an upright diagonal, each dihedral angle around the
diagonal is at most 2π − 4(0.956) < π .

Remark 11.13. There are at most two large gaps by the calculation46

3(1.65)+ 2(0.956) > 2π.

39 CALC-815492935.
40 CALC-83777706.
41 CALC-855294746.
42 CALC-815492935.
43 CALC-83777706.
44 CALC-855294746.
45 CALC-855294746.
46 CALC-83777706.
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Lemma 11.14. If an upright diagonal has five anchors with two large gaps, then the
three anchored simplices squander > (4πζ − 8) pt.

Proof. By a calculation,47 the anchored simplices are all quarters, 1.23 + 2(1.65) +
2(0.956) > 2π . The dihedral angle is less than 2π − 2(1.65). The linear programming
bound based on various inequalities48 is greater than 0.859 > (4πζ − 8) pt.

Definition 11.15. Define a masked flat quarter to be a flat quarter that is not in the
Q-system because it overlaps an upright quarter in the Q-system. They can only occur
in a very special setting.

Lemma 11.16. Let {0, v} be an upright diagonal with at least four anchors. If Q is a
flat quarter that overlaps an anchored simplex along {0, v}, then the vertices of Q are
the origin and three consecutive anchors of {0, v}.

Proof. For there to be overlap, the diagonal {w1, w2} of Q must pass through the face
{0, v, v1} formed by some anchor v1 (see Lemma 4.19). By Lemma 4.24, w1 and w2 are
anchors of {0, v}. By Lemma 4.32, w2, v1, and w1 are consecutive anchors. If v1 is a
vertex of Q we are done. Otherwise, let w3 �= 0, w1, w2 be the remaining vertex of Q.
The edges {v, v1} and {v1, 0} do not pass through the face {w1, w2, w3} by Lemma 4.19.
Likewise, the edges {w2, w3} and {w3, w1} do not pass through the face {0, v, v1}. Thus,
v is enclosed over the quarter Q.

Let w′3 �= w1, v1, w2 be a fourth anchor of {0, v}. By Lemma 4.19, we have
w′3 = w3.

Corollary 11.17 (of the proof). If v is enclosed over a flat quarter, then {0, v} has at
most four anchors.

When we are unable to erase the upright diagonal with five anchors and a large gap,
we are able to obtain strong bounds on the score.

Lemma 11.18. Suppose an upright diagonal in a decomposition star has five anchors
and one large gap. The four anchored simplices score at most−0.25. The four anchored
simplices squander at least 0.4. If any of the four anchored simplices is not an upright
quarter then the decomposition star does not contravene.

Proof. A list of inequalities49 together with50 dih > 1.65 give the bound−0.25. Further
inequalities51 give the bound 0.4. To get the final statement of the lemma, we again use
a series of inequalities.52,53

47 CALC-83777706.
48 CALC-729988292.
49 CALC-815492935.
50 CALC-83777706.
51 CALC-729988292.
52 CALC-628964355.
53 CALC-187932932.
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Corollary 11.19. There is at most one 4-crowded upright diagonal in a contravening
decomposition star.

Proof. The crown along the large gap, with the bound of the lemma, gives54 0.4− κ ≥
0.4+ 0.02274 squandered by the upright quarters around a 4-crowded upright diagonal.
The rest squanders a positive amount (see Lemma 9.20). If there are two 4-crowded
upright diagonals, use 2(0.4+ 0.02274) > (4πζ − 8) pt.

Definition 11.20. We set ξ = 0.01561, ξV = 0.003521, ξ ′ = 0.00935, ξκ = −0.029,
and ξκ, = ξκ + ξ = −0.01339.

The first two constants appear in calculations55,56 as penalties for erasing upright
quarters of compression type, and Voronoi type, respectively. ξ ′ is an improved bound
on the penalty for erasing when the upright diagonal is at least 2.57. Also, ξκ is an upper
bound57 on κ , when the upright diagonal is at most 2.57. If the upright diagonal is at
least 2.57, then we still obtain the bound58 ξκ, = −0.02274+ ξ ′ on the sum of κ with
the penalty from erasing an upright quarter.

11.8. Four Anchors

Lemma 11.21. If there are at least two large gaps around an upright diagonal with
four anchors, then it can be erased.

Proof. There are at least as many large gaps as upright quarters. Each large gap drops
us by ξκ and each quarter lifts us by at most59–61 ξ . We have ξκ, < 0.

Remark 11.22. Let {0, v} be an enclosed vertex over a flat quarter. Then

|v| ≥ E(2, 2, 2, 2t0, 2t0, 2
√

2, 2, 2, 2) > 2.6.

If an edge of the flat quarter is sufficiently short, say y6 ≤ 2.2, then

|v| ≥ E(2, 2, 2, 2.2, 2t0, 2
√

2, 2, 2, 2) > 2.7.

The two dihedral angles on the gaps are > 1.65. If the two quarters mask a flat quarter,
we use the scoring of 2(c) in Section 11.9. We have 0.0114 < −2ξκ, .

54 CALC-618205535.
55 CALC-73974037.
56 CALC-764978100.
57 CALC-618205535.
58 CALC-618205535.
59 CALC-618205535.
60 CALC-73974037.
61 CALC-764978100.
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When there is one large gap, we may erase with a penalty π0 = 0.008.

Lemma 11.23. Let v be an upright diagonal with four anchors. Assume that there is
one large gap. The anchored simplices can be erased with penalty π0 = 0.008. If any
of the anchored simplices around v is not an upright quarter then we can erase with
penalty π0 = 0.00222.

Moreover, if there is a flat quarter overlapping an upright quarter, then one of the
following holds:

(1) The truncated function s-vor0 exceeds the score by at least 0.0063. The diagonal
of the flat is at least 2.6, and the edge opposite the diagonal is at least 2.2.

(2) The truncated function exceeds the score by at least 0.0114. The diagonal of the
flat is at least 2.7, and the edge opposite the diagonal is at most 2.2.

Definition 11.24. Let a 3-unconfined upright diagonal be an upright diagonal that
has four anchors and one large gap in a situation where there is no masked flat
quarter.

Proof. The constants and inequalities used in this proof can be found in a series of
calculations.62–64

First we establish the penalty 0.008. The truncated function s-vor0 is an upper bound
on the score of an anchored simplex that is not a quarter. By these inequalities, the result
follows if the diagonal satisfies y1 ≥ 2.57.

Take y1 ≤ 2.57. If any of the upright quarters are of Voronoi type, the result follows
from (ξκ, + ξ < 0.008). If the edges along the large gap are less than 2.25, the result
follows from (−0.03883+ 3ξ = 0.008). If all but one edge along the large gap are less
than 2.25, the result follows from (−0.0325+ 2ξ + 0.00928 = 0.008).

If there are at least two edges along the large gap of length at least 2.25, we con-
sider two cases according to whether they lie on a common face of an upright quar-
ter. The same group of inequalities gives the result. The bound 0.008 is now fully
established.

Next we prove that we can erase with penalty 0.00222, when one of the anchored
simplices is not a quarter. If |v| ≥ 2.57, then we use

2ξ + ξV + ξκ ≤ 0.00935+ 0.003521− 0.2274 ≤ 0.

If |v| ≤ 2.57, we use

2(0.01561)− 0.029 ≤ 0.00222.

Let v1 . . . , v4 be the consecutive anchors of the upright diagonal {0, v} with {v1, v4}
the large gap. Suppose |v1 − v3| ≤ 2

√
2.

62 CALC-618205535.
63 CALC-73974037.
64 CALC-764978100.
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We claim the upright diagonal {0, v} is not enclosed over {0, v1, v2, v3}. Assume the
contrary. The edge {v1, v3} passes through the face {0, v, v4}. Disregarding the vertex
v2, by geometric considerations, we arrive at the rigid figure

|v| = 2
√

2, |v1| = |v1 − v| = |v − v3| = |v3| = |v3 − v4| = 2,

|v − v4| = |v4| = 2t0, |v1 − v4| = 3.2.

The dihedral angles of {0, v, v1, v4} and {0, v, v3, v4} are

dih(S(2
√

2, 2, 2t0, 3.2, 2t0, 2)) > 2.3, dih(S(2
√

2, 2, 2t0, 2, 2t0, 2)) > 1.16.

The sum is greater than π , contrary to the claim that the edge {v1, v3} passes through the
face {0, v, v4}. (This particular conclusion leads to the corollary cited at the end of the
proof.) Thus, {v1, v3} passes through {0, v, v2} so that the simplices {0, v, v1, v2} and
{0, v, v2, v3} are of Voronoi type.

To complete the proof of the lemma, we show that when there is a masked flat quarter,
either (1) or (2) holds. Suppose we mask a flat quarter Q′ = {0, v1, v2, v3}. We have
established that {v1, v3} passes through the face {0, v, v2}. To establish (1) assume that
|v2| ≥ 2.2. The remark before the lemma gives

|v1 − v3| ≥ E(S(2, 2, 2, 2
√

2, 2t0, 2t0), 2, 2, 2) > 2.6.

The bound 0.0063 comes from

ξκ, + 2ξV < −0.0063

To establish (2) assume that |v2| ≤ 2.2. The remark gives

|v1 − v3| ≥ E(S(2, 2, 2, 2
√

2, 2.2, 2t0), 2, 2, 2) > 2.7.

If the simplex {0, v, v3, v4} is of Voronoi type, then

ξκ + 3ξV < −0.0114.

Assume that {0, v, v3, v4} is of compression type. We have

− 0.004131+ ξκ, + ξV ≤ −0.0114.

Corollary 11.25 (of the proof). If there are four anchors and if the upright diagonal
is enclosed over a flat quarter, then there are four anchored simplices and at least three
quarters around the upright diagonal.

11.9. Summary

The following index summarizes the cases of upright quarters that have been treated
in this section. If the number of anchors is the number of anchored simplices (no
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large gaps), the results appear in Section 13.12. Every other possibility has been
treated.

• None, one, or two anchors. (Section 11.2.)
• Three anchors: (Section 11.3.)

– context (3, 0),
– context (3, 1),
– context (3, 2),
– context (3, 3).
• Four anchors. (Section 11.8.)

– No gaps (Section 13.12),
– One gap,
– Two or more gaps.
• Five anchors: (Section 11.7),

– No gaps (Section 13.12),
– One gap (4-crowded),
– Two or more gaps.
• Six or more anchors. (Section 11.4.)

By truncation and various comparison lemmas, we have entirely eliminated upright
diagonals except when there are between three and five anchors. We may assume that
there is at most one large gap around the upright diagonal.

1. Consider an anchored simplex Q around a remaining upright diagonal. The score
is ν(Q) if Q is a quarter, the analytic function s-vor(Q) if the simplex is of type
C (Section 9.4), and the truncated function s-vor0(Q) otherwise.

2. Consider a flat quarter Q in an exceptional cluster. An upper bound on the score
is obtained by taking the maximum of all of the following functions that satisfy
the stated conditions on Q. Let y4 denote the length of the diagonal and y1 be the
length of the opposite edge.
(a) The function µ(Q).
(b) s-vor0(Q)− 0.0063, if y4 ≥ 2.6 and y1 ≥ 2.2. (Lemma 11.23.)
(c) s-vor0(Q)− 0.0114, if y4 ≥ 2.7 and y1 ≤ 2.2. (Lemma 11.23.)
(d) ν(Q1)+ ν(Q2)+ s-vorx (S), if there is an enclosed vertex v over Q of height

between 2t0 and 2
√

2 that partitions the convex hull of (Q, v) into two upright
quarters Q1, Q2 and a third simplex S. Here s-vorx = s-vor if S is of type C ,
and s-vorx = s-vor0 otherwise. (Lemma 11.3.)

(e) s-vor(Q, 1.385) if the simplex is of type B (Section 9.4.)
(f) s-vor0(Q) if the simplex is an isolated quarter with max(y2, y3) ≥ 2.23,

y4 ≥ 2.77, and η456 ≥
√

2.
3. If S is a simplex is of type A, its score is s-vor(S). (Section 9.4.)
4. Everything else is scored by the truncation vor0. Formula (7.13) is used on these

remaining pieces. On top of what is obtained for the standard cluster by summing
all these terms, there is a penalty π0 = 0.008 each time a 3-unconfined upright
diagonal is erased.

5. The remaining upright diagonals that are not completely surrounded by anchored
simplices are 3-unconfined, 3-crowded, or 4-crowded from Sections 11.6–11.8.
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11.10. Some Flat Quarters

Recall that ξV = 0.003521, ξ = 0.01561, and ξ ′ = 0.00935. They are the penalties
that result from erasing an upright quarter of Voronoi type, an upright quarter of com-
pression type, and an upright quarter of compression type with diagonal ≥ 2.57. (See
calculations.65,66)

In the next lemma we score a flat quarter by any of the functions on the given domains

σ̂ =




, η234, η456 ≤
√

2,
s-vor, η234 ≥

√
2,

s-vor0, y4 ≥ 2.6, y1 ≥ 2.2,
s-vor0, y4 ≥ 2.7,
s-vor0, η456 ≥

√
2.

Lemma 11.26. σ̂ is an upper bound on the functions in 2(a)–(f) of Section 11.9. That
is, each function is dominated by some choice of σ̂ .

Proof. The only case in doubt is the function of 3.10(d):

ν(Q1)+ ν(Q2)+ s-vorx (S).

This is established by the following lemma.

We consider the context (3, 1) that occurs when two upright quarters in the Q-system
lie over a flat quarter. Let {0, v} be the upright diagonal, and assume that {0, v1, v2, v3}
is the flat quarter, with diagonal {v2, v3}. Let σ denote the score of the upright quarters
and other anchored simplex lying over the flat quarter.

Lemma 11.27. σ ≤ min(0, s-vor0).

Proof. The bound of 0 is established in Theorem 8.4.
By a calculation,67 if |v| ≥ 2.69, then the upright quarters satisfy

ν < s-vor0+0.01(π/2− dih),

so the upright quarters can be erased. Thus we assume without loss of generality that
|v| ≤ 2.69.

We have

|v| ≥ E(S(2, 2, 2, 2t0, 2t0, 2
√

2), 2, 2, 2) > 2.6.

If |v1 − v2| ≤ 2.1, or |v1 − v3| ≤ 2.1, then

|v| ≥ E(S(2, 2, 2, 2.1, 2t0, 2
√

2), 2, 2, 2) > 2.72,

65 CALC-73974037.
66 CALC-764978100.
67 CALC-855677395.
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contrary to assumption. So take |v1 − v2| ≥ 2.1 and |v1 − v3| ≥ 2.1. Under these
conditions we have the interval calculation68 ν(Q) < s-vor0(Q) where Q is the upright
quarter.

Remark 11.28. If we have an upright diagonal enclosed over a masked flat quarter in
the context (4, 1), then there are three upright quarters. By the same argument as in the
lemma, the two quarters over the masked flat quarter score ≤ s-vor0. The third quarter
can be erased with penalty ξV .

Define the central vertex v of a flat quarter to be the vertex for which {0, v} is the
edge opposite the diagonal.

