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Abstract. We introduce and discuss pseudo-simplicial complexes inRd as generalizations
of pseudo-triangulations in R2. Our approach is based on the concept of maximal locally
convex functions on polytopal domains.

1. Introduction

A pseudo-triangulation is a cell complex in the plane where each cell is a pseudo-triangle,
i.e., a simple polygon with convex angles at exactly three vertices (the so-called corners).
Figure 1 illustrates an example. Being an interesting and flexible generalization of trian-
gulations, pseudo-triangulations have found their place in computational geometry. The
scope of their applications is broad, and they enjoy rich combinatorial and geometric
properties; see, e.g., [22], [11], [17], [10], [1], [16], and references therein. Unlike trian-
gulations, pseudo-triangulations have so far eluded a meaningful generalization to higher
dimensions. The definition of pseudo-simplices remained unclear, possibly because of
the lack of an adequate definition of corners of a polytope.

In this paper we define pseudo-simplices and pseudo-simplicial complexes in d-space
in a way consistent with pseudo-triangulations in the plane. Flip operations in pseudo-
complexes are specified as combinations of flips in pseudo-triangulations [17], [1], [16]
and of bistellar flips in simplicial complexes [12], [7], [6]. A certain class of pseudo-
complexes is shown to be connected under such flips. The flip distance for this class is
O(nd+2), where n is the size of the underlying vertex set. Moreover, the class admits a
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Fig. 1. Pseudo-triangulation of a simple polygon.

representation as a convex polytope in n-space, that generalizes the polytope construc-
tions in [9], [3], and [1]. Our results are based on the concept of maximal locally convex
functions on polyhedral domains, that allows us to unify several well-known structures,
namely, pseudo-triangulations, constrained Delaunay triangulations [5], [21], and regu-
lar simplicial complexes [14], [7]. The concept is of interest in its own right, as it leads
to a generalized notion of lower convex hulls of finite point sets.

Once available, pseudo-complexes give rise to various questions. Some of them
find a direct answer, as, for instance, a consistent generalization of minimum pseudo-
triangulations [22], [17] to pseudo-complexes in d-space. More elaborate is a question
of interest in motion planning applications [11], of whether visible space between poly-
hedral objects can be tiled and maintained with pseudo-simplices and flips, respectively.
A related important problem is whether any two simplicial complexes in d-space can be
transformed into each other by flips. For Lawson flips [12], the answer is negative for
d ≥ 5, and unknown for dimensions 3 and 4; see [18] and [19]. We explore the impact
of our results to these and other questions in a separate paper. The main intention of the
present work is to lay theoretical foundations for a treatment of pseudo-complexes.

We give a short outline of the paper. Section 2 provides notation on polytopes and
cell complexes in d-space. Beyond standard definitions, the concepts of terminal vertex
and corner of a d-polytope are introduced. This allows us to define pseudo-simplices as
polytopes having exactly d + 1 corners. Sections 3 and 4 are intended for a study of
locally convex functions, which are maximal with respect to predefined value bounds at
the vertices of the d-polytope that serves as their domain of definition. We show that any
such maximal locally convex function f ∗ is piecewise linear, but possibly discontinuous
for d ≥ 3 at its domain boundary. A pointwise characterization of f ∗ is given, that
identifies this function as a natural generalization of the lower convex hull of a finite point
set in (d + 1)-space. This characterization also allows us to describe the discontinuity
behavior of f ∗. In Section 5 we show that f ∗ generates cell complexes in its domain such
that each d-dimensional cell is indeed a pseudo-simplex. This generalizes results in [1],
that first observed that pseudo-triangulations are related to locally convex functions,
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as well as in [2], that extended the situation to arbitrary polygonal domains. Section 6
demonstrates that pseudo-complexes are able to cope with flipping operations, namely,
those resulting as minimal changes in f ∗ when value bounds at domain vertices vary. All
known types of flips for simplicial complexes [12], [7], [6] and for pseudo-triangulations
[17], [1], [16] can be obtained as special cases. We illustrate the different flips that arise in
3-space and discuss the occasional strange behavior of the resulting pseudo-complexes.
The occurrence of vertices which are not vertices of the domain of f ∗, and the existence
of cells with tunnels, are two examples. Section 7 shows that the “surface theorem”
for pseudo-triangulations in [1] partially generalizes to pseudo-complexes for d ≥ 3.
As a consequence, the class of pseudo-complexes that f ∗ generates in a given domain
enjoys a representation as a high-dimensional convex polytope, a fact that generalizes
results in [9], [3], and [1]. We also introduce two subclasses of pseudo-complexes that
constitute extensions to d ≥ 3 of the class of triangulations, and the class of minimum
pseudo-triangulations [22], [17], of a simple polygon, respectively.

We remark that pseudo-complexes, as defined in this paper, do not contain internal
vertices. That is, all their vertices lie on the boundary of the underlying domain. An
extension that remedies this fact is straightforward, by predefining value bounds for f ∗

at certain points interior to the domain. Defining pseudo-complexes in this way may be of
practical relevance but does not lead to new theoretical insights. We therefore refrained
from doing so in the present paper, apart from some remarks in Sections 5 and 7.

2. Polytopes and Corners

We give some notation concerning polytopes in d-space Rd . In particular, the proper
definition of corners of a polytope is crucial for the subsequent investigations. Abbre-
viations in sans serif (bd, int, relint, conv, aff, dim) denote standard set-theoretic notions
in convex geometry [4].

Let P be a bounded and closed subset of Rd . Then P is called a d-polytope if P
is an interior-connected d-manifold, with piecewise linear boundary bd P that is struc-
tured as a (d − 1)-dimensional cell complex. The components of bd P of dimension j ,
0 ≤ j ≤ d − 1, are called the j-faces of P . (The dimension dim X of a set X ⊂ Rd is
the dimension of its affine hull aff X .) Faces of dimensions d − 1, 1, and 0, respectively,
are also called facets, edges, and vertices of P . We denote with vert P the set of vertices
of P . A d-polytope P is called boundary-connected if bd P is a connected set. P is
called simple if P is homeomorphic to a closed ball in Rd .

A face F of a d-polytope P is concave if there exists some line segment L ⊂ P such
that relint L ∩ relint F is a single point. Otherwise, F is nonconcave. The facets of P are
nonconcave faces, whereas faces of lower dimensions may be of either type. In Fig. 2,
the edges xz and yz are concave, whereas the edge xy is nonconcave.

