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Abstract. A geometric graph is a graph drawn in the plane so that the vertices are rep-
resented by points in general position and edges are represented by straight line segments.
We show that a geometric graph on n vertices with no three pairwise disjoint edges has at
most 2.5n edges. This result is tight up to an additive constant.

1. Introduction

An (abstract) graph G is a pair (V (G), E(G)) where V (G) is the set of vertices and
E(G) is the set of edges {u, v} each a two element subset of V (G).

A geometric graph is a graph G drawn in the plane by straight line segments. It is
defined as a pair (V (G), E(G)), where V (G) is a finite set of points in general position
in the plane, i.e. no three points are collinear, and E(G) is a set of line segments with
endpoints in V (G). V (G) and E(G) are the vertex set and the edge set of G, respectively.
Let H and G be two geometric graphs. We say that H is a (geometric) subgraph of G if
V (H) ⊆ V (G) and E(H) ⊆ E(G).

A topological graph is defined similarly. It is a graph drawn in the plane in such a
way that edges are Jordan curves. Two of these curves share at most one point and no
curve passes through a vertex. Obviously, geometric graphs are a subclass of topological
graphs. We say that two edges cross each other if they have an interior point in common.
Two edges are disjoint if they have no point in common.

We investigate properties of subclasses of geometric or topological graphs with some
geometrical constrains. One of the simplest questions is how to characterize graphs with
no crossing edges. These graphs are known as planar graphs and have been studied for
more than a hundred years.

∗ Supported by projects LN00A056 and 1M0021620808 of the Ministry of Education of the Czech
Republic.
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Kupitz, Erdős and Perles initiated, and many others continued, the investigation of the
following general problem. Given a classH of so-called forbidden geometric subgraphs,
determine or estimate the maximum number t (H, n) of edges that a geometric graph
with n vertices can have without containing a subgraph belonging toH.

There are many nice results for various forbidden classes—k pairwise crossing edges,
k pairwise “parallel” edges, k pairwise disjoint edges, self-crossing paths, even cycles
and many others (see [1], [2], [7], [8], [11], and [15]–[17]). For a survey of results on
geometric graphs see [10].

We focus on geometric graphs with no k + 1 pairwise disjoint edges. For k ≥ 1,
let Dk denote the class of all geometric graphs consisting of k pairwise disjoint edges.
Denote by dk(n) = t (Dk+1, n) the maximum number of edges of a geometric graph on
n vertices with no k + 1 pairwise disjoint edges.

Let us look at the history of this problem. One of the first investigations on geometric
graphs, besides planar graphs, was motivated by repeated distances in the plane. Erdős
asked how many times can the maximum distance among n points in the plane be
repeated. Connect each pair of points with the maximum distance by an edge. It is clear
that the resulting graph cannot have two disjoint edges. The convex hull of endpoints
of two disjoint edges forms either a triangle or a quadrilateral. In both cases there is a
distance longer than the length of the edge. That is a contradiction. The former question
turns to the following: How many edges can a geometric graph with no two disjoint
edges have? Erdős [4] proved the following theorem:

Theorem 1. d1(n) = n.

Alon and Erdős [3] (1989) proved d2(n) ≤ 6n. One year later O’Donnell and Perles
(1990) improved it to d2(n) ≤ 3.6n+ c. Later Goddard et al. [6] (1993) showed d2(n) ≤
3n. At the end Mészáros [9] improved that to d2 ≤ 3n−1. Combining some of the ideas
of the proof of Goddard et al. [6] with a discharging method we show the following
upper bound:

Theorem 2. d2(n) ≤ 
2.5n�.
The best known lower bound is due to Perles:

Theorem 3 (Perles). d2(n) ≥ �2.5n
 − 3.