Lemma 11.29. µ < s-vor0+0.0268 for all flat quarters. If the central vertex has
height ≤ 2.17, then µ < s-vor0+0.02.

Proof. This is an interval calculation.69

We measure what is squandered by a flat quarter by τ̂ = sol ζpt− σ̂ .

Lemma 11.30. Let v be a corner of an exceptional cluster at which the dihedral angle
is at most 1.32. Then the vertex v is the central vertex of a flat quarter Q in the exceptional
region. Moreover, τ̂ (Q) > 3.07 pt. If σ̂ = s-vor0 (and if η456 ≥

√
2), we may use the

stronger constant τ0(Q) > 3.07 pt+ ξV + 2ξ ′ .

Proof. Let S = S(y1, . . . , y6) be the simplex inside the exceptional cluster centered at
v, with y1 = |v|. The inequality dih ≤ 1.32 gives the interval calculation y4 ≤ 2

√
2, so

S is a quarter. The result now follows by interval arithmetic.70

12. Bounds in Exceptional Regions

12.1. The Main Theorem

Let (R, D) be a standard cluster. Let U be the set of corners, that is, the set of vertices
in the cone over R that have height at most 2t0. Consider the set E of edges of length
at most 2t0 between vertices of U . We attach a multiplicity to each edge. We let the
multiplicity be 2 when the edge projects radially to the interior of the standard region,
and 0 when the edge projects radially to the complement of the standard region. The
other edges, those bounding the standard region, are counted with multiplicity 1.

Let n1 be the number of edges in E , counted with multiplicities. Let c be the number
of classes of vertices under the equivalence relation v ∼ v′ if there is a sequence of edges

68 CALC-148776243.
69 CALC-148776243.
70 CALC-148776243.
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in E from v to v′. Let n(R) = n1+2(c−1). If the standard region under R is a polygon,
then n(R) is the number of sides.

Theorem 12.1. Let D be a contravening decomposition star. τR(D) > tn , where n =
n(R) and

t4 = 0.1317, t5 = 0.27113, t6 = 0.41056,

t7 = 0.54999, t8 = 0.6045.

The decomposition star scores less than 8 pt, if n(R) ≥ 9, for some standard cluster R.
The scores satisfy σR(D) < sn , for 5 ≤ n ≤ 8, where

s5 = −0.05704, s6 = −0.11408, s7 = −0.17112, s8 = −0.22816.

Sometimes, it is convenient to calculate these bounds as a multiple of pt. We have

t4 > 2.378 pt, t5 > 4.896 pt, t6 > 7.414 pt,

t7 > 9.932 pt, t8 > 10.916 pt.

s5 < −1.03 pt, s6 < −2.06 pt, s7 < −3.09 pt, s8 < −4.12 pt.

Corollary 12.2. Every standard region is a either a polygon or one shown in Fig. 12.1.

In the cases that are not (simple) polygons, we call the polygonal hull the polygon
obtained by removing the internal edges and vertices. We have m(R) ≤ n(R), where the
constant m(R) is the number of sides of the polygonal hull.

Proof. By the theorem, if the standard region is not a polygon, then 8 ≥ n1 ≥ m ≥ 5.
(Quad clusters and quasi-regular tetrahedra have no enclosed vertices. See Lemmas 10.4
and 5.13.) If c > 1, then 8 ≥ n = n1+ 2(c− 1) ≥ 5+ 2(c− 1), so c = 2, and n1 = 5, 6
(frames 2 and 5 of the figure).

Fig. 12.1
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Now take c = 1. Then 8 ≥ n ≥ 5 + (n − m), so n − m ≤ 3. If n − m = 3, we get
frame 3. If n − m = 2, we have 8 ≥ m + 2 ≥ 5+ 2, so m = 5, 6 (frames 1 and 4).

However, n − m = 1 cannot occur, because a single edge that does not bound the
polygonal hull has even multiplicity. Finally, if n − m = 0, we have a polygon.

Corollary 12.3. If the type of a vertex of a decomposition star is (7, 0), then it does
not contravene.

Proof. By Theorem 12.1, if there is a nontriangular region, we have

τ(D) ≥ τLP(7, 0)+ t4 > (4πζ − 8) pt.

Assume that all standard regions are triangular. If there is a vertex that does not lie on
one of seven triangles, we have, by Lemma 10.5,

τ(D) ≥ τLP(7, 0)+ 0.55 pt > (4πζ − 8) pt.

Thus, all vertices lie on one of the seven triangles. The complement of these seven
triangles is a region triangulation by five standard regions. There is some vertex of these
five that does not lie on any of the other four standard regions in the complement. That
vertex has type (3, 0), which is contrary to Lemma 10.9.

12.2. Nonagons

A few additional comments are needed to eliminate n = 9 and 10, even after the bounds
t9, t10 are established.

Lemma 12.4. Let F be a set of one or more standard regions bounded by a simple
polygon with at most nine edges. Assume that

σF (D) ≤ s9 and τF (D) ≥ t9,

where s9 = −0.1972 and t9 = 0.6978. Then D does not contravene.

Proof. Suppose that n = 9, and that R squanders at least t9 and scores less than s9.
This bound is already sufficient to conclude that there are no other standard clusters
except quasi-regular tetrahedra (t9 + t4 > (4πζ − 8) pt). There are no vertices of type
(4, 0) or (6, 0): t9+ 4.14 pt > (4πζ − 8) pt by Lemma 10.5. So all vertices not over the
exceptional cluster are of type (5, 0). Suppose that there are � vertices of type (5, 0). The
polygonal hull of R has m ≤ 9 edges. There are m − 2+ 2� quasi-regular tetrahedra. If
� ≤ 3, then, by Lemma 10.6, the score is less than

s9 + (m − 2+ 2�) pt− 0.48� pt < 8 pt.

If, on the other hand, � ≥ 4, the decomposition star squanders more than

t9 + 4(0.55) pt > (4πζ − 8) pt.
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The bound s9 will be established as part of the proof of Theorem 12.1.
The case n = 10 is similar. If � = 0, the score is less than (m − 2) pt ≤ 8 pt, because

the score of an exceptional cluster is strictly negative, Theorem 8.4. If � > 0, we squander
at least t10 + 0.55 pt > (4πζ − 8) pt (Lemma 10.6).

12.3. Distinguished Edge Conditions

Take an exceptional cluster. We prepare the cluster by erasing upright diagonals, includ-
ing those that are 3-unconfined, 3-crowded, or 4-crowded. The only upright diagonals
that we leave unerased are loops. When the upright diagonal is erased, we score with
the truncated function vor0 away from flat quarters. Flat quarters are scored with the
function σ̂ . The exceptional clusters in Sections 12 and 13 are assumed to be prepared
in this way.

A simplex S is special if the fourth edge has length at least 2
√

2 and at most 3.2, and
the others have length at most 2t0. The fourth edge is called its diagonal.

We draw a system of edges between vertices. Each vertex will have height at most 2t0.
The radial projections of the edges to the unit sphere will divide the standard region into
subregions. We call an edge nonexternal if the radial projection of the edge lies entirely
in the (closed) exceptional region.

1. Draw all nonexternal edges of length at most 2
√

2 except those between non-
consecutive anchors of a remaining upright diagonal. These edges do not cross
(Lemma 4.30). These edges do not cross the edges of anchored simplices (Lem-
mas 4.22 and 4.24).

2. Draw all edges of (remaining) anchored upright simplices that are opposite the
upright diagonal, except when the edge gives a special simplex. The anchored
simplices do not overlap (Lemma 11.9), so these edges do not cross. These edges
are nonexternal (Lemmas 11.5 and 4.19).

3. Draw as many additional nonexternal edges as possible of length at most 3.2 subject
to not crossing another edge, not crossing any edge of an anchored simplex, and
not being the diagonal of a special simplex.

We fix once and for all a maximal collection of edges subject to these constraints.
Edges in this collection are called distinguished edges. The radial projection of the
distinguished edges to the unit sphere gives the bounding edges of regions called the
subregions. Each standard region is a union of subregions. The vertices of height at most
2t0 and the vertices of the remaining upright diagonals are said to form a subcluster.

By construction, the special simplices and anchored simplices around an upright
quarter form a subcluster. Flat quarters in the Q-system, flat quarters of an isolated
pair, and simplices of type A and B are subclusters. Other subclusters are scored by the
function vor0. For these subclusters, formula (7.13) extends without modification.

12.4. Scoring Subclusters

The terms of formula (7.13) defining vor0,P(D) = vorP(D, t0) have a clear geometric
interpretation as quoins, wedges of t0-cones, and solid angles (see Section 7). There is a
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quoin for each Rogers simplex. There is a somewhat delicate point that arises in connec-
tion with the geometry of subclusters. It is not true in general that the Rogers simplices
entering into the truncation vor0,P(D) of (P, D) lie in the cone over P . Formula (7.13)
should be viewed as an analytic continuation that has a nice geometric interpretation
when things are nice, and which always gives the right answer when summed over all
the subclusters in the cluster, but which may exhibit unusual behavior in general. The
following lemma shows that the simple geometric interpretation of formula (7.13) is
valid when the subregion is not triangular.

Lemma 12.5. If a subregion is not a triangle and is not the subregion containing the
anchored simplices around an upright diagonal, the cone of arcradius

ψ = arccos(|v|/(2t0))

centered along {0, v}, where v is a corner of the subcluster, does not cross out of the
subregion.

Proof. For a contradiction, let {v1, v2} be a distinguished edge that the cone crosses. If
both edges {v, v1} and {v, v2} have length less than 2t0, there can be no enclosed vertex
w of height at most 2t0, unless its distance from v1 and v2 is less than 2t0:

E(S(2, 2, 2, 2t0, 2t0, 3.2), 2t0, 2, 2) > 2t0.

In this case we can replace {v1, v2} by an edge of the subregion closer to v, so without
loss of generality we may assume that there are no enclosed vertices when both edges
{v, v1} and {v, v2} have length less than 2t0.

The subregion is not a triangle, so |v−v1| ≥ 2t0, or |v−v2| ≥ 2t0, say |v−v1| ≥ 2t0.
Also |v − v2| ≥ 2. Pivot so that |v1 − v2| = 3.2, |v − v1| = 2t0, and |v − v2| = 2. (The
simplex {0, v1, v2, v} cannot collapse (� �= 0) as we pivot. For more details about why
� �= 0, see inequality (12.2) in Section 12.7.) Then use71 βψ ≤ dih3.

As a consequence, in nonspecial standard regions, the terms in the formula (7.13) for
vor0 retain their interpretations as quoins, Rogers simplices, t0-cones, and solid angles,
all lying in the cone over the standard region.

12.5. Proof

The proof of the theorem occupies the rest of the section. The inequalities for triangular
and quadrilateral regions have already been proved. The bounds on t3, t4, s3, and s4 are
found in Lemma 10.1, Section 11.1, Lemma 8.10, and Theorem 8.4, respectively. Thus,
we may assume throughout the proof that the standard region is exceptional

We begin with a slightly simplified account of the method of the proof. Set t9 =
0.6978, t10 = 0.7891, tn = (4πζ − 8) pt, for n ≥ 11. Set D(n, k) = tn+k − 0.06585 k,
for 0 ≤ k ≤ n, and n + k ≥ 4. This function satisfies

D(n1, k1)+ D(n2, k2) ≥ D(n1 + n2 − 2, k1 + k2 − 2). (12.1)

71 CALC-193836552.
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In fact, this inequality unwinds to tr + 0.13943 ≥ tr+1, D(3, 2) = 0.13943, and tn =
(0.06585)2+ (n − 4)D(3, 2), for n = 4, 5, 6, 7. These hold by inspection.

Call an edge between two vertices of height at most 2t0 long if it has length greater
than 2t0. Add the distinguished edges to break the standard regions into subregions. We
say that a subregion has edge parameters (n, k) if there are n bounding edges, where k
of them are long. (We count edges with multiplicities as in Section 12.1, if the subregion
is not a polygon.) Combining two subregions of edge parameters (n1, k1) and (n2, k2)

along a long edge e gives a union with edge parameters (n1 + n2 − 2, k1 + k2 − 2),
where we agree not to count the internal edge e that no longer bounds. Inequality (12.1)
localizes the main theorem to what is squandered by subclusters. Suppose we break the
standard cluster into groups of subregions such that if the group has edge parameters
(n, k), it squanders at least D(n, k). Then by superadditivity (formula (12.1)), the full
standard cluster R must squander D(n, 0) = tn , n = n(R), giving the result.

Similarly, define constants s4 = 0, s9 = −0.1972, sn = 0, for n ≥ 10. Set Z(n, k) =
sn+k − kε, for (n, k) �= (3, 1), and Z(3, 1) = ε, where72 ε = 0.00005. The function
Z(n, k) is subadditive:

Z(n1, k1)+ Z(n2, k2) ≤ Z(n1 + n2 − 2, k1 + k2 − 2).

In fact, this easily follows from sa + sb ≤ sa+b−4, for a, b ≥ 4, and ε > 0. It will be
enough in the proof of Theorem 12.1 to show that the score of a union of subregions
with edge parameters (n, k) is at most Z(n, k).

12.6. Preparation of the Standard Cluster

Fix a standard cluster. We return to the construction of subregions and distinguished
edges, to describe the penalties. Take the penalty of 0.008 for each 3-unconfined upright
diagonal. Take the penalty 0.03344 = 3ξ + ξκ, for 4-crowded upright diagonals. Take
the penalty 0.04683 = 3ξ for 3-crowded upright diagonals. Set πmax = 0.06688. The
penalty in the next lemma refers to the combined penalty from erasing all 3-unconfined,
3-crowded, and 4-crowded upright diagonals in the decomposition star. The upright
quarters that completely surround an upright diagonal (loops) are not erased.

Lemma 12.6. The total penalty from a contravening decomposition star is at most
πmax.

Proof. Before any upright quarters are erased, each quarter squanders73 > 0.033, so
the star squanders> (4πζ−8) pt if there are twenty-five or more quarters. Assume there
are at most twenty-four quarters. If the only penalties are 0.008, we have 8(0.008) <
πmax. If we have the penalty 0.04683, there are at most seven other quarters (0.5606 +
8(0.033) > (4πζ − 8) pt) (Lemma 11.11), and no other penalties from this type or from
4-crowded upright diagonals, so the total penalty is at most 2(0.008)+0.04683 < πmax.

72 Compare CALC-193836552.
73 CALC-148776243.
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Finally, if there is one 4-crowded upright diagonal, there are at most twelve other quarters
(Section 11.7), and erasing gives the penalty 0.03344+ 4(0.008) < πmax.

The remaining upright diagonals are surrounded by anchored simplices. If the edge
opposite the diagonal in an anchored simplex has length ≥ 2

√
2, then there may be an

adjacent special simplex whose diagonal is that edge. Section 13.12 will give bounds on
the aggregate of these anchored simplices and special simplices. In all other contexts,
the upright quarters have been erased with penalties.

Break the standard cluster into subclusters as in Section 12.3. If the subregion is a
triangle, we refer to the bounds of Section 13.8. Sections 12.7–13.11 give bounds for
subregions that are not triangles in which all the upright quarters have been erased.
We follow the strategy outlined in Section 12.5, although the penalties will add certain
complications.