A terminal of a d-polytope P is a point x ∈ P such that no line segment L ⊂ P has
x ∈ relint L . All terminals of P belong to vert P . In fact, they are just the nonconcave
vertices of P . A terminal v of P is called a corner of P if there exists a hyperplane
through v that has all edges of P incident to v on a fixed side. For d = 2, the vertices
of P automatically fulfill this condition, because we required P to be interior-connected,
and thus P is a simple polygon. Therefore “terminal” and “corner” are identical notions
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Fig. 2. Simple 3-polytope with different edge and vertex types.

in this case. Vertices of P which are not corners of P are called noncorners of P . In
the 3-polytope in Fig. 2, vertex x is a corner, vertex y is a terminal but a noncorner, and
vertex z is not a terminal and therefore a noncorner.

If v is a corner of P then v is also a corner of all faces of P incident to v. Moreover,
all vertices of the convex hull conv P are corners of P . So every d-polytope P has at
least d + 1 corners, and if P is convex then all its vertices are corners. The converse of
the last statement is true only for d = 2; Fig. 3 gives a counterexample for d = 3.

A d-polytope P is termed a pseudo-simplex if P is boundary-connected and has
exactly d+1 corners. Clearly, every simplex is a pseudo-simplex. For d = 2 and d = 3,
respectively, pseudo-simplices are also called pseudo-triangles and pseudo-tetrahedra.
Our definition of a pseudo-triangle is equivalent to the classical definition, see, e.g., [17]
and [1], which requires exactly three polygon vertices with an internal angle smaller
than π . A pseudo-complex is a cell complex in d-space whose cells (d-faces) are all
pseudo-simplices. For d = 2, pseudo-complexes are pseudo-triangulations. See Fig. 1
where a pseudo-triangulation with seven cells (pseudo-triangles) is shown.

3. Local Convexity

The theory of maximal locally convex functions is the key to a derivation of pseudo-
complexes. For d = 2, the relationship between these two concepts has been observed
and exploited in [1] and [2]. Its generalization to d-space has its peculiarities, and requires
careful treatment of locally convex functions.

We consider real-valued functions onRd whose domains are simple d-polytopes. For
x, y ∈ Rd , a function f on the line segment xy is called convex if f (λx + (1− λ)y) ≤
λ f (x) + (1 − λ) f (y), for 0 ≤ λ ≤ 1. f is called linear on xy if equality holds. Let a
simple d-polytope D be given. A function f on D is called locally convex if f is convex
on each line segment L ⊂ D. A locally convex function is convex if D is convex.

Let h be a real-valued vector that assigns a (d + 1)st coordinate hi (called height) to
each vertex vi ∈ vert D. In the discussion below, we assume that the domain D and the
height vector h are fixed. Our interest is in the maximal locally convex function f ∗ on D
which fulfills f ∗(vi ) ≤ hi for each vi ∈ vert D. The function f ∗ is unique, because f ∗ is
the pointwise maximum of all locally convex functions which satisfy the constraints in h.
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Moreover, f ∗ is continuous on int D by its local convexity. f ∗ need not be continuous
on bd D, however; see Section 4.

Figure 1 illustrates an example for d = 2. The domain D is a simple polygon whose
vertices vi are labeled with upper height bounds hi for f ∗. The function f ∗ is linear on
each of the shown subpolygons of D. By its local convexity, f ∗ does not assume the
maximal allowed value hi at certain noncorners of D, namely, at the four vertices with
labels 5 or larger.

A vertex vi ∈ vert D is termed maximal if f ∗(vi ) = hi . Clearly, if vi is not maximal
then we have f ∗(vi ) < hi . We state several basic properties of maximal locally convex
functions.

Lemma 1 (Linearity Lemma). For each point z ∈ D that is not a maximal vertex of D,
there exists some line segment L ⊂ D with z ∈ relint L and such that f ∗ is linear on L .

Proof. Assume that such a line segment L does not exist for a point z ∈ D. Consider
an open ball B in Rd that is centered at z. For all line segments xy ⊂ B ∩ D with z ∈
relint xy, by assumption we have f ∗(z) < λ f ∗(x)+(1−λ) f ∗(y), for z = λx+(1−λ)y.
We construct a function f on D with the following properties: f is convex on all the line
segments xy above and linear on at least one among those, and f coincides with f ∗ on
the complement of B in D. By construction, f is locally convex on D. Moreover, if B is
chosen small enough then f satisfies the constraints in h, unless z is a maximal vertex.
However, f (z) > f ∗(z) holds, contradicting the maximality of f ∗. We conclude that z
is a maximal vertex.

Corollary 1. All terminals of D are maximal vertices.

Proof. Let v be a terminal of D. By definition of a terminal, there exists no line segment
L ⊂ D with v ∈ relint L . Thus, by Lemma 1, v is a maximal vertex.

It is well known that any convex function f induces a face-to-face cell complex in its
domain [4]. Namely, a j-face of f is a maximal connected subset G of f ’s domain such
that, for each x ∈ relint G, the space of directions where f has a partial derivative at x
has dimension j . As the maximal locally convex function f ∗ is convex on each convex
subset of its domain D, f ∗ induces such a cell complex in D as well. By convention, the
intersection of a face of f ∗ with a face of bd D will be considered a face of f ∗. So, for
example, all vertices of D are included in the set of 0-faces of f ∗.

Lemma 2. f ∗ is linear in the (relative) interior of each of its j -faces, for 1 ≤ j ≤ d.

Proof. We use induction on the dimension j . Let F be a 1-face of f ∗. By Lemma 1,
for each point x ∈ relint F there is some line segment Lx ⊂ D with x ∈ relint Lx and
f ∗ linear on Lx . Since F is a 1-face of f ∗, we cannot have Lx ∩ F = x . This implies
that F is a line segment itself, and that f ∗ is linear on relint F .

Consider a j-face G of f ∗, for 2 ≤ j ≤ d. Assume inductively that f ∗ is linear on
the relative interior of each k-face, k < j , incident to G. We show that f ∗ is linear on
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Fig. 3. Splitting the Schönhardt polytope with f ∗.

relint G. Let B be some j-ball with B ⊂ relint G. Then f ∗ is piecewise linear on B,
because f ∗ could be increased on B without change on the relative boundary of G,
otherwise, contradicting the maximality of f ∗. (Note that this is true even if f ∗ is
discontinuous.) This implies that f ∗ is piecewise linear on relint G. However, then f ∗

has to be linear on relint G, by the definition of a j-face of f ∗.