Examples of such a graph for n = 9 and for n = 8 are given in the following figure
(the construction for odd n can be easily generalized and the graph for even n is obtained
from the previous one by the contraction of two neighboring vertices on the convex hull):
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For d3(n) Goddard et al. [6] showed 3.5n ≤ d3(n) ≤ 10n. Later Tóth and Valtr [14]
improved that to 4n − 9 ≤ d3(n) ≤ 8.5n.

The first general upper bound dk(n) = O(n(log n)k−3) was given again by Goddard
et al. [6]. In 1993 Pach and Törőcsik [12] introduced the order relations on disjoint edges
and as an application of Dilworth’s theorem they showed that dk(n) ≤ k4n. That was
the first upper bound linear in n. Tóth and Valtr [14] added a concept of zigzag and
improved the bound to dk(n) ≤ k3(n + 1). Later Tóth [13] further improved the bound
to dk(n) ≤ 256k2n. The original constant in Tóth’s proof was a bit bigger. This one is
due to Felsner [5].

It is believed that dk(n) ∼ ckn in reality. Another interesting problem is to determine
if it is true for those geometric graphs all of whose edges can be intersected by a line.
If so, this would give an upper bound of dk(n) ≤ c(k log k)n for the general case. Just
bisect the vertex set of the graph and count edges in both parts recursively.

2. Preliminaries

We show the proof of Theorem 1 because it is a beautiful illustration of a discharging
method and it is very simple. Later we use a similar but more complicated approach to
prove Theorem 2—the upper bound for d2(n).

Proof of Theorem 1 (Perles). For each vertex mark one edge incident to it. For vertices
of degree one, there is no choice. At the other vertices, mark the right edge at the largest
angle. If there remains an unmarked edge e = uv, we have the situation as in the
following figure:

u

u′

v

v′

eα

β

There must be edges uu′ and vv′ because we marked the right edge at the largest
angle at every vertex. Angles α and β are less than the largest angles at the vertices u
and v, so they are less than π . However, this implies that edges uu′ and vv′ are disjoint
and so there cannot be an unmarked edge in the graph. Thus, the number of edges is not
more than the number of vertices.

On the other hand there exist graphs achieving this bound:
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(a) (b)

y

z

x

(c)

Fig. 1. (a) An example of a pointed vertex, (b) an example of a cyclic vertex and (c) there are edges xy and
xz where edge xy is to the left of edge xz.

Definition 1. A vertex v is pointed if all edges incident to it lie in a halfplane whose
boundary contains vertex v (see Fig. 1(a)).

Definition 2. A vertex v which is not pointed is cyclic. This means that in every open
halfplane determined by a line passing through vertex v there is an edge incident to v
(see Fig. 1(b)).

Definition 3. We say that an edge xy is to the left of an edge xz if the ray −→xz can be
obtained from the ray −→xy by a clockwise turn of less than π . Similarly we define when
an edge is to the right of another edge (see Fig. 1(c)).

3. Cyclic Vertices

Lemma 1. A geometric graph with two cyclic vertices and an edge, whose supporting
line strictly separates these two cyclic vertices, contains three pairwise disjoint edges.

Proof.

v1 v2

e

In the above picture there are two cyclic vertices and an edge which separates them
strictly. We can find an edge in each grey halfplane, because the vertices v1 and v2 are
cyclic. This yields three pairwise disjoint edges.

Lemma 2. A geometric graph with three cyclic vertices contains three pairwise disjoint
edges.
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Fig. 2. (a) Position of three cyclic vertices. (b) Edge e1 can without loss of generality lie only in regions R1,
R2 and R3. (c) If edge e1 lies in regions R2 and R3, there must be an edge in the open halfplane determined by
q12, which does not cross edges e1 and e3. These edges are pairwise disjoint. (d) For k ≥ 4, there are geometric
graphs with k cyclic vertices and without four pairwise disjoint edges. This figure is for k = 6.

Proof. Denote the cyclic vertices by v1, v2 and v3. Let qi be the line passing through
vi parallel to the line passing through the other two cyclic vertices (for i = 1, 2, 3). See
Fig. 2(a).