We now assume that we have a subcluster without quarters and whose region is not
triangular. The truncated function vor0 is an upper bound on the score. Penalties are
largely disregarded until Section 13.4.

We describe a series of deformations of the subcluster that increase vor0,P(D) and
decrease τ0,P(D). These deformations disregard the broader geometric context of the
subcluster. Consequently, we cannot claim that the deformed subcluster exists in any
decomposition star D. As the deformation progresses, an edge {v1, v2}, not previously
distinguished, can emerge with the properties of a distinguished edge. If so, we add it
to the collection of distinguished edges, use it if possible to divide the subcluster into
smaller subclusters, and continue to deform the smaller pieces. When triangular regions
are obtained, they are set aside until Section 13.8.

12.7. Reduction to Polygons

By deformation we can produce subregions whose boundary is a polygon. Let U be
the set of vertices over the subregion of height ≤ 2t0. As in Section 12.1, the distin-
guished edges partition U into equivalence classes. Move the vertices in one equiv-
alence class U1 as a rigid body preserving heights until the class comes sufficiently
close to form a distinguished edge with another subset. Continue until all the vertices
are interconnected by paths of distinguished edges. vor0 and τ0 are unchanged by these
deformations.

If some vertex v is connected to three or more vertices by distinguished edges, it
follows from the connectedness of the open subregion that there is more than one con-
nected component Ui (by paths of distinguished edges) of U\{v}. Move U1∪{v} rigidly
preserving heights and keeping v fixed until a distinguished edge forms with another
component. Continue until the distinguished edges break the subregions into subregions
with polygon boundaries. Again vor0 and τ0 are unchanged.

By the end of Section 12, we will deform all subregions into convex polygons.

Remark 12.7. We will deform in such a way that the edges {v1, v2} will maintain a
length of at least 2. The proof that distances of at least 2 are maintained is given in
Section 12.13.
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We will deform in such a way that no vertex crosses a boundary of the subregion
passing from the outside to the inside.

Edge length constraints prevent a vertex from crossing a boundary of the subregion
from the inside to the outside. In fact, if v is to cross the edge {v1, v2}, the simplex
S = {0, v1, v, v2} attains volume 0. We may assume, by the argument of the proof of
Lemma 12.4, that there are no vertices enclosed over S. Because we are assuming that
the subregion is not a triangle, we may assume that |v−v1| > 2t0. We have |v| ∈ [2, 2t0].
If v is to cross {v1, v2}, we may assume that the dihedral angles of S along {0, v1} and
{0, v2} are acute. Under these constraints, by the explicit formulas of Section 8 of [Ha6],
the vertex v cannot cross out of the subregion

�(S) ≥ �(2t2
0 , 4, 4, 3.22, 4, 2t2

0 ) > 0. (12.2)

We say that a corner v1 is visible from another v2 if {v1, v2} lies over the subregion. A
deformation may make v1 visible from v2, making it a candidate for a new distinguished
edge. If |v1 − v2| ≤ 3.2, then as soon as the deformation brings them into visibility
(obstructed until then by some v), inequality (12.2) shows that |v1−v|, |v2−v| ≤ 2t0. So

v1, v, v2 are consecutive edges on the polygonal boundary, and |v1− v2| ≥ 2
√

4− t2
0 >√

8. By the distinguished edge conditions for special simplices, {v1, v2} is too long to
be distinguished. In other words, there can be no potentially distinguished edges hidden
behind corners. They are always formed in full view.

12.8. Some Deformations

Definition 12.8. Consider three consecutive corners v3, v1, v2 of a subcluster R such
that the dihedral angle of R at v1 is greater than π . We call such a corner concave. (If
the angle is less than π , we call it convex.) Similarly, the angle of a subregion is said to
be convex or concave depending on whether it is less than or greater than π .

Let S = S(y1, . . . , y6) = {0, v1, v2, v3}, yi = |vi |. Suppose that y6 > y5. Let xi = y2
i .

Lemma 12.9. At a concave vertex, ∂ vor0 /∂x5 > 0 and ∂τ0/∂x5 < 0.

Proof. As x5 varies, dihi (S) + dihi (R) is constant for i = 1, 2, 3. The part of for-
mula (7.13) for vor0 that depends on x5 can be written

−B(y1) dih(S)− B(y2) dih2(S)− B(y3) dih3(S)− 4δoct(quo(R135)+ quo(R315)),

where B(yi ) = A(yi/2) + ϕ0, R135 = R(y1/2, b, t0), R315 = R(y3/2, b, t0), b =
η(y1, y3, y5), and A(h) = (1 − h/t0)(ϕ(h, t0) − ϕ0). Set u135 = u(x1, x3, x5) and
�i = ∂�/∂xi . (The notation comes from Section 8 of [Ha6] and Section 7 of this issue.)
We have

∂ quo(R(a, b, c))

∂b
= −a(c2 − b2)3/2

3b(b2 − a2)1/2
≤ 0
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and ∂b/∂x5 ≥ 0. Also, u ≥ 0, � ≥ 0 (see Section 8 of [Ha6]). So it is enough to show

V0(S) = u135�
1/2 ∂

∂x5
(B(y1) dih(S)+ B(y2) dih2(S)+ B(y3) dih3(S)) < 0.

By the explicit formulas of Section 8 of [Ha6], we have

V0(S) = −B(y1)y1�6 + B(y2)y2u135 − B(y3)y3�4.

For τ0, we replace B with B − ζpt. It is enough to show that

V1(S) = −(B(y1)− ζpt)y1�6 + (B(y2)− ζpt)y2u135 − (B(y3)− ζpt)y3�4 < 0.

The lemma now follows from an interval calculation. We note that the polynomials
Vi are linear in x4, and x6, and this may be used to reduce the dimension of the
calculation.

We give a second form of the lemma when the dihedral angle of R is less than π , that
is, at a convex corner.

Lemma 12.10. At a convex corner, ∂ vor0 /∂x5 < 0 and ∂τ0/∂x5 > 0, if y1, y2, y3 ∈
[2, 2t0], � ≥ 0, and (i) y4 ∈ [2

√
2, 3.2], y5, y6 ∈ [2, 2t0], or (ii) y4 ≥ 3.2, y5, y6 ∈

[2, 3.2].

Proof. We adapt the proof of the previous lemma. Now dihi (S)− dihi (R) is constant,
for i = 1, 2, 3, so the signs change. vor0 depends on x5 through∑

B(yi ) dihi (S)− 4δoct(quo(R135)+ quo(R315)).

So it is enough to show that

V0 − 4δoct�
1/2u135

∂

∂x5
(quo(R135)+ quo(R315)) < 0.

Similarly, for τ0, it is enough to show that

V1 − 4δoct�
1/2u135

∂

∂x5
(quo(R135)+ quo(R315)) < 0.

By an interval calculation74

−4δoctu135
∂

∂x5
(quo(R135)+ quo(R315)) < 0.82, on [2, 2t0]3,

< 0.5, on [2, 2t0]3, y5 ≥ 2.189.

The result now follows from the inequalities.75

74 CALC-984628285.
75 CALC-984628285.
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Return to the situation of concave corner v1. Let v2, v3 be the adjacent corners. By
increasing x5, the vertex v1 moves away from every corner w for which {v1, w} lies
outside the region. This deformation then satisfies the constraint of Remark 12.7. Stretch
the shorter of {v1, v2}, {v1, v3} until |v1 − v2| = |v1 − v3| = 3.07 (or until a new
distinguished edge forms, etc.). Do this at all concave corners.

By stopping at 3.07, we prevent a corner crossing an edge from the outside to the
inside. Let w be a corner that threatens to cross a distinguished edge {v1, v2} as a result
of the motion at a nonconvex vertex. To say that the crossing of the edge is from the
outside to the inside implies more precisely that the vertex being moved is an endpoint,
say v1, of the distinguished edge. At the moment of crossing the simplex {0, v1, v2, w}
degenerates to a planar arrangement, with the radial projection of w lying over the
geodesic arc connecting the radial projections of v1 and v2. To see that the crossing
cannot occur, it is enough to note that the volume of a simplex with opposite edges of
lengths at most 2t0 and 3.07 and other edges at least 2 cannot be planar. The extreme
case is

�(22, 22, (2t0)
2, 22, 22, 3.072) > 0.

If |v1| ≥ 2.2, we can continue the deformations even further. We stretch the shorter
of {v1, v2} and {v1, v3} until |v1 − v2| = |v1 − v3| = 3.2 (or until a new distinguished
edge forms, etc.). Do this at all concave corners v1 for which |v1| ≥ 2.2. To see that
corners cannot cross an edge from the outside to the inside, we argue as in the previous
paragraph, but replacing 3.07 with 3.2. The extreme case becomes

�(2.22, 22, (2t0)
2, 22, 22, 3.22) > 0.

12.9. Truncated Corner Cells

Because of the arguments in Section 12.8, we may assume without loss of generality
that we are working with a subregion with the following properties. If v is a concave
vertex and w is not adjacent to v, and yet is visible from v, then |v − w| ≥ 3.2. If v is
a concave corner, then |v − w| ≥ 3.07 for both adjacent corners w. If v is a concave
corner and |v| ≥ 2.2, then |v−w| ≥ 3.2 for both adjacent corners w. These hypotheses
will remain in force through to the end of Section 12.

Recall from Definition 12.8 that we call a spherical region convex if its interior angles
are all less than π . The case where the subregion is a convex triangle will be treated in
Section 13.8. Hence, we may also assume in Sections 12.9–12.12 that the subregion is
not a convex triangle.

We construct a corner cell at each corner. It depends on a parameter λ ∈ [1.6, 1.945].
In all applications, we take λ = 1.945 = 3.2− t0, λ = 1.815 = 3.07− t0, or λ = 1.6 =
3.2/2.

To construct the cell around the corner v, place a triangle along {0, v} with sides
|v|, t0, λ (with λ opposite the origin). Generate the solid of rotation around the axis
{0, v}. Extend to a cone over 0. Slice the solid by the perpendicular bisector of {0, v},
retaining the part near 0. Intersect the solid with a ball of radius t0. The cones over the
two boundary edges of the subregion at v make two cuts in the solid. Remove the slice
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that lies outside the cone over the subcluster. What remains is the corner cell at v with
parameter λ.

Corner cells at corners separated by a distance less than 2λ may overlap. We define
a truncation of the corner cell that has the property that the truncated corner cells at
adjacent corners do not overlap. Let {0, vi , vj }⊥ denote the plane perpendicular to the
plane {0, vi , vj } passing through the origin and the circumcenter of {0, vi , vj }.

Let v1, v2, v3 be consecutive corners of a subcluster. Take the corner cell with param-
eter λ at the corner v2. Slice it by the planes {0, v1, v2}⊥ and {0, v2, v3}⊥, and retain the
part along the edge {0, v2}. This is the truncated corner cell (tcc). By construction tcc’s at
adjacent corners are separated by a plane (0, ·, ·)⊥. Tcc’s at nonadjacent corners do not
overlap if the corners are≥ 2λ apart. Tcc’s will only be used in subregions satisfying this
condition. It will be shown in Section 12.11 that tcc’s lie in the cone over the subregion
(for suitable λ).

12.10. Formulas for Truncated Corner Cells

We will assign a score to tcc’s, in such a way that the score of the subcluster can be
estimated from the scores of the corner cells.

We write C0 for a tcc. We write Cu
0 for the corresponding untruncated corner cell.

(Although we call this the untruncated corner cell to distinguish it from the corner cell,
it is still truncated in the sense that it lies in the ball at the origin of radius t0. It is
untruncated in the sense that it is not cut by the planes (· · ·)⊥.)

For any solid body X , we define the geometric truncated function by

vorg
0(X) = 4(−δoct vol(X)+ sol(X)/3)

the counterpart for squander

τ
g
0 (X) = ζpt sol(X)− vorg

0(X).

The solid angle is to be interpreted as the solid angle of the cone formed by all rays
from the origin through nonzero points of X . We may apply these definitions to obtain
formulas for vorg

0(C0), and so forth.
The formula for the score of a tcc differs slightly according to the convexity of the

corner. We start with a convex corner v, and let v1, v, and v2 be consecutive corners in
the subregion.

Let S = {0, v, v1, v2} be a simplex with |v1 − v2| ≥ 3.2. The formula for the score
of a tcc C0(S) simplifies if the face of C0 cut by {0, v, v1}⊥ does not meet the face cut
by {0, v, v2}⊥. We make that assumption in this subsection. Set χ0(S) = vorg

0(C0(S)).
(The function χ0 is unrelated to the function χ that was introduced in Definition 5.14 to
measure the orientation of faces.)

ψ = arc(y1, t0, λ), h = y1/2,

R′126 = R(y1/2, η126, y1/(2 cosψ)), R126 = R(y1/2, η126, t0),

sol′(y1, y2, y6) = + dih(R′126)(1− cosψ)− sol(R′126),
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χ0(S) = dih(S)(1− cosψ)ϕ0

− sol′(y1, y2, y6)ϕ0 − sol′(y1, y3, y5)ϕ0

+ A(h) dih(S)− 4δoct(quo(R126)+ quo(R135)).

In the three lines giving the formula for χ0, the first line represents the score of the cone
before it is cut by the planes {0, v, vi }⊥ and the perpendicular bisector of {0, v}. The
second line is the correction resulting from cutting the tcc along the planes {0, v, vi }⊥.
The face of the Rogers simplex R′126 lies along the plane {0, v, v1}⊥. The third line is
the correction from slicing the tcc with the perpendicular bisector of {0, v}. This last
term is the same as the term appearing for a similar reason in the formula for vor0 in
formula (7.13). In this formula R is the usual Rogers simplex and quo(Ri jk) is the quoin
coming from a Rogers simplex along the face with edges (i jk).

The formula for the untruncated corner cell is obtained by setting “sol′” and “quo” to
“0” in the expression for χ0. Thus,

vorg(Cu
0) = dih(S)[(1− cosψ)ϕ0 + A(h)].

The formula depends only on λ, the dihedral angle, and the height |v|. We write Cu
0 =

Cu
0(|v|, dih), and suppress λ from the notation. The dependence on dih(S) is linear:

τ
g
0 (C

u
0(|v|, dih)) = (dih /π)τ g

0 (C
u
0(|v|, π)).

The dependence of χ0 on the fourth edge y4 = |v1 − v2| comes through a term
proportional to dih(S). Since the dihedral angle is monotonic in y4, so is χ0. Thus, under
the assumption that |v1 − v2| ≥ 3.2, we obtain an upper bound on χ0 at y4 = 3.2. Our
deformations will fix the lengths of the other five variables, and monotonicity gives us
the sixth. Thus, the tcc’s lead to an upper bound on vorg

0 (and a lower bound on τ g
0 ) that

does not require interval arithmetic.
At a concave vertex, the formula is similar. Replace “dih(S)” with “(2π − dih(S))”

in the given expression for χ0. We add a superscript minus to the name of the function
at concave vertices, to denote this modification: χ−0 (C0).