By Lemma 2, f ∗ is a piecewise linear function on D. The continuity of f ∗ on
int D implies that the faces of f ∗ have piecewise linear boundaries, and therefore are
j-polytopes, for 0 ≤ j ≤ d . The d-faces of f ∗ are also called cells.

Lemma 3. The cells of f ∗ are boundary-connected d-polytopes.

Proof. Let C be a cell of f ∗. For every line segment L⊂D, f ∗ is linear on relint (L∩C),
by Lemma 2. Moreover, f ∗ is convex on the entire segment L , by its local convexity on D.
This implies that L ∩ C is connected. The assumption that D is a simple d-polytope now
yields that C is boundary-connected.

In Fig. 1 we see how f ∗ partitions a simple polygon D into polygonal cells. (Here
and in Fig. 3, numbers denote vertex heights.) Observe that each polygonal cell has
exactly three corners. Figure 3 illustrates a three-dimensional cell complex induced
by f ∗ when D is the Schönhardt polytope [20]. All six vertices of D are corners and
therefore are maximal. The complex consists of three nontetrahedral cells, each having
exactly four corners. Note the occurrence of 0-faces of f ∗ in the relative interior of
concave edges of D.

4. Local Characterization of f ∗

Our next aim is to give a local characterization of f ∗ by means of visibility. Intuitively
speaking, f ∗ locally behaves like a convex hull of a discrete point set in Rd+1. We shall
see that maximal locally convex functions constitute a natural generalization of lower
convex hulls.
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4.1. Hull Theorem

We start with a technical lemma. Recall that f ∗ is defined by its domain D and its height
vector h. For a given simplex 
 with vert 
 ⊂ D, let �
 be the linear function on 

with �
(x) = f ∗(x) for all x ∈ vert 
. For two points x, y ∈ D, we say that x sees y if
the line segment xy is contained in D.

Lemma 4. Let z ∈ int D be a point that sees t ≤ d + 1 affinely independent points
x1, . . . , xt ∈ D. Let 
 = conv {x1, . . . , xt }. If z ∈ 
 then f ∗(z) ≤ �
(z) holds.

Proof. If z = xi for some i , then f ∗(z) = �
(z) holds by definition of �
. The interest-
ing case is z /∈ {x1, . . . , xt }. In this case there exists a (sufficiently small) (t − 1)-simplex

ε ⊂ D with vertices on the t line segments zx1, . . . , zxt and with z ∈ 
ε\vert 
ε.
Moreover, there is a face F of
ε and an index i such that the line L containing zxi inter-
sects relint F in a point y. (y = z is possible if z ∈ bd 
ε.) Now assume f ∗(z) > �
(z).
As f ∗ is convex on each connected part of L ∩ D, we get f ∗(y) > �F (y). Repeating
this argument with
ε replaced by F yields the existence of an edge e of
ε and a point
x ∈ relint e with f ∗(x) > �e(x). Thus f ∗ is not convex on e, a contradiction.

The following theorem asserts that f ∗ can be defined pointwise, by means of its values
at visible 0-faces. Some notation is needed for a precise formulation of this fact. For any
point x ∈ D, interpret the pair (x, f ∗(x)) as a point x∗ in Rd+1. For a point set A ⊂ D,
let A∗ = {x∗ | x ∈ A}. For a point set B ⊂ Rd+1, define lowB as the (convex) function
whose graph is the lower convex hull of B, i.e., the part of bd conv B visible from −∞
on the (d + 1)st coordinate axis. Finally, denote with V (x) the set of all 0-faces of f ∗

that a point x ∈ D can see.

Theorem 1 (Hull Theorem). For every point x ∈ int D we have f ∗(x) = lowV (x)∗(x).

Proof. Let x ∈ int D. Consider the set S of all d-simplices that contain x and that
are spanned by d + 1 0-faces in V (x). Any simplex 
 in S that yields the smallest
function value �
(x) defines lowV (x)∗(x). So, by Lemma 4, we have f ∗(x) ≤ �
(x) =
lowV (x)∗(x). On the other hand, there is a simplex 
C in S, spanned by 0-faces of a
cell C of f ∗ that contains x , and defining f ∗(x) = �
C (x), by the linearity of f ∗

on int C (Lemma 2) and the maximality of f ∗. This implies f ∗(x) ≥ lowV (x)∗(x). The
theorem follows.

4.2. Continuity Behavior of f ∗

We next study the continuity behavior of f ∗. Somewhat unexpectedly, f ∗ may be dis-
continuous at certain subsets of bd D. The polytope D in Fig. 2 serves as an example.
As heights for D we choose 1 for vertex y and values smaller than 0 for the remaining
vertices. Then, by Lemma 4, f ∗(p) < 0 for all p ∈ int D. On the other hand, we have
f ∗(y) = 1, because y is a terminal and therefore is a maximal vertex by Corollary 1.
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Thus f ∗ is discontinuous at y (as well as in the relative interior of the three nonconcave
edges incident to y).

The following lemma indicates that f ∗ is “well behaved” at the corners of its cells. We
call a 0-face v of f ∗ complete if v is a corner of all its incident cells. For instance, each
corner of D is a complete 0-face of f ∗. For the case d = 2, the notion of completeness
of a vertex in a cell complex has been introduced in [1], and has been used extensively
in [2].

Lemma 5.

(a) For each cell C of f ∗ we have (int C)∗ ⊂ aff Z∗, where Z denotes the set of
corners of C .

(b) A 0-face where f ∗ is discontinuous cannot be a corner of any cell.
(c) Complete 0-faces of f ∗ are characterized by being vertices of D that are maximal

and where f ∗ is continuous.