There must be an edge ei incident to vi lying in the open halfplane determined by the
line qi , not containing the other cyclic vertices. At least two edges from ei , i = 1, 2, 3,
must cross. Otherwise we have three disjoint edges. Without loss of generality edges e2

and e3 cross. Where can the third edge lie? See Fig. 2(b).
If e1 lies in region R1, use Lemma 1. In the other cases there must be an edge

in the open halfplane determined by the line q12, not containing other cyclic vertices,
because vertex v2 is cyclic. See Fig. 2(c). This edge and edges e1 and e3 are pairwise
disjoint.

We note that for k ≥ 4 there is a geometric graph G with k cyclic vertices without
four pairwise disjoint edges (see Fig. 2(d)).

4. The Upper Bound

In this section we prove Theorem 2: d2(n) ≤ 
2.5n�.
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G G1 G2

Fig. 3. (Example) Graphs G, G1 and G2. In the first round delete the rightmost edge at each pointed vertex
of G and obtain graph G1. In the second round delete the leftmost edge at each pointed vertex of G1 and if
there are two vertices c and d cyclic in G then for each vertex cyclic in G1 delete the edge to the left of segment
cd. We obtain graph G2.

4.1. Sketch of the Proof

Let G = (V, E) be a geometric graph with no three disjoint edges. Denote the number
of cyclic vertices in G by γ . We know by Lemma 2 that γ ≤ 2. We construct two
subgraphs Gi = (Vi , Ei ), i = 1, 2, as follows. For each pointed vertex in G delete the
rightmost edge. Denote the resulting graph by G1 (see Fig. 3). For each pointed vertex
in G1 delete the leftmost edge (if any). If there are two vertices c and d cyclic in G then
for each vertex cyclic in G1 delete the edge to the left of segment cd. The vertex cyclic
in G1 must be one of the vertices c and d because γ ≤ 2. Denote the resulting graph by
G2. Deleting in the second round is for each pointed vertex in G1 (not in G)!

We show that graph G2 contains no two disjoint edges (Lemma 4). We have deleted
at most 2n − γ edges to get graph G2.

Finally we use a discharging method to show that graph G2 has at most (n + 2γ )/2
edges (Lemma 8). We then conclude that G has at most (2n − γ )+ (n + 2γ )/2 ≤ 2.5n
edges. We need many auxiliary lemmas to prove that the discharging method works.

4.2. The Proof

Lemma 3. For each vertex v and edge e = uv ∈ E2 containing v there exist vertices
x, y, z ∈ V and edges ev(e), fv(e), gv(e) ∈ E such that ev(e) = vx is to the left of edge
uv, edge fv(e) = xy is to the right of edge ev(e) and edge gv(e) = vz is to the right of
edge uv. If vertex v is pointed in G, then edges ev(e) and gv(e) are determined uniquely
as the edges ev ∈ E1− E2 and gv ∈ E − E1 deleted at vertex v. If vertex x is pointed in
G, then edge fv(e) is determined uniquely as the edge fv ∈ E − E1 deleted at vertex x .

x

u

z

y

v

ev

fv

gv

Proof. We start in vertex v. If v is pointed in G1, then there must be an edge ev to the
left of edge uv, because we had deleted the leftmost edge in the second round. If v is
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cyclic in G1, then ev exists by the definition of a cyclic vertex. Similarly, there must be
edges fv and gv to the right of edges ev and uv because we had deleted the rightmost
edges in the first round or by the definition of a cyclic vertex. It can happen that y = z
or that fv crosses gv .