12.11. Containment of Truncated Corner Cells

The assumptions made at the beginning of Section 12.9 remain in force.

Lemma 12.11. Let v be a concave vertex with |v| ≥ 2.2. The tcc at v with parameter
λ = 1.945 lies in the truncated V -cell over R.

Proof. Consider a corner cell at v and a distinguished edge {v1, v2} forming the bound-
ary of the subregion. The corner cell with parameter λ = 1.945 is contained in a cone of
arcradius θ = arc(2, t0, λ) < 1.21 < π/2 (in terms of the function arc of Section 9.7).
Take two corners w1, w2, visible from v, between which the given bounding edge ap-
pears. (We may havewi = vi .) The two visible edges, {v,wi }, have length≥ 3.2. (Recall
that the distinguished edges at v have been deformed to length 3.2.) They have arc-length
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at least arc(2t0, 2t0, 3.2) > 1.38. The segment of the distinguished edge {v1, v2} visible
from v has arc-length at most arc(2, 2, 3.2) < 1.86.

We check that the corner cell cannot cross the visible portion of the edge {v1, v2}.
Consider the spherical triangle formed by the edges {v,w1}, {v,w2} (extended as needed)
and the visible part of {v1, v2}. Let C be the radial projection of v and let AB be the
radial projection of the visible part of {v1, v2}. Pivot A and B toward C until the edges
AC and BC have arc-length 1.38. The perpendicular from C to AB has length at least

arccos(cos(1.38)/cos(1.86/2)) > 1.21 > θ.

This proves that the corner cell lies in the cone over the subregion.

Lemma 12.12. Let v be a concave vertex. The truncated corner cell at vwith parameter
λ = 1.815 lies in the truncated V -cell over R.

Proof. The proof proceeds along the same lines as the previous lemma, with slightly
different constants. Replace 1.945 with 1.815, 1.38 with 1.316, and 1.21 with 1.1. Re-
place 3.2 with 3.07 in contexts giving a lower bound to the length of an edge at v, and
keep it at 3.2 in contexts calling for an upper bound on the length of a distinguished
edge. The constant 1.86 remains unchanged.

Lemma 12.13. The truncated corner cells with parameter 1.6 in a subregion do not
overlap.

Proof. We may assume that the corners are not adjacent. If a nonadjacent corner w is
visible from v, then |w − v| ≥ 3.2, and an interior point intersection p is incompatible
with the triangle inequality: |p − v| ≤ 1.6, |p − w| < 1.6. If w is not visible, we have
a chain v = v0, v1, . . . , vr = w such that vi+1 is visible from vi . Imagine a taut string
inside the subregion extending from v tow. The radial projections of vi are the corners of
the string’s path. The string bends in an angle greater thanπ at each vi , so the angle at each
intermediate vi is greater than π . That is, they are concave. Thus, by our deformations
|vi − vi+1| ≥ 3.07. The string has arc-length at least r arc(2t0, 2t0, 3.07) > r(1.316).
However, the corner cells lie in cones of arcradius arc(2, t0, λ) < 1. So 2(1.0) >
r(1.316), or r = 1. Thus, w is visible from v.

Lemma 12.14. The corner cell for λ ≤ 1.815 does not overlap the t0-cone wedge
around another corner w.

Proof. We take λ = 1.815. As in the previous proof, if there is overlap along a chain,
then

arc(2, t0, λ)+ arc(2, t0, t0) > r arc(2t0, 2t0, 3.07),

and again r = 1. So each of the two vertices in question is visible from the other.
However, overlap implies |p − v| ≤ 1.815 and |p − w| < t0, forcing the contradiction
|w − v| < 3.07.
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Lemma 12.15. The corner cell for λ ≤ 1.945 at a corner v satisfying |v| ≥ 2.2 does
not overlap the t0-cone wedge around another corner w.

Proof. We take λ = 1.945. As in the previous proof, if there is overlap along a chain,
then

arc(2, t0, λ)+ arc(2, t0, t0) > r arc(2t0, 2t0, 3.2),

and again r = 1. Then the result follows from

|w − v| ≤ |p − v| + |p − w| < 1.945+ t0 = 3.2.

Definition 12.16. By a penalty-free score, we mean the part of the scoring bound that
does not include any of the penalty terms. We sometimes call the full score, including
the penalty terms, the penalty-inclusive score.

Lemma 12.4 was stated in the context of a subregion before deformation, but a cursory
inspection of the proof shows that the geometric conditions required for the proof remain
valid by our deformations. (This assumes that the subregion is not a triangle, which we
assumed at the beginning of Section 12.9.) In more detail, there is a solid C P0 contained
in the ball of radius t0 at the origin, and lying over the cone of the subregion P such that
a bound on the penalty-free subcluster score is vorg

0(C P0) and squander τ g
0 (C P0).

Let {y1, . . . , yr } be a decomposition of the subregion into disjoint regions whose
union is X . Then if we let C P0(yi ) denote the intersection of C P0(yi )with the cone over
yi , we can write

τ
g
0 (C P0) =

∑
i

τ
g
0 (C P0(yi )).

These lemmas allow us to express bounds on the score (and squander) of a subcluster
as a sum of terms associated with individual (truncated) corner cells. By Lemmas 12.11–
12.15, these objects do not overlap under suitable conditions. Moreover, by the interpre-
tation of terms provided by Section 12.4, the cones over these objects do not overlap,
when the objects themselves do not. In other words, under the various conditions, we
can take the (truncated) corner cells to be among the sets C P0(yi ).

To work a typical example, we place a tcc with parameter λ = 1.6 at each concave
corner. We place a t0-cone wedge X0 at each convex corner. The cone over each object
lies in the cone over the subregion. By Lemmas 12.5 and 9.20 (see the proof), the t0-cone
wedge X0 squanders a positive amount. The part P ′ of the subregion outside all tcc’s
and outside the t0-cone wedges squanders

sol(P ′)(ζpt− ϕ0) > 0,

where sol(P ′) is the part of the solid angle of the subregion lying outside the tccs.
Dropping these positive terms, we obtain a lower bound on the penalty-free squander:

τ
g
0 (C P0) ≥

∑
C0

τ
g
0 (C0).

There is one summand for each concave corner of the subregion. Other cases proceed
similarly.



Sphere Packings, IV 139

12.12. Convexity

Lemma 12.17. There are at most two concave corners.

Proof. Use the parameter λ = 1.6 and place a tcc C0 at each concave corner v. Let
Cu

0(|v|, dih) denote the corresponding untruncated cell. The formula of Section 12.10
gives

τ
g
0 (C0) = τ g

0 (C
u
0(|v|, dih))− sol′(y1, y2, y6)ϕ

′
0 − sol′(y1, y3, y5)ϕ

′
0,

where ϕ′0 = ζpt−ϕ0 < 0.6671. (The conditions y5 ≥ 3.07 and y6 ≥ 3.07 force the faces
along the these edges to have circumradius greater than t0, and this causes the “quo”
terms in the formula to be zero.)

By monotonicity in dih, a lower bound on τ g
0 (C

u
0) is obtained at dih=π . τ0(Cu

0(|v|, π))
is an explicit monotone decreasing rational function of |v| ∈ [2, 2t0], which is minimized
for |v| = 2t0. We find

τ0(C
u
0(|v|, dih)) ≥ τ0(C

u
0(2t0, π)) > 0.32.

The term sol′(y1, y3, y5) is maximized when y3 = 2t0, y5 = 3.07, so that sol′ < 0.017.
(This was checked with interval arithmetic in Mathematica.) Thus,

τ0(C0(v)) ≥ 0.32− 2(0.017)ϕ′0 > 0.297.

If there are three or more concave corners, then the penalty-free corner cells squander
at least 3(0.297). The penalty is at most πmax (Section 12.6). So the penalty-inclusive
squander is more than 3(0.297)− πmax > (4πζ − 8) pt.

Lemma 12.18. There are no concave corners of height at most 2.2.

Proof. Suppose there is a corner of height at most 2.2. Place an untruncated corner
cell Cu

0(|v|, dih) with parameter λ = 1.815 at that corner and a t0-cone wedge at every
other corner. The subcluster squanders at least τ0(C0(|v|, π))−πmax. This is an explicit
monotone decreasing rational function of one variable. The penalty-inclusive squander
is at least

τ0(C
u
0(2t0, π))− πmax > (4πζ − 8) pt.

By the assumptions at the beginning of Section 12.9, the lemma implies that each
concave corner has distance at least 3.2 from every other visible corner.

As in the previous lemma, when λ = 1.945, a lower bound on what is squandered
by the corner cell is obtained for |v| = 2t0, dih = π . The explicit formulas give
penalty-free squander> 0.734. Two disjoint corner cells give penalty-inclusive squander
> (4πζ − 8) pt. Suppose two at v1, v2 overlap. The lowest bound is obtained when
|v1 − v2| = 3.2, the shortest distance possible.
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We define a function f (y1, y2) that measures what the union of the overlapping corner
cells squander. Set yi = |vi |, � = 3.2, and

α1 = dih(y1, t0, y2, λ, �, λ),

α2 = dih(y2, t0, y1, λ, �, λ),

sol = sol(y2, t0, y1, λ, �, λ),

ϕi = ϕ(yi/2, t0), i = 1, 2,

λ = 3.2− t0 = 1.945,

f (y1, y2) = 2(ζpt− ϕ0) sol+2
2∑
1

αi (1− yi/(2t0))(ϕ0 − ϕi )

+
2∑
1

τ0(C(yi , λ, π − 2αi )).

An interval calculation76 gives f (y1, y2) > (4πζ − 8) pt+ πmax, for y1, y2 ∈ [2, 2t0].
We conclude that there is at most one concave corner. Let v be such a corner. If we

push v toward the origin, the solid angle is unchanged and vor0 is increased. Following
this by the deformation of Section 12.8, we maintain the constraints |v − w| = 3.2, for
adjacent corners w, while moving v toward the origin. Eventually |v| = 2.2. This is
impossible by Lemma 12.18.

We verify that this deformation preserves the constraint |v − w| ≥ 2, for all corners
w such that {v,w} lies entirely outside the subregion. If fact, every corner is visible from
v, so that the subregion is star convex at v. We leave the details to the reader.

We conclude that all subregions can be deformed into convex polygons.

12.13. Proof that Distances Remain at Least 2

Remark 12.19. In Section 12.7, to allow for more flexible deformations, we drop all
constraints on the lengths of (undistinguished) edges {v1, v2} that cross the boundary of
the subregion. We deform in such a way that the edges {v1, v2} will maintain a length of
at least 2.

Recall that we say that a vertex of a subregion is convex if its angle is less than π ,
and otherwise that is concave (Definition 12.8). In general, if P is a subregion and p1

and p2 are two vertices of P , there is a minimal curve joining p1 and p2 inside P . This
curve is a finite sequence e1, . . . , er of spherical geodesics. We refer to this sequence as
the sequence of arcs from p1 to p2. The endpoint of each spherical arc is a vertex of P .
All endpoints except possibly p1 and p2 are nonconvex. These endpoints are the radial

76 CALC-984628285.
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projections of corners of P: v0, v1, . . . , vr+1, with p(v0) = p1 and p(vr+1) = p2. The
vertex p1 is visible from p2 if and only if r = 1.

Lemma 12.20. This deformation of a subregion at a concave corner v maintains a
distance of at least 2 to every other corner w.

Proof. The proof is by contradiction. We may assume that |v − w| < √8. We may
assume that v and w are the first corners to violate the condition of being at least 2
apart, so that distances between other pairs of corners are at least 2. A distinguished edge
connects v and w, if w is visible from v. So assume that w is not visible. Let e(v1, v2)

be the first distinguished edge crossed by the geodesic arc g from p(v) to p(w). Let p0

be the intersection of e(v1, v2) and g. By construction, the deformation moves v into the
subregion, and the subregion P is concave at the corner v, so that the arc from p(v) to
p(w) begins in P , then crosses out at e(v1, v2).

Geometric considerations show that |v1−v2| ≥ 2.91. In fact, geometric considerations
show that the shortest possible distance for |v1−v2| under the condition that |v−w| ≤ 2
is the length of the segment passing through the triangle of sides 2, 2t0, 2t0 with both
endpoints at distance exactly 2 from all three vertices of the triangle. This distance is
greater than 2.91.

Let e1, . . . , er be the sequence of arcs from p(v) to p(v1), and let f1, . . . , fs be the
sequence of arcs from p(v) to p(v2). Since this sequence forms a minimal curve, the
sum of the lengths of ei is at most the sum of the lengths of e(v, p0) and e(p0, v1), and
the sum of the lengths of fi is at most the sum of the lengths of e(v, p0) and e(p0, v2).

Note that if r + s ≤ 4, then one of the edge-lengths must be at least 3.2, for otherwise
the sequence of arcs are all distinguished or diagonals of specials, and this would not
permit the existence of a corner w. That is, we can fully enumerate the corners of the
subregion, and each projects radially to an endpoint in the sequence of arcs, or is a vertex
of a special simplex. None of these corners is separated from v by the plane {0, v1, v2}.

We have r + s ≤ 3 by the following calculations; here y ∈ [2, 2t0]:

5 arc(2t0, 2t0, 2) > arc(2, 2, 3.2)+ 2 arc(2, 2, 2),

3 arc(2t0, 2t0, 2)+ arc(2t0, y, 3.2) > arc(y, 2, 3.2)+ 2 arc(2, 2, 2),

3 arc(2t0, 2t0, 2)+ arc(2t0, y, 3.2) > arc(2, 2, 3.2)+ 2 arc(y, 2, 2).

First we prove the lemma in the special case that the distance from v to one of the
endpoints, sayv1, of {v1, v2} is at least 3.2. In this special case we claim that the constraints
on the edge-lengths creates an impossible geometric configuration. The constraints are
as follows. There are five points: 0, v1, w, v, v2. The plane {0, v1, v2} separates point w
from v. The distance constraints are as follows:

2 ≤ |u| ≤ 2t0,

for u = v1, w, v, v2, |v−v1| ≥ 3.2, |v−w| ≤ 2, |v−v2| ≥ 2, |w−v1| ≥ 2, |w−v2| ≥ 2,
and 2 ≤ |v1 − v2| ≤ 3.2.
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If the segment {v,w} passes through the triangle {0, v1, v2}, then the desired impos-
sibility proof follows by geometric considerations. Again, if the segment {v1, v2} passes
through the triangle {0, v, w}, then the desired impossibility proof follows by geometric
considerations, provided that {0, v1, v2, w} are not coplanar. Assume for a contradiction
that {0, v1, v2, w} lie in the plane P . We move back to the nonplanar case if |v2 − v| is
not 2 (pivot v2 around {0, w} toward v), if |v1 − v| is not 3.2 (pivot v1 around {0, w}
toward v), if |w− v| is not 2 (pivotw around {v1, v2} away from v), or v is not 2t0 (pivot
v andw simultaneously preserving |w− v| around {v1, v2}). Therefore, we may assume
without loss of generality that |v2 − v| = 2, |v1 − v| = 3.2, |w− v| = 2, and |v| = 2t0.