Proof. Let z be a corner of the cell C . We claim (and prove below) that f ∗(z) is the
continuous extension of f ∗ from int C to z. By Lemma 2, this claim implies assertion (a).
Further, by the continuity of f ∗ on int D, the claim yields that f ∗ is continuous at each
0-face that is a corner of at least one cell. This shows assertion (b). In particular, f ∗ is
continuous at its complete 0-faces. However, each complete 0-face x of f ∗ is a maximal
vertex of D, because there exists no line segment for x as in Lemma 1, by definition of
a corner of a cell. Conversely, if a 0-face y of f ∗ is not complete and thus is a noncorner
of some cell C , then either f ∗ is discontinuous at y, or we have y∗ ∈ aff(int C)∗ by
assertion (a). As y is not a corner of conv C (y would be a corner of C , otherwise), y is
not a maximal vertex of D in the latter case. This proves assertion (c).

To prove the claim, let N (z) be a (small) neighborhood of z in int C . Consider some
point x ∈ N (z). By Theorem 1, we have f ∗(x) = lowV (x)∗(x), and this value is deter-
mined by a d-simplex 
 that contains x and that is spanned by 0-faces of C . Since z is
a corner of C , there exists a hyperplane E through z such that N (z) lies on a fixed side
of E . Therefore z ∈ vert 
 holds, and the claim follows.

Corollary 2. No 0-face of f ∗ lies in int D, or in relint F for any nonconcave j-face F
of D, j ≥ 1.

Proof. Let x be a 0-face of f ∗. Assume x ∈ int D, or x ∈ relint F for some nonconcave
j-face F of D with j ≥ 1. In both cases there exists a d-ball B with center x and such
that B ∩ D is a convex set. In the latter case, x lies on bd(B ∩ D), and therefore x has
to be a corner of all its incident cells. In the former case, x ∈ int(B ∩ D) holds, and we
use the fact that f ∗ is a convex function on B ∩ D to see that x has the same property,
namely, being a complete vertex of f ∗. So x is a maximal vertex of D, by Lemma 5(c).
However, this contradicts the choice of x .

As a consequence of Corollary 2, f ∗ is linear on each nonconcave edge of D. In par-
ticular, for d = 2 where D is a simple polygon, f ∗ is linear on all the edges of D, because
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edges are facets in this case, and facets are nonconcave faces. Also, no noncorner x of D
is a terminal for d = 2. This implies the following property.

Corollary 3. For d = 2, f ∗ is continuous on the entire domain D.

Proof. Let x be a vertex of D. Then x is either a complete vertex of f ∗ (and f ∗ is
continuous at x by Lemma 5(c)), or x is not complete and a noncorner of D. In the latter
case, as x cannot be a terminal of D, there exist line segments L ⊂ D with x ∈ relint L
and where f ∗ is linear. Consequently, f ∗ is continuous at x in that case, too. The assertion
follows.

The theorem below reveals that, for convex domains, f ∗ is just another means for
describing lower convex hulls.

Theorem 2. If the domain D is convex then, for every height vector h, the graph of f ∗

is exactly the lower convex hull of the point set vert D lifted by h.

Proof. Assume D is convex. Then all faces of D are nonconcave, so each 0-face of f ∗

is a vertex of D by Corollary 2. However, each vertex v of D is a corner of D. Therefore,
v is a complete vertex of f ∗, and v is maximal by Lemma 5(c). Finally, every point x ∈ D
sees all vertices of D. The statement now follows from Theorem 1.

5. Pseudo-Complexes

For a given simple d-polytope D and a height vector h for vert D, let PC(D,h) denote
the polytopal cell complex induced by f ∗ in D. In this section and in Section 6 we
derive a list of structural properties of PC(D,h), which culminates in the finding that
PC(D,h) is a d-dimensional pseudo-complex that admits bistellar flipping operations.

From Sections 3 and 4 we know that each vertex x of PC(D,h) either belongs to
vert D or x is the intersection of a j-face of PC(D,h) with a concave (d − j)-face
of D. Accordingly, x will be termed a primary or a secondary vertex. We extend this
terminology to the cells of PC(D,h) by distinguishing whether or not all corners of
a cell are primary vertices. (Noncorners do not influence the status of a cell.) By The-
orem 2, secondary vertices and thus secondary cells do not arise if the domain D is
convex. The same is true for nonconvex domains if d = 2, by Corollary 2. Moreover,
as we shall see below, secondary cells are prevented by certain choices of the height
vector h.

To ease the exposition, we restrict attention to nondegenerate height vectors as follows.
Let ε be a real number, and let hε be a vector obtained from h by perturbing each
coordinate of h by at most ε. We call h generic (for D) if an ε > 0 exists such that
PC(D,hε) = PC(D,h) holds for all possible vectors hε. This property of h will be
implicitly assumed henceforth.

We start by studying the structure of PC(D,h) for a special class of height vec-
tors. Denote by H the point set in Rd+1 that results from lifting vert D by h. We
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call h convex (for D) if lowH (vi ) = hi holds for each vi ∈ vert D. In particular, h is
called parabolic if hi = |vi |2 holds for each i . Observe that, for arbitrary h, we have
lowH (x) ≤ f ∗(x) for all x ∈ D, because lowH is a locally convex function that satisfies h,
and f ∗ is maximal for these constraints. If h is convex thenPC(D,h) shows several nice
properties.

Theorem 3. Let h be a convex height vector. Then all cells of PC(D,h) are primary
cells, and are pseudo-simplices. All primary vertices of PC(D,h) are complete. More-
over, f ∗ is continuous on the entire domain D.

Proof. As h is convex, lowH (vi ) = hi holds for each vi ∈vert D. By lowH (vi ) ≤ f ∗(vi )

this implies f ∗(vi ) = hi . That is, all primary vertices of PC(D,h) are maximal. More-
over, by the assumption that h is generic, we get that the set (vert D)∗ is in strictly
convex position in Rd+1. Therefore, for each cell C of PC(D,h), f ∗ on int C depends
on exactly d + 1 points in (vert D)∗. On the other hand, f ∗ on int C is determined
by the values of f ∗ at the corners of C , by Lemma 5(a). We conclude that C has
exactly d + 1 corners which all belong to vert D. That is, C is a primary cell and a
pseudo-simplex.

As (vert D)∗ is in strictly convex position, no point in (vert D)∗ is redundant for f ∗

on int D. So, by Lemma 5(a), each vertex v of D is a corner in some cell and, by
Lemma 5(b), f ∗ is continuous at v. This implies that f ∗ is continuous on D. By
Lemma 5(c) and the fact that primary vertices are maximal if h is convex, all primary
vertices are complete.