We use the following arguments to show that some edges are disjoint:

Observation 1 (Z Argument). If a, b, c, d is a path in G and ab lies to the right of bc
and cd lies also to the right of bc (the shape of the letter Z), then edges ab and cd are
disjoint. Similarly if the edges lie to the left of edge bc.

a

bc

d

Observation 2 (Both Ends in One Halfplane Argument). Let e = xy and f be edges.
If there exist rays beginning in the vertices x , y which intersect the supporting line of
edge f from the same side, then edges e and f are disjoint.

x yf
e

When we consider some of the edges ev , fv and gv in the following proofs, we know
by Lemma 3 that they exist. Sometimes we omit verification of the fact that three edges
from the proof are pairwise disjoint. It is a direct application of previous arguments and
we leave it to the reader.

In the figures the edges of G2 are drawn by thick lines. When we want to show three
disjoint edges in some figure, they are drawn in grey.

Lemma 4 (About Two Disjoint Edges in G2). Graph G2 contains no two disjoint
edges.

Proof. (By contradiction) Assume that there are two disjoint edges uv and xy in G2.
There are two possible positions of two disjoint edges. Either the line supporting one
edge intersects the second edge or it does not. See the following figure:

e1

e2

(I)

y

v

u

x

e1

e2

(II)

y

v

u

x
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Case I. Edge fv cannot be disjoint with edge e2, otherwise we have three disjoint edges—
e1, e2 and fv . If edge fv is incident to vertex y, there are two disjoint edges e1 and fv in
one halfplane determined by edge e2. Then consider edge gx incident to vertex x lying
in the opposite halfplane and we get three disjoint edges. Similarly for edge fy . See the
following figure:

e1

e2 y

v

u

x

ey

fy

ev

fv

Denote the supporting lines of edges fv and fy by p and q. Assume without loss of
generality that the lines p and q cross above edge e1 (or at infinity). Then edges fv , ey

and e1 are pairwise disjoint.

Case II. Edge fy cannot be disjoint with edge e1 again because otherwise we have three
disjoint edges e1, e2 and fy . The case when fy leads to an end vertex of edge e1 can
be handled almost in the same way as the case of a proper crossing. See the following
figure on the left:

e1

e2

fy

ey

y

v

u

x

e1

e2 y

v

u

x

z

ea

eb

ec

ed

Where can edge eu lie? Possible cases according to the angle with edge e1 are in the
above figure on the right.

(a) If the ray determined by eu crosses neither edge ey nor edge e2 we have three
disjoint edges—ea , e2 and fy . In the case when fy leads to vertex u, we have to
consider edges eu and ey which are disjoint because of the Z argument and edge
ev which lies in the opposite halfplane determined by edge e1.

(b) If the ray crosses edge ey or passes through vertex z then edges e1 and e2 lie
in one halfplane determined by edge eu . Moreover, edge fu lies in the opposite
halfplane. This yields three disjoint edges.

(c) Vertex y is cyclic in G, because edge e2 does not cross edge fy , but its supporting
line crosses it between the crossings with the other edges incident to y. Note that
both edges ec, ey ∈ E1 so vertex y is cyclic in G1 too.
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If edge ev is disjoint with edge xy, we have three disjoint edges (see the
following figure): Either ev is disjoint with edge fy and we take the edges ev , fy

and xy, or ev crosses edge fy and then we take ev , uy and gx .

e1

e2

y

v

u

fyx

Otherwise ev crosses edge xy and lies in the grey area in the figure. In that case
vertex v is either cyclic in G or edge gv lies between edge e1 and the dashed line
which is a continuation of ev .

e1

e2

y

v

u

fy

gx

x
w

e1

e2

ey

gv

gu

y

v

u

x fy

In the former case (above figure on the left) there must be an edge yw to the left
of segment yv and to the right of edge yx , because there are two cyclic vertices
y and v in G, y is cyclic in G1 and the edge at vertex y to the left of segment
yv was deleted to get graph G2. Then there are two disjoint edges e1 and yw in
one halfplane determined by edge e2. In the opposite halfplane there is edge gx .
These edges are pairwise disjoint.

In the latter case (previous figure on the right) edges gu , gv and ey are pairwise
disjoint.