Let p be the orthogonal projection of v to the plane P . Let h = |v− p|. The distances
from p to u ∈ P is f (|v−u|, h) =

√
|v − u|2 − h2. We consider two cases depending on

whether we can find a line in P through p dividing the plane into a half-plane containing
v1, 0, and v2, or into a half-plane containing v1, w, and v2. In the first case we have

0 = arc(|p − v1|, |p|, |v1|)+ arc(|p − v2|, |p|, |v2|)
− arc(|p − v1|, |p − v2|, |v1 − v2|)

≥ arc( f (3.2, h), f (2t0, h), 2)+ arc( f (2, h), f (2t0, h), 2)

− arc( f (3.2, h), f (2, h), 3.2). (12.3)

The function arc is monotonic in the arguments and from this it follows easily that
this function of h is positive on its domain 0 ≤ h ≤ √3. This is a contradiction. (The
upper bound

√
3 is determined by the condition that the triangle {w, v1, v}, which is

equilateral in the extreme case, exists under the given edge constraints.) In the second
case, we obtain the related contradiction

0 = arc(|p − v1|, |p − w|, |v1 − w|)+ arc(|p − v2|, |p − w|, |v2 − w|)
− arc(|p − v1|, |p − v2|, |v1 − v2|)

≥ arc( f (3.2, h), f (2, h), 2)+ arc( f (2, h), f (2, h), 2)

− arc( f (3.2, h), f (2, h), 3.2)

> 0. (12.4)

Now assume that the distances from v to the vertices v1 and v2 are at most 3.2.
If r + s = 2, then v1 and v2 are visible from v. Thus, they are distinguished or

diagonals of special simplices. As {v1, v2} is also distinguished, the corners of P are
fully enumerated: v, v1, v2, and the vertices of special simplices. Since none of these are
w, we conclude that w does not exist in this case.

If r+s = 3, then say r = 1 and s = 2. We have {v, v1} is distinguished or the diagonal
of a special simplex. Let p(v), p(u) be the endpoints of f1, for some corner u. We have
|u − v1| ≥

√
8 because {u, v1} is not distinguished, and max(|u − v|, |u − v1|) ≥ 3.2,

because otherwise we enumerate all vertices of P as in the case r + s = 2, and find that
w is not among them. However, now geometric considerations lead to a contradiction:
there does not exist a configuration of five points 0, u, v, v1, v2, with all distances at
least 2 satisfying these constraints. (This can be readily solved by geometric considera-
tions.)
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13. Convex Polygons

13.1. Deformations

We divide the bounding edges over the polygon according to length [2, 2t0], [2t0, 2
√

2],
[2
√

2, 3.2]. The deformations of Section 12.8 contract edges to the lower bound of the
intervals (2, 2t0, or 2

√
2) unless a new distinguished edge is formed. By deforming the

polygon, we assume that the bounding edges have length 2, 2t0, or 2
√

2. (There are a
few instances of triangles or quadrilaterals that do not satisfy the hypotheses needed for
the deformations. These instances are treated in Sections 13.8 and 13.9.)

Lemma 13.1. Let S = S(y1, . . . , y6) be a simplex, with xi = y2
i , as usual. Let y4 ≥ 2,

� ≥ 0, y5, y6 ∈ {2, 2t0, 2
√

2}. Fixing all the variables but x1, let f (x1) be one of the
functions s-vor0(S) or −τ0(S). We have f ′′(x1) > 0 whenever f ′(x1) = 0.

Proof. This is an interval calculation.77

The lemma implies that f does not have an interior point local maximum for x1 ∈
[22, 2t2

0 ]. Fix three consecutive corners, v0, v1, v2 of the convex polygon, and apply the
lemma to the variable x1 = |v1|2 of the simplex S = {0, v0, v1, v2}. We deform the
simplex, increasing f . If the deformation produces�(S) = 0, then some dihedral angle
is π , and the arguments for nonconvex regions bring us eventually back to the convex
situation. Eventually y1 is 2 or 2t0. Applying the lemma at each corner, we may assume
that the height of every corner is 2 or 2t0. (There are a few cases where the hypotheses
of the lemma are not met, and these are discussed in Sections 13.8 and 13.9.)

Lemma 13.2. The convex polygon has at most seven sides.

Proof. Since the polygon is convex, its perimeter on the unit sphere is at most a great
circle 2π . If there are eight sides, the perimeter is at least 8 arc(2t0, 2t0, 2) > 2π .

13.2. Truncated Corner Cells

The following lemma justifies using tcc’s at the corners as an upper bound on the score
(and a lower bound on what is squandered). We fix the truncation parameter at λ = 1.6.

Lemma 13.3. Take a convex subregion that is not a triangle. Assume edges between
adjacent corners have lengths ∈ {2, 2t0, 2

√
2, 3.2}. Assume nonadjacent corners are

separated by distances ≥ 3.2. Then the truncated corner cell at each vertex lies in the
cone over the subregion.

77 CALC-311189443.



144 T. C. Hales

Proof. Place a tcc at v1. For a contradiction, let {v2, v3} be an edge that the tcc overlaps.
Assume first that |v1 − vi | ≥ 2t0, i = 2, 3. Pivot so that |v1 − v2| = |v1 − v3| = 2t0.
Write S(y1, . . . , y6) = {0, v1, v2, v3}. Set ψ = arc(y1, t0, 1.6). A calculation78 gives
βψ(y1, y2, y6) < dih2(S).

Now assume |v1 − v2| < 2t0. By the hypotheses of the lemma, |v1 − v2| = 2. If
|v1−v3| < 3.2, then {0, v1, v2, v3} is triangular, contrary to hypothesis. So |v1−v3| ≥ 3.2.
Pivot so that |v1 − v3| = 3.2. Then79

βψ(y1, y2, y6) < dih2(S),

where ψ = arc(y1, t0, 1.6), provided y1 ∈ [2.2, 2t0]. Also, if y1 ∈ [2.2, 2t0], then

arc(y1, t0, 1.6) < arc(y1, y2, y6).

If y1 ≤ 2.2, then �1 ≥ 0, so ∂ dih2 /∂x3 ≤ 0. Set x3 = 2t2
0 . Also, �6 ≥ 0, so

∂ dih2/∂x4 ≤ 0. Set x4 = 3.22.
Let c be a point of intersection of the plane {0, v1, v2}⊥ with the circle at distance

λ = 1.6 from v1 on the sphere centered at the origin of radius t0. The angle along {0, v2}
between the planes {0, v2, v1} and {0, v2, c} is

dih(R(y2/2, η126, y1/(2 cosψ))).

This angle is less80 than dih2(S). Also, �1 ≥ 0, ∂ dih3 /∂x2 ≤ 0, so set x2 = 2t2
0 . Then

�5 < 0, so dih2 > π/2. This means that {0, v1, v2}⊥ separates the tcc from the edge
{v2, v3}.

13.3. Analytic Continuation

In this subsection we assume that λ = 1.6 and that the tcc under consideration lies at a
convex vertex.

Assume that the face cut by {0, v, v1}⊥ meets the face cut by {0, v, v2}⊥. Let ci be the
point on the plane {0, v, vi }⊥ satisfying |ci − v| = 1.6, |ci | = t0. (Pick the root within
the wedge between v1 and v2.) The overlap of the two faces is represented in Fig. 13.1.

We let c0 be the point of height t0 on the intersection of the planes {0, v, v1}⊥ and
{0, v, v2}⊥. We claim that c0 lies over the truncated spherical region of the tcc, rather than
the wedges of t0-cones or the Rogers simplices along the faces {0, v, v1} and {0, v, v2}.
(This implies that c0 cannot protrude beyond the corner cell as depicted in the second
frame of the figure.) To see the claim, consider the tcc as a function of y4 = |v1 − v2|.
When y4 is sufficiently large the claim is certainly true. Contract y4 until c0 = c0(y4)

meets the perpendicular bisector of {0, v}. Then c0 is equidistant from 0, v, v1 and v2 so it
is the circumcenter of {0, v, v1, v2}. It has distance t0 from the origin, so the circumradius
is t0. This implies that y4 ≤ 2t0.

78 CALC-193836552.
79 CALC-193836552.
80 CALC-193836552.
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Fig. 13.1. Different forms of truncated corner cells are shown. The structure shown in the middle frame
cannot occur.

The tcc is defined by the constraints represented in the third frame. The analytic
continuation of the function χ0(S) = χ an

0 (S), defined above, acquires a volume X ,
counted with a negative sign, lying under the spherical triangle (c0, c1, c2). Extending
our notation, we have an analytically defined function χ an

0 and a geometrically defined
function χg

0 ,

χ an
0 (S) = χ

g
0 (S)− c-vor0(X), where

c-vor0(X) = 4(−δoct vol(X)+ sol(X)/3) = ϕ0 sol(X) < 0.

So χ an
0 > χ

g
0 , and we may always use χ0(S) = χ an

0 (S) as an upper bound on the score
of a tcc.

For example, with λ = 1.6 and S = S(2.3, 2.3, 2.3, 2.9, 2, 2), we have

χ an
0 (S) ≈ −0.103981, χ

g
0 (S) ≈ −0.105102,

or, if S = S(2, 2, 2t0, 3.2, 2, 2t0), then

χ an
0 (S) ≈ −0.0718957, χ

g
0 (S) ≈ −0.0726143.

13.4. Penalties

In Section 12.6 we determined the bound of πmax = 0.06688 on penalties. In this section
we give a more thorough treatment of penalties. Until now a penalty has been associated
with a given standard region, but by taking the worst case on each subregion, we can
move the penalties to the level of subregions. Roughly, each subregion should incur
the penalties from the upright quarters that were erased along edges of that subregion.
Each upright quarter of the original standard region is attached at an edge between
adjacent corners of the standard cluster. The edges have lengths between 2 and 2t0.
The deformations shrink the edges to length 2. We attach the penalty from the upright
quarter to this edge of this subregion. In general, we divide the penalty evenly among the
upright quarters along a common diagonal, without trying to determine a more detailed
accounting. For example, the penalty 0.008 in Lemma 11.23 comes from three upright
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quarters. Thus, we give each of three edges a penalty of 0.008/3, or, if there are only two
upright quarters around the 3-unconfined upright diagonal, then each of the two upright
quarters is assigned the penalty 0.00222/2 (see Lemma 11.23).

The penalty 0.04683 = 3ξ in Section 12.6 comes from three upright quarters around
a 3-crowded upright diagonal. Each of three edges is assigned a penalty of ξ . The penalty
0.03344 = 3ξ + ξκ, comes from a 4-crowded upright diagonal of Section 11.7. It is
divided among four edges. These are the only upright quarters that take a penalty when
erased. (The case of two upright quarters over a flat quarter as in Lemma 11.3, are treated
by a separate argument in Section 13.8. Loops are discussed in Section 13.12.)

The penalty can be reduced in various situations involving a masked flat quarter. For
example, around a 3-crowded upright diagonal, if there is a masked flat quarter, two of
the upright quarters are scored by the analytic function s-vor, so that the penalty plus
adjustment is only81,82 0.034052 = 2ξV + ξ + 0.0114. The adjustment 0.0114 reflects
the scoring rules for masked flat quarters (Lemma 11.23). This we divide evenly among
the three edges that carried the upright quarters. If e is an edge of the subregion R, let
π0(R, e) denote the penalty and score adjustment along edge e of R.

In summary, we have the penalties,

ξκ, ξV , ξ, 0.008,

combined in various ways in the upright diagonals that are 3-unconfined, 3-crowded, or
4-crowded. There are score adjustments

0.0114 and 0.0063

from Section 11.9 for masked flat quarters. If the sum of these contributions is s, we set
π0(R, e) = s/n, for each edge e of R originating from an erased upright quarter of S±n .

13.5. Penalties and Bounds

Recall that the bounds for flat quarters we wish to establish from Section 12.5 are
Z(3, 1) = 0.00005 and D(3, 1) = 0.06585. Flat quarters arise in two different ways.
Some flat quarters are present before the deformations begin. They are scored by the
rules of Section 11.9. Others are formed by the deformations. In this case they are scored
by vor0. Since the flat quarter is broken away from the subregion as soon as the diagonal
reaches 2

√
2, and then is not deformed further, the diagonal is fixed at 2

√
2. Such flat

quarters can violate our desired inequalities. For example,

Z(3, 1) < s-vor0(S(2, 2, 2, 2
√

2, 2, 2)) ≈ 0.00898,

τ0(S(2, 2, 2, 2
√

2, 2, 2)) ≈ 0.0593.

On the other hand, as we will see, the adjacent subregion satisfies the inequality by a
comfortable margin. Therefore, we define a transfer ε from flat quarters to the adjacent

81 CALC-73974037.
82 CALC-764978100.
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subregion. (In an exceptional region, the subregion next to a flat quarter along the diagonal
is not a flat quarter.)

For a flat quarter Q, set

ετ (Q) =
{

0.0066 (deformation),
0 (otherwise),

εσ (Q) =
{

0.009 (deformation),
0 (otherwise).

The nonzero value occurs when the flat quarter Q is obtained by deformation from an
initial configuration in which Q is not a quarter. The value is zero when the flat quarter
Q appears already in the undeformed standard cluster. Set

πτ (R) =
∑

e

π0(R, e)+
∑

e

π0(Q, e)+
∑

Q

ετ (Q),

πσ (R) =
∑

e

π0(R, e)+
∑

e

π0(Q, e)+
∑

Q

εσ (Q).

The first sum runs over the edges of a subregion R. The second sum runs over the edges
of the flat quarters Q that lie adjacent to R along the diagonal of Q.

The edges between corners of the polygon have lengths 2, 2t0, or 2
√

2. Let k0, k1,
and k2 be the number of edges of these three lengths, respectively. By Lemma 13.2, we
have k0 + k1 + k2 ≤ 7. Let σ̃ denote any of the functions of (a)–(f) of Section 11.9. Let
τ̃ = sol ζpt− σ̃ .

To prove Theorem 12.1, refining the strategy proposed in Section 12.5, we must show
that for each flat quarter Q and each subregion R that is not a flat quarter, we have

τ̃ (Q) > D(3, 1)− ετ (Q),
τ0(Q) > D(3, 1)− ετ (Q), if y4(Q) = 2

√
2,

(13.1)
τV (R) > D(3, 2) (type A),

τ0(R) > D(k0 + k1 + k2, k1 + k2)+ πτ (R),

where D(n, k) is the function defined in Section 12.5. The first of these inequalities
follows.83–85 In general, we are given a subregion without explicit information about
what the adjacent subregions are. Similarly, we have discarded all information about
what upright quarters have been erased. Because of this, we assume the worst, and use
the largest feasible values of πτ .

Lemma 13.4. We have πτ (R) ≤ 0.04683+ (k0 + 2k2 − 3)0.008/3+ 0.0066k2.