Remarks. By Theorem 3, locally convex functions generate pseudo-complexes if the
height vector h is convex. In fact, this is the case for arbitrary h, as we will see in
Section 6. If D (and with it h) is convex then all cells are simplices, and PC(D,h) is a
regular simplicial complex [14], [7] in D, by Theorem 2. If, in addition, h is parabolic
then the well-known Delaunay simplicial complex [8] for D is obtained. However, when
h is convex but D is not, then PC(D,h) is not simply the restriction to D of the cell
complex defined by lowH (which is a regular simplicial complex in conv D). This is not
even true for d = 2, where no secondary vertices arise.

The case d = 2 has been treated in [1]. In R2, PC(D,h) is a constrained regular
pseudo-triangulation of the simple polygon D, and a triangulation of D if h is convex.
(As all the vertices of PC(D,h) are primary for d = 2, they are all complete provided h
is convex, according to Theorem 3.) In particular, if h is parabolic, then the constrained
Delaunay triangulation [5] of D is obtained, which is the Delaunay triangulation [8]
provided D is a convex polygon.

We point out that our discussion can be extended to the case where f ∗ is required
to fulfill predefined height restrictions at points vi ∈ int D, rather than at vert D alone.
(This has been done for d = 2 in [1].) It can be shown that such a point vi is either a
maximal vertex, or vi is not a vertex of f ∗ at all; see the proof of Corollary 2. In the
former case, PC(D,h) is simplicial in the neighborhood of vi . All the results of the
present paper extend easily. We confine ourselves to vertex-empty domains because this
is sufficient for the intentions of this paper.
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6. Bistellar Pseudoflips

We now investigate the properties ofPC(D,h) for arbitrary height vectors h, by defining
flip operations in pseudo-complexes that result from controlled changes in h. These
operations generalize both the d-dimensional Lawson flip [12], [6] and the exchanging
or removing flips in two-dimensional pseudo-triangulations [17], [1], [16]. The latter flip
operations obey certain geodesics rules in polygons, whose meaning for d ≥ 3 remained
unclear. From now on, let n = |vert D|.

6.1. Moving Heights

Let h0 and h1 be two (generic) height vectors for vert D. Assume that h0 is convex, and
that h0 is elementwise larger than h1. Then f ∗ for h0 pointwise dominates f ∗ for h1. We
continuously deform PC(D,h0) into PC(D,h1) and study the changes in the structure
of cells.

To this end, let hλ = λh1 + (1− λ)h0, for λ increasing from 0 to 1. Recall from The-
orem 3 that, in PC(D,h0), all primary vertices are maximal and complete, and all cells
are primary and are pseudo-simplices. PC(D,hλ) changes its shape exactly at values λ
where hλ is not generic. Fix such a value λ. Consider a cell U ofPC(D,hλ)which is not
a cell of PC(D,hλ−ε), for sufficiently small ε > 0. Denote with PCλ−ε the restriction
ofPC(D,hλ−ε) to U . The crucial observation is that, for λ− ε, f ∗ on int U is determined
by its values at those vertices that are complete with respect to the subcomplex PCλ−ε.
This follows from Lemma 5(a) and (b). Therefore PCλ−ε has exactly d + 2 complete
vertices (apart from special cases which can be avoided by perturbing h0 slightly). In
particular, U has at most d + 2 corners.

In PC(D,hλ+ε) the polytope U is restructured into a cell complex PCλ+ε. The re-
placement of PCλ−ε by PCλ+ε is termed a pseudoflip. We face two different types of
pseudoflips.

(1) U has d + 2 corners, v1, . . . , vd+2. In PCλ+ε, each such vertex is still complete.
Therefore, the set {v∗1 , . . . , v∗d+2} does not lie in a common hyperplane of Rd+1,
for λ+ ε. The vertices v1, . . . , vd+2 are not corners of a single cell of PCλ+ε. We
call this flip an exchanging pseudoflip.

(2) U has d + 1 corners, v1, . . . , vd+1. Let vd+2 be the additional complete vertex
of PCλ−ε. As vd+2 is a noncorner of U we have vd+2 ∈ int conv U , and therefore
f ∗ on int U is determined by aff{v∗1 , . . . , v∗d+1} for λ+ ε. That is, PCλ+ε consists
of a single primary cell, namely, U .
(a) If vd+2 is not a terminal of D then f ∗(vd+2) is determined by aff{v∗1 , . . . , v∗d+1}

as well. The vertex vd+2 is not maximal any more.
(b) If vd+2 is a terminal of D then vd+2 stays maximal by Corollary 1, and f ∗

becomes discontinuous at vd+2.
In both cases vd+2 is not a complete vertex of PCλ+ε. A flip of this type is called
a removing pseudoflip.

Note that in (2)(a) the linear decrease of f ∗(vd+2) accelerates by this flip. This
implies that vd+2 stays nonmaximal forever, such that—as in (2)(b) and in (1)—the
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relative position of v∗d+2 with respect to aff{v∗1 , . . . , v∗d+1} does not change again.
This gives:

Lemma 6. PC(D,h1) is obtained from PC(D,h0) by at most
( n

d+2

)
pseudoflips.

6.2. Anatomy of Pseudoflips

To study the structure of pseudoflips, we consider any complex PC(U,h) with exactly
d+2 complete vertices v1, . . . , vd+2. By Lemma 5(c), full height is assumed at and only
at v1, . . . , vd+2. Without loss of generality, let h contain entries∞ for all other vertices
of U . Let h− be the vector obtained from h by changing the signs of finite entries. Then,
for any generic choice of heights h1, . . . , hd+2 for v1, . . . , vd+2, one of the complexes
PC(U,h) orPC(U,h−) has to arise, because the relative position of the d+2 points

(
vi

hi

)
in Rd+1 already determines f ∗.

As a consequence, each pseudoflip can be simulated by replacing PC(U,h) by
PC(U,h−). Moreover, as PC(U,h−) has at most d + 2 complete vertices, the cells
of PC(U,h−) are pseudo-simplices, provided the same holds for PC(U,h). (If
PC(U,h−) has only d+1 complete vertices then its only cell is the pseudo-simplex U .)
Recalling from Theorem 3 that the original complex PC(D,h0) was a pseudo-complex,
we get an inductive argument showing that the final complex PC(D,h1) is a pseudo-
complex, too.