(d) If the ray crosses edge e2 there are two disjoint edges ey and eu in one halfplane
determined by edge e1. In the opposite halfplane, there is edge ev . Again we have
three disjoint edges.

In all possible cases we found three disjoint edges. That contradicts the assumption
that G does not have three disjoint edges.

Corollary 1. Graph G2 has no two disjoint edges. Therefore each vertex is pointed in
G2 or all edges of G2 form a star with a cyclic vertex in G2 as a root.

Corollary 2. Any geometric graph G on n vertices with no three pairwise disjoint
edges has at most 3n − γ edges.
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Proof. We have deleted at most 2n−γ edges of G to get graph G2 with no two disjoint
edges. By Theorem 1 graph G2 has at most n edges. Thus, graph G has at most 3n − γ
edges.

For each vertex v which is neither isolated nor cyclic in G1 we say that the second
endpoint of the edge ev ∈ E1− E2 is the partner vertex v̄ of vertex v. The other vertices
do not have any partner vertex. We say that two vertices share their partner if they have
a common partner vertex.

The idea of the proof is to show that partner vertices are isolated in G2. Then if the
partner vertices are not shared, the number of vertices contained in some edge of G2 is
less than or equal to the number of vertices that are either isolated in G2 or cyclic in G.
That would yield the bound n/2 on the number of edges in G2.

In the following lemma we show the cases in which the partner vertices are not shared.
Its proof is rather technical and is based on the case study.

Lemma 5 (Sharing of Partner Vertices). For any edges in graph G2 which are in one
of the positions (a)–(e), the grey vertices do not share their partner. In position (f) the
grey vertices do not share their partner or the black vertex’s partner is isolated in G2 or
the black vertex is cyclic in G.

(a) (b)

(c) (d)

(e) (f)

Lemma 6 (Auxiliary). Let e = zx and f = zy ∈ E2 be two adjacent edges. Edges ex

and ey are not disjoint.

Proof. If ex and ey are disjoint, then consider these two edges and edge ez . These edges
are pairwise disjoint in G.

Proof of Lemma 5. (By contradiction) The basic scheme of the proof for positions (b)–
(f) is the following: If one of the grey vertices has no partner vertex, the two grey vertices
cannot share a partner vertex. Assume that in each position the two grey vertices have
a partner vertex and they share it. Then we find three disjoint edges in G and that is the
contradiction.

(a) If there is an edge xy connecting two vertices in G2 then edges ex and ey lie in
the opposite halfplanes determined by edge xy.
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(b) If vertices x and y share their partner x̄ = ȳ, then there are three disjoint edges
gx , zy and fx (disjoint because of the Z argument). It is not necessary that all
edges which cross in the figure must cross (i.e. ex and zy), but the same choice
of disjoint edges works.

x̄ = ȳ

x

y
z

gx

fx

(c) Edges xz, zy and rs are the edges of position (c). Assume that r and y share their
partner vertex.

x

y
zz

s

r

q

x

y
z

s

r q

w

Consider the edge zq = ez . Edges zq and rs are either disjoint or not. In the first
case, which is on the left, there are three disjoint edges zq , rs and y ȳ. The second
case, which includes the case r = q, is on the right. There are three disjoint edges
wq , zx and y ȳ in G.

(d) There are two possible positions of the shared vertex—v1 and v2 (see the following
figure on the left):

v1

v2

z

x

y

s

r

x

y

q
s

z

rv2

In the first case (shared vertex v1), use Lemma 6, which says that this can-
not happen otherwise we have three disjoint edges. In the second case con-
sider edges gx , zy and er (previous figure on the right). They are pairwise
disjoint.
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(e) Edges xz, zy and yr are the edges of position (e). Assume that r and x share their
partner vertex.

x

y
z

r

q

x

y
z

r q

w

Consider the edge zq = ez . Edges zq and ry are either disjoint or not. In the first
case, which is on the left, there are three disjoint edges zq , r y and x x̄ . The second
case, which includes the case r = q, is on the right. There are three disjoint edges
wq , zy and x x̄ in G.