83 CALC-193836552.
84 CALC-148776243.
85 CALC-163548682.
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Proof. The worst penalty 0.04683 = 3ξ per edge comes from a 3-crowded upright
diagonal. The number of penalized edges not on a simplex around a 3-crowded upright
diagonal is at most k0+2k2−3. For every three edges, we might have one 3-unconfined
upright diagonal. The other cases such as 4-crowded upright diagonals or situations with
a masked flat quarter are readily seen to give smaller penalties.

For bounds on the score, the situation is similar. The only penalties we need to consider
are 0.008 from Lemma 11.23. If either of the other configurations of 3-crowded or 4-
crowded upright diagonals occurs, then the score of the standard cluster is less than
s8 = −0.228, by Sections 11.6 and 11.7. This is the desired bound. So it is enough to
consider subregions that do not have these upright configurations. Moreover, the penalty
0.008 does not occur in connection with masked flats. So we can take πσ (R) to be

(k0 + 2k2)0.008/3+ 0.009k2.

If k0+2k2 < 3, we can strengthen this toπσ (R) = 0.009k2. Let σ̃ be any of the functions
of (a)–(f) of Section 11.9. To prove Theorem 12.1, we will show

σ̃ (Q) < Z(3, 1)+ εσ (Q),
s-vor0(Q) < Z(3, 1)+ εσ (Q), if y4(Q) = 2

√
2,

(13.2)
vor0(R) < Z(3, 2) (type A),

vor0(R) < Z(k0 + k1 + k2, k1 + k2)− πσ (R).
The first of these inequalities follows.86–88

13.6. Penalties

Erasing an upright quarter of compression type gives a penalty of at most ξ and one of
Voronoi type gives at most ξV . We take the worst possible penalty. It is at most nξ in an
n-gon. If there is a masked flat quarter, the penalty is at most 2ξV from the two upright
quarters along the flat quarter. We note in this connection that both edges of a polygon
along a flat quarter lie on upright quarters, or neither does.

If an upright diagonal appears enclosed over a flat quarter, the flat quarter is part of a
loop with context (n, k) = (4, 1), for a penalty at most 2ξ ′ + ξV . This is smaller than
the bound on the penalty obtained from a loop with context (n, k) = (4, 1), when the
upright diagonal is not enclosed over the flat quarter:

ξ + 2ξV .

So we calculate the worst-case penalties under the assumption that the upright diagonals
are not enclosed over flat quarters.

86 CALC-193836552.
87 CALC-148776243.
88 CALC-163548682.
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A loop of context (n, k) = (4, 1) gives ξ + 2ξV or 3ξ . A loop of context (n, k) =
(4, 2) gives 2ξ or 2ξV .

If we erase a 3-unconfined upright diagonal, there is a penalty of 0.008 (or 0 if it
masks a flat quarter). This is dominated by the penalty 3ξ of context (n, k) = (4, 1).

Suppose we have an octagonal standard region. We claim that a loop does not occur
in context (n, k) = (4, 2). If there are at most three vertices that are not corners of the
octagon, then there are at most twelve quasi-regular tetrahedra, and the score is at most

s8 + 12 pt < 8 pt.

Assume there are more than three vertices that are not corners over the octagon. We
squander

t8 + δloop(4, 2)+ 4τLP(5, 0) > (4πζ − 8) pt.

As a consequence, context (n, k) = (4, 2) does not occur.
So there are at most two upright diagonals and at most six quarters, and the penalty

is at most 6ξ . Let f be the number of flat quarters This leads to

πF =




6ξ, f = 0, 1,
4ξ + 2ξV , f = 2,
2ξ + 4ξV , f = 3,
0, f = 4.

The 0 is justified by a parity argument. Each upright quarter occurs in a pair at each
masked flat quarter. However, there is an odd number of quarters along the upright
diagonal, so no penalty at all can occur.

Suppose we have a heptagonal standard region. Three loops are a geometric im-
possibility. Assume there are at most two upright diagonals. If there is no context
(n, k) = (4, 2), then we have the following bounds on the penalty:

πF =




6ξ, f = 0,
4ξ + 2ξV , f = 1,
3ξ, f = 2,
ξ + 2ξV , f = 3.

If an upright diagonal has context (n, k) = (4, 2), then

πF =



5ξ, f = 0, 1,
3ξ + 2ξV , f = 2,
ξ + 4ξV , f = 3.

This gives the bounds used in the diagrams of cases.

13.7. Constants

Theorem 12.1 now results from the calculation of a host of constants. Perhaps there
are simpler ways to do it, but it was a routine matter to run through the long list of
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constants by computer. What must be checked is that the inequalities (13.1) and (13.2)
of Section 13.5 hold for all possible convex subregions. Call these inequalities the D and
Z inequalities. This section describes in detail the constants to check.

We begin with a subregion given as a convex n-gon, with at least four sides. The
heights of the corners and the lengths of edges between adjacent edges have been re-
duced by deformation to a finite number of possibilities (lengths 2, 2t0, or lengths 2,
2t0, 2

√
2, respectively). By Lemma 13.2, we may take n = 4, 5, 6, 7. Not all possible

assignments of lengths correspond to a geometrically viable configuration. One con-
straint that eliminates many possibilities, especially heptagons, is that of Section 13.1:
the perimeter of the convex polygon is at most a great circle. Eliminate all length-
combinations that do not satisfy this condition. When there is a special simplex it can
be broken from the subregion and scored89 separately unless the two heights along
the diagonal are 2. We assume in all that follows that all specials that can be bro-
ken off have been. There is a second condition related to special simplices. We have
�(2t2

0 , 22, 22, x2, 22, 22) < 0, if x > 3.114467. This means that if the cluster edges
along the polygon are (y1, y2, y3, y5, y6) = (2t0, 2, 2, 2, 2), the simplex must be special
(y4 ∈ [2

√
2, 3.2]).

The easiest cases to check are those with no special simplices over the polygon. In
other words, these are subregions for which the distances between nonadjacent corners
are at least 3.2. In this case we approximate the score (and what is squandered) by
tcc’s at the corners. We use monotonicity to bring the fourth edge to length 3.2. We
calculate the tcc constant bounding the score, checking that it is less than the constant
Z(k0 + k1 + k2, k1 + k2)− πσ , from the Z inequalities. The D inequalities are verified
in the same way.

When n = 5, 6, 7, and there is one special simplex, the situation is not much more
difficult. By our deformations, we decrease the lengths of edges 2, 3, 5, 6 of the special
to 2. We remove the special by cutting along its fourth edge e (the diagonal). We score the
special with weak bounds.90 Along the edge e, we then apply deformations to the (n−1)-
gon that remains. If this deformation brings e to length 2

√
2, then the (n − 1)-gon may

be scored with tcc’s as in the previous paragraph. However there are other possibilities.
Before e drops to 2

√
2, a new distinguished edge of length 3.2 may form between two

corners (one of the corners will be a chosen endpoint of e). The subregion breaks in
two. By deformations, we eventually arrive at e = 2

√
2 and a subregion with diagonals

of length at least 3.2. (There is one case that may fail to be deformable to e = 2
√

2,
a pentagonal cases discussed further in Section 13.10.) The process terminates because
the number of sides to the polygon drops at every step. A simple recursive computer
procedure runs through all possible ways the subregion might break into pieces and
checks that the tcc-bound gives the D and Z inequalities. The same argument works if
there is a special simplex that overlaps each of the other special simplices in the subcluster.

When n = 6, 7 and there are two nonoverlapping special simplices, a similar argument
can be applied. Remove both specials by cutting along the diagonals. Then deform both
diagonals to length 2

√
2, taking into account the possible ways that the subregion can

break into pieces in the process. In every case the D and Z inequalities are satisfied.

89 CALC-148776243.
90 CALC-148776243.
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There are a number of situations that arise that escape this generic argument and were
analyzed individually. These include the cases involving more than two special simplices
over a given subregion, two special simplices over a pentagon, or a special simplex over
a quadrilateral. Also, the deformation lemmas are insufficient to bring all of the edges
between adjacent corners to one of the three standard lengths 2, 2t0, 2

√
2 for certain

triangular and quadrilateral regions. These are treated individually.
The next few sections describe the cases treated individually. The cases not mentioned

in the sections that follow fall within the generic procedure just described.

13.8. Triangles

With triangular subregions there is no need to use any of the deformation arguments
because the dimension is already sufficiently small to apply interval arithmetic directly
to obtain our bounds. There is no need for the tcc-bound approximations.

Flat quarters and simplices of type A are treated by a computer calculation.91 Other
simplices are scored by the truncated function s-vor0. We break the edges between corners
into the cases [2, 2t0), [2t0, 2

√
2), and [2

√
2, 3.2]. Let k0, k1, and k2, with k0+k1+k2 = 3,

be the number of edges in the respective intervals.
If k2 = 0, we can improve the penalties,

πτ = πσ = 0.

To see this, first we observe that there can be no 3-crowded or 4-crowded upright diag-
onals. By placing three or more quarters around an upright diagonal, if the subregion
is triangular, the upright diagonal becomes surrounded by anchored simplices, a case
deferred until Section 13.12.

If k0 = k1 = k2 = 1, we can take π ′τ = ξ + 2ξV + 0.0114 = 0.034052. A few cases
are needed to justify this constant. If there are no 3-crowded upright diagonals, π ′τ is at
most

[ξ + 2ξV + ξκ,]3/4 < 0.0254,

or

[ξ + 2ξV + ξκ,]2/4+ 0.008/3 < 0.0254

If there are at most two edges in the subregion coming from a 3-crowded upright diagonal,
then

(ξ + 2ξV + 0.0114)2/3+ 0.008/3 < 0.0254.

If three edges come from the simplices of a 3-crowded upright diagonal, we get 0.034052.
To get somewhat sharper bounds, we consider how the edge k2 was formed. If it is
obtained by deformation from an edge in the standard region of length ≥ 3.2, then it
becomes a distinguished edge when the length drops to 3.2. If the edge in the standard
region already has length ≤ 3.2, then it is distinguished before the deformation process

91 CALC-163548682.
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begins, so that the subregion can be treated in isolation from the other subregions. We
conclude that when π ′τ = 0.034052 we can take y4 ≥ 2.6 or y5 = 3.2 (Remark 11.22).

The D and Z inequalities now follow.92,93

13.9. Quadrilaterals

We introduce some notation for the heights and edge lengths of a convex polygon. The
heights will generally be 2 or 2t0, the edge lengths between consecutive corners will
generally be 2, 2t0, or 2

√
2. We represent the edge lengths by a vector

(a1, b1, a2, b2, . . . , an, bn),

if the corners of an n-gon, ordered cyclically have heights ai and if the edge length
between corner i and i + 1 is bi . We say two vectors are equivalent if they are related
by a different cyclic ordering on the corners of the polygon, that is, by the action of the
dihedral group.

The vector of a polygon with a special simplex is equivalent to one of the form

(2, 2, a2, 2, 2, . . .).

If a2 = 2t0, then what we have is necessarily special (Section 13.7). However, if a2 = 2,
it is possible for the edge opposite a2 to have length greater than 3.2.

Turning to quadrilateral regions, we use tcc scoring if both diagonals are greater than
3.2. Suppose that both diagonals are between [2

√
2, 3.2], creating a pair of overlap-

ping special simplices. The deformation lemma requires a diagonal longer than 3.2, so
although we can bring the quadrilateral to the form

(a1, 2, 2, 2, 2, 2, a4, b4),

the edges a1, a4, b4 and the diagonal vary94 continuously. We have bounds95 on the score

τ0 > 0.235, vor0 < −0.075, if b4 ∈ [2t0, 2
√

2],

τ0 > 0.3109, vor0 < −0.137, if b4 ∈ [2
√

2, 3.2].

We have D(4, 1) = 0.2052, Z(4, 1) = −0.05705. When b4 ∈ [2t0, 2
√

2], we can take
πτ = πσ = 0. (We are excluding loops here.) When b4 ∈ [2

√
2, 3.2], we can take

πτ = πmax + 0.0066,

πσ = 0.008(5/3)+ 0.009.

It follows that the D and Z inequalities are satisfied.

92 CALC-852270725.
93 CALC-819209129.
94 CALC-148776243.
95 CALC-128523606.
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Suppose that one diagonal has length [2
√

2, 3.2] and the other has length at least 3.2.
The quadrilateral is represented by the vector

(2, 2, a2, 2, 2, b3, a4, b4).

The hypotheses of the deformation lemma hold, so that ai ∈{2, 2t0} and bj ∈{2, 2t0, 2
√

2}.
To avoid quad clusters, we assume b4 ≥ max(b3, 2t0). These are one-dimensional with
a diagonal of length [2

√
2, 3.2] as the parameter. The required verifications96 have been

made by interval arithmetic.

13.10. Pentagons

Some extra comments are needed when there is a special simplex. The general argu-
ment outlined above removes the special, leaving a quadrilateral. The quadrilateral is
deformed, bringing the edge that was the diagonal of the special to 2

√
2. This section

discusses how this argument might break down.
Suppose first that there is a special and that both diagonals on the resulting quadri-

lateral are at least 3.2. We can deform using either diagonal, keeping both diagonals at
least 3.2. The argument breaks down if both diagonals drop to 3.2 before the edge of the
special reaches 2

√
2 and both diagonals of the quadrilateral lie on specials. When this

happens, the quadrilateral has the form

(2, 2, 2, 2, 2, 2, 2, b4),

where b4 is the edge originally on the special simplex. If both diagonals are 3.2, this is
rigid, with b4 = 3.12. We find its score to be

s-vor0(S(2, 2, 2, b4, 3.2, 2))+ s-vor0(S(2, 2, 2, 3.2, 2, 2))+ 0.0461 < −0.205,

τ0(S(2, 2, 2, b4, 3.2, 2))+ τ0(S(2, 2, 2, 3.2, 2, 2))2 > 0.4645.

So the D and Z inequalities hold easily.
If there is a special and there is a diagonal on the resulting quadrilateral ≤ 3.2, we

have two nonoverlapping specials. It has the form

(2, 2, a2, 2, 2, 2, a4, 2, 2, b5).

The edges a2 and a4 lie on the special. If b5 > 2, cut away one of the special simplices.
What is left can be reduced to a triangle, or a quadrilateral case and then treated97 by
computer. Assume b5 = 2. We have a pentagonal standard region. We may assume
that there is no 3-crowded or 4-crowded upright diagonal, for otherwise Theorem 12.1
follows trivially from the bounds in Section 9. A pentagon can then have at most a
3-unconfined upright diagonal for a penalty of 0.008.

96 CALC-874876755.
97 CALC-874876755.
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If a2 = 2t0 or a4 = 2t0, we again remove a special simplex and produce triangles,
quadrilaterals, or the special cases treated by computer.98 We may impose the condition
a2 = a4 = b5 = 2. We score this full pentagonal arrangement by computer,99 using the
edge lengths of the two diagonals of the specials as variables. The inequalities follow.

13.11. Hexagons and Heptagons

We turn to hexagons. There may be three specials whose diagonals do not cross. Such a
subcluster is represented by the vector

(2, 2, a2, 2, 2, 2, a4, 2, 2, 2, a6, 2).