A removing pseudoflip transforms PC(U,h) into a single cell, and an exchanging
pseudoflip transformsPC(U,h) into a complex with the same number, d+2, of complete
vertices. (The inverse of a removing pseudoflip is also considered a valid pseudoflip;
we call it an inserting pseudoflip.) PC(U,h) contains primary cells and, in general, also
secondary cells, because secondary vertices may arise in the relative interior of faces
of U . These faces are concave by Corollary 2. Neither the number of primary cells nor
the number of secondary cells is bounded by a function of d. Already for d = 3, �(k)
primary cells and �(k2) secondary cells may occur, for k = |vert U |; see Figs. 8 and 9.
An upper bound for primary cells in this case is O(k2); see below.

For general d and arbitrary complexesPC(D,h), we can bound the number of primary
cells using Lemma 7. The number of secondary cells can be shown to be finite but remains
unclear.

Lemma 7. For given n, a maximal number of primary cells of PC(D,h) occurs if D
is convex.

Proof. If PC(D,h) contains some primary vertex v that is a noncorner of a cell C ,
then applying an inserting pseudoflip by lowering the height of v splits C into more than
one primary cell (and possibly several secondary cells) while leaving unaffected all cells
of PC(D,h) different from C . Thus PC(D,h) contains a maximal number of primary
cells only if all its primary vertices are complete. By Lemma 5(c), all primary vertices are
maximal and continuous in this case, which implies that h is convex. If h is convex then
all cells are primary by Theorem 3. However, the number of primary cells is maximized



Pseudo-Simplicial Complexes from Maximal Locally Convex Functions 213

if the visibility between primary vertices is not constrained by D, see Theorem 1, that
is, if D is convex.

Combining Lemma 7 and Theorem 2, the number of primary cells does not exceed
the maximal number of facets of a convex hull of n points in Rd+1; see [15]. Let us
conclude the discussion in this section.

Theorem 4. PC(D,h) is a pseudo-complex for arbitrary (generic) h. The number of
primary cells ofPC(D,h) is O(n�d/2�), for n = |vert D|. Given any two height vectors h
and h′ for D, the distance between PC(D,h) and PC(D,h′) by pseudoflips is O(nd+2).

Remarks. The cells of PC(D,h) are not guaranteed to be simple pseudo-simplices.
However, cells are always boundary-connected; see Lemma 3. Figure 7 illustrates a
3-polytope D where h can be chosen such that PC(D,h) contains a cell with a tunnel.

Pseudoflips are bistellar operations that are “local” in the sense that each flip affects
a subcomplex with at most d + 2 complete vertices. If the corresponding subdomain U
is convex, then the classical bistellar flip [12], [6], also called a Lawson flip, is obtained.
For d = 2, a pseudoflip is either an edge-exchanging flip [17] or an edge-removing
(respectively, edge-inserting) flip [1] in a pseudo-triangulation. Removing pseudoflips
of the type (2)(b) do not occur for d = 2, because all terminals are corners. In all these
special cases, and in contrast to the general case, only O(d) cells are affected by a single
flip. A challenging open question is whether pseudoflip sequences do exists between
pseudo-complexes in a given 3-polytope D such that cell sizes are always bounded by a
constant; see Section 7.2.

6.3. Examples in R3

We illustrate some pseudoflips in R3. From the foregoing discussion we know that the
3-polytope U where a flip takes place has at most five corners. They are labeled by
numbers in the following figures. The pseudoflips are viewed best when imagining that
corner 4 is the only corner whose height is altered.

Figure 4 shows a removing pseudoflip that is the simplest possible. The polytope U has
four corners, 1, 2, 3, 4, and one noncorner, a. Before the flip, U contains two tetrahedral
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4

a a
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2
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4

Fig. 4. Removing pseudoflip.
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Fig. 5. Exchanging pseudoflip.

cells 123a and 234a that share the triangular facet 23a. The flip removes this facet and
leaves a single cell, the pseudo-tetrahedron U . All involved cells are primary cells.

Figure 5 illustrates the simplest exchanging pseudoflip that is not a Lawson flip. Now
the polytope U has five corners, 1, 2, 3, 4, 5. Again, before the flip, U contains two tetra-
hedral cells, namely, 1235 and 1345. They are adjacent in the triangular facet 135. After
the flip, which destroys the facet 135 and creates the pseudo-triangular facet 234x , two
pseudo-tetrahedra arise as cells. Their corners are 1, 2, 3, 4 and 2, 3, 4, 5, respectively.
The secondary vertex x arises as a noncorner of both cells. Still, all involved cells are
primary cells.

The exchanging pseudoflip in Fig. 6 is more complicated. U contains two cells before
the flip, the tetrahedron 1345 and the pseudo-tetrahedron with corners 1, 2, 3, 5 and
the noncorner a. Both cells are primary cells. Their common triangular facet 135 is
destroyed in the flip. After the flip, two new primary cells are present, namely, the
pseudo-tetrahedra with corners 1, 2, 3, 4 and 2, 3, 4, 5, respectively. They are adjacent
in the pseudo-triangular facet with corners 2, 3, 4. This facet (call it F) intersects the
concave edge 1a at the secondary vertex x . However, F does not entirely split U ,
because F would define some secondary vertex on the nonconcave edge 15, otherwise.
Instead, the tetrahedron 145x arises as a secondary cell.

Figure 7 depicts an exchanging pseudoflip that creates a nonsimple cell. Three primary
cells are present before the flip: The tetrahedra 1234 and 1235, and the pseudo-tetrahedron
with corners 2, 3, 4, 5 and noncorners a, b, c. These cells are pairwise adjacent in tri-
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Fig. 6. Exchanging pseudoflip that generates a secondary cell.
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Fig. 7. Exchanging pseudoflip that creates a tunnel.

angular facets which are destroyed in the flip. A single facet F with corners 1, 4, 5 and
the secondary vertices x, y, z as noncorners is created. As xyz is a hole, F is not a valid
pseudo-triangle, but rather a polygonal region with three corners. Two primary cells are
adjacent in F . The cell with corners 1, 2, 4, 5 contains a tunnel, defined by the edges 2x ,
ay, and bz.