(f) There are three possible positions of the shared vertex x̄ = ȳ. Denote them by
v1, v2 and v3. See the following figure:

v1

v2

z

x

y = v3

r

s

(v1) Use Lemma 6, which yields three disjoint edges.
(v2) Assume that vertex y is not cyclic in G otherwise we are done. We start in

the following figure on the left. Consider the edge zw = ez . If edgeswz and
rs are disjoint, we have three disjoint edges. Otherwise look at the figure
on the right. The case s = w is handled in the same way. Vertex y is not
cyclic in G hence it has a partner vertex u. Consider the edgeswq = fz and
yu = ey . If they are disjoint, we again have three disjoint edges.

v2

z

x

y

r

s

r

w

v2

z

x

y

r

s

r
u

w

q
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Otherwise look at the following figure:

v2

z

x

y

r

s

r

u

w

q

The partner vertex u is either isolated in G2 as we claim in the lemma or
there must be an edge uv ∈ E2. All edges in G2 must intersect (Lemma 4).
All possible positions of this edge are in the following figures:

v2

z

x

y

r

s

r

u

v

w

q v2

z

x = v

y

r

s

r

u

w

q

In the case on the left, there are three disjoint edges zw, uv and xv2. On the
right is the case when x = v. If vertex u is pointed in G then there is an
edge to the right of edge uy because edge uy belongs to graph G1. Graph G1

was obtained from G by deleting the rightmost edge at each pointed vertex.
Edges gu , zy and gx are three disjoint edges.

If vertex u is cyclic in G then there exists an edge ē below the supporting
line of edge uy (by the definition of a cyclic vertex). Edge ē either intersect
edge xv2 and then edges ē, zy and gx are pairwise disjoint or ē does not
intersect xv2 and then edges ē, xv2 and zw are pairwise disjoint.

In all possible cases we have three disjoint edges.
(v3) The vertex y = v3 is either cyclic in G or we have three disjoint edges fy ,

xz and gy . Edge gy lies to the right of edge xy because xy ∈ E1 and to get
graph G1 the rightmost edge was deleted at vertex y.

z

x

y
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In the following two corollaries we summarize the results on sharing partner vertices.

Corollary 3. In each star S ⊆ G2 there are no two vertices vi , vj ∈ S which share
their partner v̄i = v̄j .

Proof. Apply Sharing Lemma 5(b) to each pair of leaves. A leaf and the root of the star
cannot share their partner either, because they are joined by an edge (Lemma 5(a)).

Corollary 4. Let S and S′ be two different stars in G2.

(i) If the root vertices of these stars are not joined by an edge in G2, then there are
at most two leaves u ∈ S and v ∈ S′ that can share their partner ū = v̄. Vertex
u is the leftmost leaf in one star and vertex v is the rightmost leaf in the second
star (grey vertices in the following figure on the left). Moreover, if vertices u and
v share their partner, then all the remaining leaves in star S are cyclic in G or
have a partner vertex isolated in G2.

(ii) If the root vertices are joined by an edge in G2 then no two vertices of stars S, S′

can share a partner vertex (figure on the right).

S

S′

Proof. (i) Apply one of the Sharing Lemmas 5(b)–(d) to each other pair of leaves to
show the first part. Apply Lemma 5(f) to the grey vertices and another leaf of S to show
that this leaf is cyclic in G or it has a partner vertex isolated in G2. (ii) Use the result of
case (i) and for the other pairs apply Lemma 5(e) or 5(a).

Now we show that there are many isolated vertices in G2.

Lemma 7. Let zx, zy ∈ G2 be two adjacent edges. At least one vertex of x or y has a
partner vertex isolated in G2 or is cyclic in G.

Proof. (By contradiction) The edges xu = ex and yr = ey are neither disjoint by
Lemma 6 nor lead to a common vertex by Lemma 5(b).