The heights a2i are 2 or 2t0. Draw the diagonals between corners 1, 3, and 5. This is a
three-dimensional configuration, determined by the lengths of the three diagonals, which
is treated by computer.100

There is one case with a special simplex that did not satisfy the generic computer-
checked inequalities for what is to be squandered. Its vector is

(a1, 2, 2, 2, 2, 2, 2, b4, 2, 2, 2, 2),

with a1 = b4 = 2t0. A vertex of the special simplex has height a1 = 2t0 and all other
corners have height 2. The subregion is a hexagon with one edge longer than 2. We have
D(6, 1) = 0.48414. This is certainly obtained if the subregion contains a 3-crowded
upright diagonal, squandering 0.5606. However, if this configuration does not appear,
we can decrease πτ to 0.03344+(2/3)0.008, a constant coming from 4-crowded upright
diagonals in Section 12.6. With this smaller penalty the inequality is satisfied.

Now turn to heptagons.The bound 2π on the perimeter of the polygon eliminates all
but one equivalence class of vectors associated with a polygon that has two or more
potentially specials simplices. The vector is

(2, 2, a2, 2, 2, 2, a4, 2, 2, 2, a6, 2, a7, 2),

a2 = a4 = a6 = a7 = 2t0. In other words, the edges between adjacent corners are 2
and four heights are 2t0. There are two specials. This case is treated by the procedure
outlined for subregions with two specials whose diagonals do not cross.

13.12. Loops

We now return to a collection of anchored simplices that surround the upright diagonal.
This is the last case needed to complete the proof of Theorem 12.1. There are four or

98 CALC-874876755.
99 CALC-692155251.
100 CALC-692155251.
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five anchored simplices around the upright diagonal. There are linear inequalities101–106

satisfied by the anchored simplices, broken up according to type: upright, type C , opposite
edge > 3.2, etc. The anchored simplices are related by the constraint that the sum of
the dihedral angles around the upright diagonal is 2π . We run a linear program in each
case based on these linear inequalities, subject to this constraint to obtain bounds on the
score and what is squandered by the anchored simplices.

When the edge opposite the diagonal of an anchored simplex has length ∈ [2
√

2, 3.2]
and the simplex adjacent to the anchored simplex across that edge is a special simplex,
we use inequalities107,108 that run parallel to the similar system.109,110 It is not necessary
to run separate linear programs for these. It is enough to observe that the constants for
what is squandered improve on those from the similar system111 and that the constants
for the score in one system112 differ with those of the other113 by no more than 0.009.

When the dihedral angle of an anchored simplex is greater than 2.46, the simplex
is dropped, and the remaining anchored simplices are subject to the constraint that
their dihedral angles sum to at most 2π − 2.46. There cannot be an anchored simplex
with dihedral angle greater than 2.46 when there are five anchors: 2.46 + 4(0.956) >
2π . There cannot114 be two anchored simplices with dihedral angle greater than 2.46:
2(2.46+ 0.956) > 2π .

The following table summarizes the linear programming results:

(n, k) DLP(n, k) D(n, k) ZLP(n, k) Z(n, k)

(4, 0) 0.1362 0.1317 0 0
(4, 1) 0.208 0.20528 −0.0536 −0.05709
(4, 2) 0.3992 0.27886 −0.2 −0.11418
(4, 3) 0.6467 0.35244 −0.424 −0.17127
(5, 0) 0.3665 0.27113 −0.157 −0.05704
(5, 1) 0.5941 0.34471 −0.376 −0.11413
(5,≥ 2) 0.9706 (4πζ − 8) pt ∗ ∗

The bound for D(4, 0) comes from Lemma 10.8. A few more comments are needed
for Z(4, 1). Let S = S(y1, . . . , y6) be the anchored simplex that is not a quarter. If
y4 ≥ 2

√
2 or dih(S) ≥ 2.2, the linear programming bound is < Z(4, 1). With this, if

y1 ≤ 2.75, we have115 σ(S) < Z(4, 1). However, if y1 ≥ 2.75, the three upright quarters

101 CALC-815492935.
102 CALC-729988292.
103 CALC-531888597.
104 CALC-628964355.
105 CALC-934150983.
106 CALC-187932932.
107 CALC-485049042.
108 CALC-209361863.
109 CALC-531888597.
110 CALC-628964355.
111 CALC-531888597.
112 CALC-485049042.
113 CALC-531888597.
114 CALC-83777706.
115 CALC-855294746.
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along the upright diagonal satisfy

ν < −0.3429+ 0.24573 dih .

With this stronger inequality, the linear programming bound becomes < Z(4, 1). This
completes the proof of Theorem 12.1.

Lemma 13.5. Consider an upright diagonal that is a loop. Let R be the standard region
that contains the upright diagonal and its surrounding simplices. Then the following
contexts (m, k) are the only ones possible. Moreover, the constants that appear in the
columns marked σ and τ are upper and lower bounds respectively for τR(D) when R
contains one loop of that context.

n = n(R) (m, k) σ τ

4
(4, 0) −0.0536 0.1362

5
(4, 1) s5 0.27385
(5, 0) −0.157 0.3665

6
(4, 1) s6 0.41328
(4, 2) −0.1999 0.5309
(5, 1) −0.37595 0.65995

7
(4, 1) s7 0.55271
(4, 2) −0.25694 0.67033

8
(4, 1) s8 0.60722
(4, 2) −0.31398 0.72484

Proof. In context (m, k), and if n = n(R), we have

σR(D) < sn + ZLP(m, k)− Z(m, k), τR(D) > tn + DLP(m, k)− D(m, k).

The result follows.

In the context (n, k) = (4, 3), the standard region R must have at least seven sides,
n(R) ≥ 7. Then

τ(D) ≥ t7 + δloop(4, 3)

> (4πζ − 8) pt.

Thus, we may assume that this context does not occur.
If the context (5, 1) appears in an octagon, we have

τ(D) > δloop(5, 1)+ t8 > (4πζ − 8) pt.

If this appears in a heptagon, we have

τ(D) > δloop(5, 1)+ t7 + 0.55 pt > (4πζ − 8) pt,

because there must be a vertex that is not a corner of the heptagon. It cannot appear on
a pentagon.
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14. Further Bounds in Exceptional Regions

14.1. Small Dihedral Angles

Recall that Section 12.1 defines an integer n(R) that is equal to the number of sides if the
region is a polygon. Recall that if the dihedral angle along an edge of a standard cluster
is at most 1.32, then there is a flat quarter along that edge (Lemma 11.30).

Lemma 14.1. Let R be an exceptional cluster with a dihedral angle≤ 1.32 at a vertex
v. Then R squanders > tn + 1.47 pt, where n = n(R).

Proof. In most cases we establish the stronger bound tn + 1.5 pt. In the proof of Theo-
rem 12.1 we erase all upright diagonals, except those completely surrounded by anchored
simplices. The contribution to tn from the flat quarter Q at v in that proof is D(3, 1) (Sec-
tion 12.5 and inequalities (13.1)). Note that ετ (Q) = 0 here because there are no defor-
mations. If we replace D(3, 1)with 3.07 pt from Lemma 11.30, then we obtain the bound.
Now suppose the upright diagonal is completely surrounded by anchored simplices. An-
alyzing the constants of Section 13.12, we see that DLP(n, k)− D(n, k) > 1.5 pt except
when (n, k) = (4, 1).

Here we have four anchored simplices around an upright diagonal. Three of them are
quarters. We erase and take a penalty. Two possibilities arise. If the upright diagonal is
enclosed over the flat quarter, its height is ≥ 2.6 by geometric considerations and the
top face of the flat quarter has circumradius at least

√
2. The penalty is 2ξ ′ + ξV , so the

bound holds by the last statement of Lemma 11.30.
If, on the other hand, the upright diagonal is not enclosed over the flat diagonal, the

penalty is ξ + 2ξV . In this case we obtain the weaker bound 1.47 pt+ tn:

3.07 pt > D(3, 1)+ 1.47 pt+ ξ + 2ξV .

Remark 14.2. If there are r nonadjacent vertices with dihedral angles≤ 1.32, we find
that R squanders tn + r(1.47) pt.

In fact, in the proof of the lemma, each D(3, 1) is replaced with 3.07 pt from
Lemma 11.30. The only questionable case occurs when two or more of the vertices
are anchors of the same upright diagonal (a loop). Referring to Section 13.12, we have
the following observations about various contexts:

• (4, 1) can mask only one flat quarter and it is treated in the lemma.
• (4, 2) can mask only one flat quarter and DLP(4, 2)− D(4, 2) > 1.47 pt.
• (5, 0) can mask two flat quarters. Erase the five upright quarters, and take a penalty

4ξV + ξ . We get

D(3, 2)+ 2(3.07) pt > t5 + 4ξV + ξ + 2(1.47) pt.

• (5, 1) can mask two flat quarters, and DLP(5, 1)− D(5, 1) > 2(1.47) pt.
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Fig. 14.1. A 4-circuit.

14.2. A Particular 4-Circuit

This subsection bounds the score of a particular 4-circuit on a contravening plane graph.
The interior of the circuit consists of two faces: a triangle and a pentagon. The circuit and
its enclosed vertex are show in Fig. 14.1 with vertices marked p1, . . . , p5. The vertex p1

is the enclosed vertex, the triangle is (p1, p2, p5) and the pentagon is (p1, . . . , p5).
Suppose that D is a decomposition star whose associate graph contains such triangular

and pentagonal standard regions. Recall that D determines a set U (D) of vertices in
Euclidean 3-space of distance at most 2t0 from the origin, and that each vertex pi can be
realized geometrically as a point on the unit sphere at the origin, obtained as the radial
projection of some vi ∈ U (D).

Lemma 14.3. One of the edges {v1, v3}, {v1, v4} has length less than 2
√

2. Both of the
them have lengths less than 3.02. Also, |v1| ≥ 2.3.

Proof. This is a standard exercise in geometric considerations as introduced in Sec-
tion 4.2. (The reader should review that section for the framework of the following
argument.) We deform the figure using pivots to a configuration v2, . . . , v5 at height 2,
and |vi −vj | = 2t0, (i, j) = (2, 3), (3, 4), (4, 5), (5, 2). We scale v1 until |v1| = 2t0. We
can also take the distance from v1 to v5 and to v2 to be 2. If we have |v1 − v3| ≥ 2

√
2,

then we stretch the edge |v1 − v4| until |v1 − v3| = 2
√

2. The resulting configuration
is rigid. Pick coordinates to find that |v1 − v4| < 2

√
2. If we have |v1 − v3| ≥ 2t0,

follow a similar procedure to reduce to the rigid configuration |v1 − v3| = 2t0, to find
that |v1 − v4| < 3.02. The estimate |v1| ≥ 2.3 is similar.

There are restrictive bounds on the dihedral angles of the simplices {0, v1, vi , vj }
along the edge {0, v1}. The quasi-regular tetrahedron has a dihedral angle of at most116

1.875. The dihedral angles of the simplices {0, v1, v2, v3}, {0, v1, v5, v4} adjacent to it are

116 CALC-984463800.
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at most117 1.63. The dihedral angle of the remaining simplex {0, v1, v3, v4} is at most118

1.51. This leads to lower bounds as well. The quasi-regular tetrahedron has a dihedral
angle that is at least 2π − 2(1.63) − 1.51 > 1.51. The dihedral angles adjacent to the
quasi-regular tetrahedron is at least 2π − 1.63 − 1.51 − 1.875 > 1.26. The remaining
dihedral angle is at least 2π − 1.875− 2(1.63) > 1.14.

A decomposition star D determines a set of vertices U (D) that are of distance at
most 2t0 from the center of D. Three consecutive vertices p1, p2, and p3 of a standard
region are determined as the projections to the unit sphere of three corners v1, v2, and
v3, respectively in U (D). By Lemma 11.30, if the interior angle of the standard region
is less than 1.32, then |v1 − v3| ≤

√
8.

Lemma 14.4. These two standard regions F = {R1, R2} give τF (D) ≥ 11.16 pt.

Proof. Let dih denote the dihedral angle of a simplex along a given edge. Let Si j be the
simplex {0, v1, vi , vj }, for (i, j) = (2, 3), (3, 4), (4, 5), (2, 5). We have

∑
(4) dih(Si j ) =

2π . Suppose one of the edges {v1, v3} or {v1, v4} has length ≥ 2
√

2. Say {v1, v3}.
We have119

τ(S25)− 0.2529 dih(S25) > −0.3442,

τ0(S23)− 0.2529 dih(S23) > −0.1787,

τ̂ (S45)− 0.2529 dih(S45) > −0.2137,

τ0(S34)− 0.2529 dih(S34) > −0.1371.

We have a penalty ξ for erasing, so that

τ(D) ≥
∑
(4)

τx (Si j )− 5ξ

> 2π(0.2529)− 0.3442− 0.1787− 0.2137− 0.1371− 5ξ

> 11.16 pt,

where τx = τ, τ̂ , τ0 as appropriate.
Now suppose {v1, v3} and {v1, v4} have length≤ 2

√
2. If there is an upright diagonal

that is not enclosed over either flat quarter, the penalty is at most 3ξ + 2ξV . Otherwise,
the penalty is smaller: 4ξ ′ + ξV . We have

τ(D) ≥
∑
(4)

τ (Si j )− (3ξ + 2ξV )

> 2π(0.2529)− 0.3442− 2(0.2137)− 0.1371− (3ξ + 2ξV )

> 11.16 pt.

117 CALC-821707685.
118 CALC-115383627.
119 CALC-572068135, CALC-723700608, CALC-560470084, and CALC-535502975.
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14.3. A Particular 5-Circuit

Lemma 14.5. Assume that R is a pentagonal standard region with an enclosed vertex
v of height at most 2t0. Assume further that:

• |vi | ≤ 2.168 for each of the five corners.
• Each interior angle of the pentagon is at most 2.89.
• If v1, v2, v3 are consecutive corners over the pentagonal region, then

|v1 − v2| + |v2 − v3| < 4.804.

• ∑5 |vi − vi+1| ≤ 11.407.

Then σR(D) < −0.2345 or τR(D) > 0.6079.

Proof. Since −0.4339 is less than this the lower bound, a 3-crowded upright diagonal
does not occur. Similarly, since−0.25 is less than the lower bound, a 4-crowded upright
diagonal does not occur (Lemma 11.18 and Definition 11.7).

Suppose that there is a loop in context (n, k) = (4, 2). Again by Lemma 13.5 (with
n(R) = 7),

σR(D) < −0.2345.

We conclude that all loops have context (n, k) = (4, 1).

Case 1. The vertex v = v12 has distance at least 2t0 from the five corners of U (D) over
the pentagon. The penalty to switch the pentagon to a pure vor0 score is at most 5ξ (see
Section 12.6). There cannot be two flat quarters because then

|v12| > E(S(2, 2, 2, 2t0, 2
√

2, 2
√

2), 2t0, 2t0, 2t0) > 2t0.