An exchanging pseudoflip that gives rise to several secondary cells is illustrated
in Fig. 8. Within U , the pseudo-tetrahedron with corners 1, 2, 3, 5 is separated by a
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Fig. 8. Large exchanging pseudoflip.
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Fig. 9. Large inserting pseudoflip.

triangular facet from the tetrahedron T with corner 4. The flip replaces this facet by
various others. Three of them emanate from vertex 4, namely, the pseudo-triangles with
corners 1, 2, 4 and 1, 3, 4, and 1, 4, 5, respectively. These facets separate three primary
cells. Moreover, each such facet defines a secondary vertex on an edge of the former
cell T . Vertex y is among them, defined by the facet with corners 1, 3, 4. This facet
defines another secondary vertex, x . As the line segment xy does not lie on the boundary
of U , triangular facets abx , bxy, xyd , ydc arise, which separate a polytope with six
corners from the primary cells. This polytope splits into three secondary cells. A similar
construction, where this polytope has k corners, shows that�(k) secondary cells can be
created.

An inserting pseudoflip that generates a large number of primary cells and secondary
cells is shown in Fig. 9. In the pseudo-tetrahedron U with corners 1, 2, 3, 4 and non-
corners a, b, c, the edges 1b and 1c are nonconcave, and the edges 4b and 4c are concave.
U splits into four primary cells, namely, the tetrahedra 123a, 12ac, 1abc, and the pseudo-
tetrahedron with corners 2, 3, 4, a and noncorners b, c. Note that ac is a nonconcave edge
of the last cell, by the maximality of cells of f ∗. Using a similar construction, where the
number of noncorners of U is increased from 3 to k, we can create �(k) primary cells
incident to the vertex 1.

In addition, �(k2) secondary cells arise when a structure of size �(k) similar to the
shape E is integrated into the boundary of U . The�(k) facets incident to the vertex 1 can
be made to intersect�(k) concave boundary edges of U that stem from E . The resulting
�(k2) secondary vertices give rise to that many secondary cells, if the bold edges of E
are chosen to be nonconcave.
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7. Polytope Representation

Throughout this section let D be a fixed simple d-polytope that serves as a domain for
the objects we consider. Let n = |vert D|. Consider the class of pseudo-complexes

R(D) = {PC | ∃ h with PC = PC(D,h)}.

The complexes in the class R(D) are called constrained regular (for D). We establish
the existence of a convex polytope in Rn that represents all the members ofR(D). This
generalizes the polytope constructions in [13] (the associahedron) and in [9] and [3]
(the secondary polytope) which concern the regular simplicial complexes for convex
domains D, as well as the polytope in [1] for constrained regular pseudo-triangulations
of simple polygons D.

7.1. Function Lemma

Consider some piecewise linear function f on D. Call a point x ∈ D nonlinear for f if
there is no d-ball B centered at x such that f is linear on B ∩ D. The subset of points
of D where f is nonlinear will be denoted by N ( f ). Clearly, for any height vector h
for vert D we haveN ( f ∗) = PC(D,h), for the corresponding maximal locally convex
function f ∗. The following assertion shows that f ∗ can be “deformed” to being not
locally convex. For two cell complexes PC and PC ′, we write PC ≺ PC ′ if each face
of PC is a subset of a face of PC ′.

Lemma 8. For every pseudo-complexPC∈R(D) and every height vector h for vert D,
there exists a unique piecewise linear function fPC,h withN ( fPC,h) ≺ PC and such that
fPC,h(vi ) = hi for each complete vertex vi of PC.

Proof. Let PC ∈ R(D). There is some height vector h∗ for vert D such that PC =
PC(D,h∗). Let v1, . . . , vk be the vertices ofPC. We set up a system of k linear equations
in variables t1, . . . , tk , with variable ti corresponding to the height of vertex vi , as follows.

If vi is a complete vertex of PC then we put ti = h∗i . Otherwise, there exists
some cell C of PC where vi is a noncorner. Let v1, . . . , vd+1 be the corners of C .
By Lemma 5(a), we have (int C)∗ ⊂ aff{v∗1 , . . . , v∗d+1}. This gives a linear equation
ti = a1t1 + · · · + ad+1td+1 for the vertex vi that is not complete. The resulting linear
system A · t = b has a unique solution t: by Lemma 5(c), the system describes the con-
tinuous extension of f ∗ from int D to v1, . . . , vk , and f ∗ is unique for given D and h∗.

Note that det A �= 0 by the uniqueness of t. The vector b coincides with h∗ at all
entries for complete vertices. Now let h be an arbitrary height vector for vert D, and
let bh be the vector b with entries for complete vertices replaced by those of h. Because
of det A �= 0, the system A · t = bh has a unique solution t = A−1 · bh as well. By con-
struction, any solution t defines a unique piecewise linear function fPC,h with the desired
properties.
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Lemma 8 is a partial generalization to d ≥ 3 of the “surface theorem” in [1]. That
theorem, however, also holds for pseudo-triangulations which are not constrained regular.

7.2. Polytope Theorem

Using Lemma 8 the following theorem can be proved, in a way similar to a corresponding
theorem for constrained regular pseudo-triangulations [1].

Theorem 5. There exists a convex polytope Q(D) ⊂ Rn for D, whose vertices are in
one-to-one correspondence with the pseudo-complexes in the classR(D). The edges of
Q(D) correspond to pseudoflips between the respective members ofR(D). The diameter
of Q(D) is O(nd+2).

Proof. For a given member PC ∈ R(D) and a given height vector h for vert D, con-
sider the unique piecewise linear function fPC,h specified in Lemma 8. By definition,
fPC,h is locally convex exactly if PC = PC(D,h). So assuming PC = PC(D,h) im-
plies fPC,h(x) ≤ fPC′,h(x), for all PC ′ ∈ R(D) and all x ∈ D. Integrating both sides
yields ∫

x∈D
fPC,h(x) dx ≤

∫
x∈D

fPC′,h(x) dx .

Consider the left-hand side integral. The expressed volume is a linear (and homogenous)
function of h, because fPC,h is piecewise linear and the value of fPC,h at each vertex
of PC linearly depends on h. Let q(PC) be the coefficient vector of this linear function.
Then, from analogous observations for the integral on the right-hand side, we obtain
q(PC) · h ≤ q(PC ′) · h, for all PC ′ ∈ R(D). We now interpret q(PC) as a point in Rn ,
and consider the convex polytope

Q(D) = conv{q(PC) | PC ∈ R(D)}.