Case 1a. Suppose there is one flat quarter, |v1−v4| ≤ 2
√

2. There is a lower bound of
1.2 on the dihedral angles of the simplices {0, v12, vi , vi+1}. This is obtained as follows.
The proof relies on the convexity of the quadrilateral region. We leave it to the reader to
verify that the following pivots can be made to preserve convexity. Disregard all vertices
except v1, v2, v3, v4, v12. We give the argument that dih(0, v12, v1, v4) > 1.2. The others
are similar. Disregard the length |v1 − v4|. We show that

sd := dih(0, v12, v1, v2)+ dih(0, v12, v2, v3)

+ dih(0, v12, v3, v4) < 2π − 1.2.

Lift v12 so |v12| = 2t0. Maximize sd by taking |v1 − v2| = |v2 − v3| = |v3 − v4| = 2t0.
Fixing v3 and v4, pivot v1 around {0, v12} toward v4, dragging v2 toward v12 until |v2 −
v12| = 2t0. Similarly, we obtain |v3−v12| = 2t0. We now have sd ≤ 3(1.63) < 2π−1.2,
by a calculation.120

120 CALC-821707685.
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Return to the original figure and move v12 without increasing |v12| until each simplex
{0, v12, vi , vi+1} has an edge (v12, vj ) of length 2t0. Interval calculations121 show that
the four simplices around v12 squander

2π(0.2529)− 3(0.1376)− 0.12 > (4πζ − 8) pt+ 5ξ.

Case 1b. Assume there are no flat quarters. By hypothesis, the perimeter satisfies
∑
|vi − vi+1| ≤ 11.407.

We have arc(2, 2, x)′′ = 2x/(16−x2)3/2 > 0. The arclength of the perimeter is therefore
at most

2 arc(2, 2, 2t0)+ 2 arc(2, 2, 2)+ arc(2, 2, 2.387) < 2π.

There is a well-defined interior of the spherical pentagon, a component of area < 2π .
If we deform by decreasing the perimeter, the component of area < 2π does not get
swapped with the other component.

Disregard all vertices but v1, . . . , v5, v12. If a vertex vi satisfies |vi − v12| > 2t0,
deform vi as in Section 12.8 until |vi−1 − vi | = |vi − vi+1| = 2, or |vi − v12| = 2t0.
If at any time, four of the edges realize the bound |vi − vi+1| = 2, we have reached an
impossible situation, because it leads to the contradiction122

2π =
(5)∑

dih < 1.51+ 4(1.16) < 2π.

(This inequality relies on the observation, which we leave to the reader, that in any such
assembly, pivots can by applied to bring |v12− vi | = 2t0 for at least one edge of each of
the five simplices.)

The vertex v12 may be moved without increasing |v12| so that eventually by these
deformations (and reindexing if necessary) we have |v12 − vi | = 2t0, i = 1, 3, 4. (If we
have i = 1, 2, 3, the two dihedral angles along {0, v2} satisfy123 < 2(1.51) < π , so the
deformations can continue.)

There are two cases. In both cases |vi − v12| = 2t0, for i = 1, 3, 4.

(i) |v12 − v2| = |v12 − v5| = 2t0.
(ii) |v12 − v2| = 2t0, |v4 − v5| = |v5 − v1| = 2.

Case (i) follows from interval calculations124

∑
τ0 ≥ 2π(0.2529)− 5(0.1453) > 0.644+ 7ξ.

In case (ii) we have again

2π(0.2529)− 5(0.1453).

121 CALC-467530297 and CALC-135427691.
122 CALC-115383627 and CALC-603145528.
123 CALC-115383627.
124 CALC-312132053.
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In this interval calculation we have assumed that |v12 − v5| < 3.488. Otherwise, setting
S = (v12, v4, v5, v1), we have

�(S) < �(3.4882, 4, 4, 8, (2t0)
2, (2t0)

2) < 0,

and the simplex does not exist. (|v4−v1| ≥ 2
√

2 because there are no flat quarters.) This
completes Case 1.

Case 2: The vertex v12 has distance at most 2t0 from the vertex v1 and distance at least 2t0
from the others. Let {0, v13} be the upright diagonal of a loop (4, 1). The vertices of the
loop are not {v2, v3, v4, v5} with v12 enclosed over {0, v2, v5, v13} by Lemma 11.5. The
vertices of the loop are not {v2, v3, v4, v5} with v12 enclosed over {0, v1, v2, v5} because
this would lead to a contradiction:

y12 ≥ E(S(2, 2, 2, 2t0, 2t0, 3.2), 2t0, 2t0, 2) > 2t0

or

y12 ≥ E(S(2, 2, 2, 2t0, 2t0, 3.2), 2, 2t0, 2) > 2t0.

We get a contradiction for the same reasons unless {v1, v12} is an edge of some upright
quarter of every loop of type (4, 1).

We consider two cases. (Case 2a) There is a flat quarter along an edge other than
{v1, v12}. That is, the central vertex is v2, v3, v4, or v5. (Recall that the central vertex of
a flat quarter is the vertex other than the origin that is not an endpoint of the diagonal.)
(Case 2b) Every flat quarter has central vertex v1.

Case 2a. We erase all upright quarters including those in loops, taking penalties as
required. There cannot be two flat quarters by geometric considerations

E(S(2, 2, 2, 2
√

2, 2
√

2, 2t0), 2t0, 2t0, 2) > 2t0,

E(S(2, 2, 2, 2
√

2, 2
√

2, 2t0), 2, 2t0, 2t0) > 2t0.

The penalty is at most 7ξ . We show that the region (with upright quarters erased)
squanders > 7ξ + 0.644. We assume that the central vertex is v2 (Case 2a(i)) or v3

(Case 2a(ii)). In Case 2a(i), we have three types of simplices around v12, characterized
by the bounds on their edge lengths. Let {0, v12, v1, v5} have type A, {0, v12, v5, v4} and
{0, v12, v4, v3} have type B, and let {0, v12, v3, v1} have type C. In Case 2a(ii) there are
also three types. Let {0, v12, v1, v2} and {0, v12, v1, v5} have type A, {0, v12, v5, v4} type
B, and {0, v12, v2, v4} type D. (There is no relation here between these types and the
types of simplices A, B, and C defined in Section 9.) Upper bounds on the dihedral
angles along the edge {0, v12} are given as calculations.125 These upper bounds come as
a result of a pivot argument similar to that establishing the bound 1.2 in Case 1a.

These upper bounds imply the following lower bounds. In Case 2a(i),

dih > 1.33 (A),

dih > 1.21 (B),

dih > 1.63 (C),

125 CALC-821707685, CALC-115383627, CALC-576221766, and CALC-122081309.
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and in Case 2a(ii),

dih > 1.37 (A),

dih > 1.25 (B),

dih > 1.51 (D),

In every case the dihedral angle is at least 1.21. In Case 2a(i), the inequalities give a
lower bound on what is squandered by the four simplices around {0, v12}. Again, we
move v12 without decreasing the score until each simplex {0, v12, vi , vi+1} has an edge
satisfying |v12 − vj | ≤ 2t0. Interval calculations126 give

∑
(4)

τ0 > 2π(0.2529)− 0.2391− 2(0.1376)− 0.266

> 0.808.

In Case 2a(ii), we have127

∑
(4)

τ0 > 2π(0.2529)− 2(0.2391)− 0.1376− 0.12

> 0.853.

So we squander more than 7ξ + 0.644, as claimed.
Case 2b. We now assume that there are no flat quarters with central vertex v2, . . . , v5.

We claim that v12 is not enclosed over {0, v1, v2, v3} or {0, v1, v5, v4}. In fact, if v12 is
enclosed over {0, v1, v2, v3}, then we reach the contradiction128

π < dih(0, v12, v1, v2)+ dih(0, v12, v2, v3)

< 1.63+ 1.51 < π.

We claim that v12 is not enclosed over {0, v5, v1, v2}. Let S1 = {0, v12, v1, v2} and
S2 = {0, v12, v1, v5}. We have by hypothesis,

y4(S1)+ y4(S2) = |v1 − v2| + |v1 − v5| < 4.804.

An interval calculation129 gives
∑
(2)

dih(Si ) ≤
∑
(2)

(dih(Si )+ 0.5(0.4804/2− y4(Si )))

< π.

So v12 is not enclosed over {0, v1, v2, v5}.

126 CALC-644534985, CALC-467530297, and CALC-603910880.
127 CALC-135427691.
128 CALC-821707685 and CALC-115383627.
129 CALC-69064028.
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Erase all upright quarters, taking penalties as required. Replace all flat quarters with
s-vor0-scoring taking penalties as required. (Any flat quarter has v1 as its central vertex.)
We move v12 keeping |v12| fixed and not decreasing |v12 − v1|. The only effect this has
on the score comes through the quoins along {0, v1, v12}. Stretching |v12 − v1| shrinks
the quoins and increases the score. (The sign of the derivative of the quoin with respect
to the top edge is computed in the proof of Lemma 12.9.)

If we stretch |v12 − v1| to length 2t0, we are done by Case 1 and Case 2a. (If defor-
mations produce a flat quarter, use Case 2a, otherwise use Case 1.) By the claims, we
can eventually arrange (reindexing if necessary) so that

(i) |v12 − v3| = |v12 − v4| = 2t0, or
(ii) |v12 − v3| = |v12 − v5| = 2t0.

We combine this with the deformations of Section 12.8 so that in case (i) we may also
assume that if |v5−v12| > 2t0, then |v4−v5| = |v5−v1| = 2 and that if |v2−v12| > 2t0,
then |v1 − v2| = |v2 − v3| = 2. In case (ii) we may also assume that if |v4 − v12| > 2t0,
then |v3−v4| = |v4−v5| = 2 and that if |v2−v12| > 2t0, then |v1−v2| = |v2−v3| = 2.

Break the pentagon into subregions by cutting along the edges (v12, vi ) that satisfy
|v12 − vi | ≤ 2t0. So for example in case (i), we cut along (v12, v3), (v12, v4), (v12, v1),
and possibly along (v12, v2) and (v12, v5). This breaks the pentagon into triangular and
quadrilateral regions.

In case (ii) if |v4 − v12| > 2t0, then the argument used in Case 1 to show that
|v4 − v12| < 3.488 applies here as well. In case (i) or (ii) if |v12 − v2| > 2t0, then for
similar reasons, we may assume

�(|v12 − v2|2, 4, 4, 8, (2t0)
2, |v12 − v1|2) ≥ 0.

This justifies the hypotheses for the calculations130 that we use. We conclude that
∑

τ0 ≥ 2π(0.2529)− 3(0.1453)− 2(0.2391) > 0.6749.

If the penalty is less than 0.067 = 0.6749− 0.6079, we are done.
We have ruled out the existence of all loops except (4, 1). Note that a flat quarter with

central vertex v1 gives penalty at most 0.02 by Lemma 11.29. If there is at most one such
flat quarter and at most one loop, we are done:

3ξ + 0.02 < 0.067.

Assume there are two loops of context (n, k) = (4, 1). They both lie along the edge
{v1, v12}, which precludes any unmasked flat quarters. If one of the upright diagonals
has height ≥ 2.696, then the penalty is at most 3ξ + 3ξV < 0.067. Assume both
heights are at most 2.696. The total interior angle of the exceptional face at v1 is at least
four times the dihedral angle of one of the flat quarters along {0, v1}, or 4(0.74) by an
interval calculation.131 This is contrary to the hypothesis of an interior angle < 2.89.
This completes Case 2. This shows that heptagons with pentagonal hulls do not occur.

130 CALC-312132053 and CALC-644534985.
131 CALC-751442360.
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Lemma 14.6. Let R be an exceptional standard region. Let V be a set of vertices of
R. If v ∈ V , let pv be the number of triangular regions at v and let qv be the number of
quadrilateral regions at v. Assume that V has the following properties:

1. No two vertices in V are adjacent.
2. No two vertices in V lie on a common quadrilateral.
3. If v ∈ V , then there are five standard regions at v.
4. If v ∈ V , then the corner over v is a central vertex of a flat quarter in the cone

over R.
5. If v ∈ V , then pv ≥ 3. That is, at least three of the five standard regions at v are

triangular.
6. If R′ �= R is an exceptional region at v, and if R has interior angle at least 1.32

at v, then R′ also has interior angle at least 1.32 at v.
7. If (pv, qv) = (3, 1), then the internal angle at v of the exceptional region is at

most 1.32.

Define a: N→ R by

a(n) =




14.8, n = 0, 1, 2,
1.4, n = 3,
1.5, n = 4,
0, otherwise.

Let {F} be the union of {R}with the set of triangular and quadrilateral regions that have
a vertex at some v ∈ V . Then

∑
F

τF (D) >
∑
v∈V

(pvd(3)+ qvd(4)+ a(pv)) pt.

Proof. We erase all upright diagonals in the Q-system, except for those that carry a
penalty: loops, 3-unconfined, 3-crowded, and 4-crowded diagonals.

We assume that if (pv, qv) = (3, 1), then the internal angle is at most 1.32. Because of
this, if we score the flat quarter by vor0, then the flat quarter Q satisfies (Lemma 11.30)

vor0(Q) > 3.07 pt > 1.4 pt+ D(3, 1)+ 2ξV + ξ. (14.1)

Every flat quarter that is masked by a remaining upright quarter in the Q-system has
y4 ≥ 2.6. Moreover, y1 ≥ 2.2 or y4 ≥ 2.7. Let πv = 2ξV + ξ if the flat quarter is
masked, and πv = 0 otherwise.

We claim that the flat quarter (scored by vor0) together with the triangles and quadri-
laterals at a given vertex v squander at least

(pvd(3)+ qvd(4)+ a(pv)) pt+ D(3, 1)+ πv. (14.2)

If pv = 4, this is CALC-314974315. If pv = 3, we may assume by the preceding remarks
that there are two exceptional regions at v. If the internal angle of R at v is at most
1.32, then we use inequality (14.1). If the angle is at least 1.32, then by hypothesis, the
angle R′ at v is at least 1.32. We then appeal to the calculations CALC-675785884 and
CALC-193592217.
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To complete the proof of the lemma, it is enough to show that we can erase the upright
quarters masking a flat quarter at v without incurring a penalty greater than πv . For then,
by summing the inequality (14.2) over v, we obtain the result.

If the upright diagonal is enclosed over the masked flat quarter, then the upright
quarters can be erased with penalty at most ξV (by Remark 11.28). Assume the upright
diagonal is not enclosed over the masked flat quarter.

If there are at most three upright quarters, the penalty is at most 2ξV+ξ . Assume four
or more upright quarters. If the upright diagonal is not a loop, then it must be 4-crowded.
This can be erased with penalty

2ξV + 2ξ − κ < 2ξV + ξ.

Finally, assume that the upright quarter is a loop with four or more upright quarters.
Lemma 13.5 limits the possibilities to parameters (5, 0) or (5, 1). In the case of a loop
(5, 1), there is no need to erase because |V | ≤ 3 and by Lemma 13.5 the hexagonal
standard region squanders at least

t6 + 3a(pv) pt

as required by the lemma. In the case of a loop (5, 0) in a pentagonal region, if |V | = 1
then there is no need to erase (again we appeal to Lemma 13.5). If |V | = 2, then the two
vertices share a penalty of 4ξV + ξ , with each receiving

2ξV + ξ/2 < 2ξV + ξ.
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