Define the equivalence classes of height vectorsH(PC) = {h | PC = PC(D,h)}. Then,
for each h ∈ H(PC), we have q(PC) · h ≤ q(PC ′) · h, for all PC ′ ∈ R(D). That is, the
polytope Q(D) lies in a halfspace of Rn whose boundary contains q(PC). Thus q(PC)
is a vertex of Q(D).

Consider an edge e of Q(D), and let e connect the vertices q(PC1) and q(PC2).
Define G = H(PC1) ∩H(PC2). By definition of these equivalence classes, no vector
h ∈ G is generic for D. Moreover, we have h · (q(PC1)− q(PC2)) = 0. That is, the
set G is orthogonal to e, and dim G = n − 1. For h ∈ relint G, there are exactly two
pseudo-complexes PC1 and PC2 that yield the same function fPC1,h = fPC2,h. As a
consequence, PC1 and PC2 differ by a single pseudoflip. The bound on the diameter
of Q(D) follows from Theorem 4.

For d ≥ 3, not every simple d-polytope D can be tetrahedrized, i.e., partitioned into
simplices without introducing additional vertices. The Schönhardt polytope [20] in Fig. 3
is a classical example. Moreover, even when D is convex and thus can be tetrahedrized,



Pseudo-Simplicial Complexes from Maximal Locally Convex Functions 219

not all its simplicial complexes have to belong to the class R(D); there exist convex
3-polytopes that admit nonregular tetrahedrizations [14]. Still, the constrained Delaunay
simplicial complex CD(D) [21] exists for any tetrahedrizable d-polytope D, and we
have CD(D) ∈ R(D) because CD(D) arises from D when the parabolic height vector
is applied. The assertion below, which is a corollary of Theorem 5, generalizes the
well-known fact that every triangulation of a simple polygon D can be flipped to the
constrained Delaunay triangulation [5] of D.

Corollary 4. Let D be a simple d-polytope that is tetrahedrizable. Every pseudo-
complex inR(D) can be flipped to the constrained Delaunay simplicial complex CD(D)
for D. The number of pseudoflips is O(nd+2).

Remarks. Even when we start with a simplicial complex in R(D) and flip to-
wards CD(D), the intermediate complexes need not be simplicial. They may well contain
secondary vertices and cells for d ≥ 3, but no secondary face remains in the final com-
plex CD(D), by Theorem 3.

Unlike pseudo-triangles, pseudo-simplices for d ≥ 3 are not tetrahedrizable, in gen-
eral. A simple example is the Schönhardt polytope with a (sufficiently long) tetrahe-
dron T attached to its top triangle. The top vertex of T sees only the remaining three
vertices of T , and therefore T has to be part of every tetrahedrization of the resulting
pseudo-tetrahedron. That is, the existence of such a tetrahedrization would imply that
the Schönhardt polytope itself is tetrahedrizable.

Theorem 5 and Corollary 4 can be generalized by allowing the complexes to have
vertices internal to D. (For example, choose any vertex set S and take D = conv S.) A
prominent unsolved question is whether any two simplicial complexes on a vertex set S
in R3 can be transformed into each other by Lawson flips. The answer is known to be
negative for d ≥ 5; see [19] that also gives a simplicial complex for a convex polytope
in five dimensions where not a single Lawson flip can be applied. We plan to elaborate
the consequences of pseudoflips for these and related questions in a separate paper.

7.3. Two Subclasses ofR(D)

There exist interesting subclasses of constrained regular pseudo-complexes. Define the
class of complete pseudo-complexes as

C(D) = {PC | ∃ h convex with PC = PC(D,h)}.

In each complex in C(D), all the vertices of D are maximal, and each such vertex is
complete; see Section 5. The class C(D) contains the pseudo-complexes with a maximal
number of primary cells, by Lemma 7, because if D is convex then all height vectors
for D are convex as well. For d = 2, C(D) is the set of all possible triangulations of
the simple polygon D: Every pseudo-triangulation of D can be generated by f ∗ when h
is chosen appropriately, and a pseudo-triangulation of D where all vertices of D are
complete has to be a triangulation. For d ≥ 3, however, C(D) may contain complexes
that are not simplicial. Figure 3 in Section 3 gives an example in R3.
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At the other end of the spectrum, we may consider the class of minimum pseudo-
complexes

M(D) = {PC(D,h) | hi = ∞ iff vi is a noncorner of D}.

Note that f ∗ is still finite on int D for such height vectors h, because D is contained in
the convex hull of its corners. In each complex inM(D), the terminals of D are the only
maximal vertices—the minimum possible by Corollary 1. Moreover, f ∗ is discontinuous
at all terminals that are noncorners. By Lemma 5(c), this implies that the corners of D
are the only complete vertices in such a complex. For d = 2, M(D) is precisely the
class of minimum (or pointed) pseudo-triangulations of the polygon D. In [1], a pseudo-
triangulation is defined to be minimum if it contains a minimum number of complete
vertices. This definition is equivalent to the frequently used definition based on vertex
pointedness [22], [17], but it generalizes nicely to higher dimensions.

The flip distance within the classesM(D) andC(D), respectively, is known to be O(n)
and O(n2) for d = 2; see [1] and [8].

8. Conclusions

We have introduced pseudo-simplicial complexes in Rd and have discussed some of
their basic properties. Our generalization nicely fits the existing concept of pseudo-
triangulation in R2, as far as the issues of flippability, regularity, and minimality are
concerned. Already in R3, however, pseudo-complexes show anomalies undesirable in
practical applications. Secondary vertices not being part of the input do arise and increase
the combinatorial complexity, and cells with tunnels add to the topological complexity.

Out of various interesting questions that are raised by the results of this paper, we
consider the following three as most important:

(1) Characterizing domain shapes and height vectors that prevent a prohibitive num-
ber of faces of a pseudo-complex.

(2) Designing pseudoflip sequences that keep the number and the individual size of
the involved cells small.

(3) Developing efficient construction algorithms for pseudo-complexes.

For computing all primary cells in a pseudo-complex, the methods in [21] seem adaptable.
It may well be that a radically different approach to generalizing pseudo-triangulations

to Rd avoids certain unpleasant phenomena of pseudo-complexes as they stand now.
Exploiting the relationship of pseudo-triangulations to structural rigidity concepts [22],
[17], [10] seems a feasible alternative.
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