Let us assume that x and y are not cyclic in G and that both partners of vertices x
and y are not isolated in G2. So there must be edges in G2 containing partner vertices.
These edges must intersect all the other edges of G2 (Lemma 4), so except for the special
cases, when some vertices are equal, there are only two possible positions. They are on
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the following figures:

z

x

y

r

s

u

v

e

ē z

x

y

r

v

u

s

e

ē

We choose one edge from rs and uv and one edge from xu and yr in such a way that
we have two disjoint edges. Denote the first chosen edge by e and the second chosen
edge by ē. Then consider edge ez . If it is disjoint with edge e then we have three disjoint
edges e, ē and ez . Otherwise consider edge fz and take three disjoint edges fz , zx and
r y (see the following figure):

z

x

y

r

s

u

v

fz

There are some special cases when some of the vertices are equal. In case v = s,
the former approach works. In the following figure on the left we show the case when
u = y. Vertex y is either cyclic in G or we have three disjoint edges fy , gy zx . Edge gy

lies to the right of edge xy because xy ∈ E1 and to get graph G1 the rightmost edge was
deleted at vertex y. The same approach will work also for the cases v = z and s = z. On
the right is the last case when s = x . We again have three disjoint edges gx , zy and gr .

z

x

y z

x = s

y
r

Corollary 5. In any star S ⊆ G2 all but at most one leaf are cyclic in G or have a
partner vertex isolated in G2.

Proof. Apply Lemma 7 to the pair of leaves that do not satisfy the condition yet.
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Lemma 8. Graph G2 has at most (n + 2γ )/2 edges.

Proof. We use the discharging method. Give $1 to each vertex and an additional $2 to
each vertex cyclic in G. We need to pay for all edges of G2, where each edge costs $2
($1 per each end). So each vertex v must pay $ deg v · · · $1 for each edge incident to it.
How will the vertices pay for all the edges?

• Isolated vertices do not pay anything. Someone can borrow from them.
• Vertices of degree one pay for themselves.
• Vertices with deg v ≥ 2 borrow $(deg v − 1) from the partners of their neighbors

or cyclic neighbors and pay for one edge themselves. If possible, they pay for the
leftmost edge on their own and borrow for the other edges.

It remains to show that this works. Let us look at the vertex of deg v ≥ 2. Corollary
5 says that in each star in G2 all but at most one leaf have either partner vertex isolated
in G2 or are cyclic in G. So v always has someone to ask to borrow.

We must also show that the partner vertices are not lending to more than one vertex
and that cyclic vertices in G are not lending to more than two vertices. However, the first
condition would mean that the partner vertex is shared by some vertices.

In the case when edges of G2 form only one star (Lemma 4), use Corollary 3, which
says that no two vertices can share their partner vertex. Otherwise look at the vertices
which borrowed from the shared partner vertex. These vertices together with their neigh-
bors form two maximal stars S and S′ in G2. Use Corollary 4, which says that the only
leaves of two maximal stars S and S′ which can share a partner vertex are the leftmost
in S and the rightmost in S′. Moreover, this holds only in the case when the roots of
considered stars are not joined by an edge. If these two leaves share a partner then we
can apply the second part of Corollary 4(i) which says that all the other leaves of the
star S are cyclic in G or have a partner vertex isolated in G2. So the root vertex of S can
borrow from them and pay for the leftmost edge on his own.

Vertices cyclic in G cannot lend more than they have either. Each cyclic vertex has
$2 to lend directly to the vertices which need help. There cannot be more than two such
vertices. See the following figure:

cyclic

All neighbors of cyclic vertex in G2 except for the outer ones must have degree one.
Otherwise there are two disjoint edges in graph G2. Vertices with degree one pay for
themselves and do not need any help.

Altogether vertices have $(n+2γ ); we paid for all edges so we have at most (n+2γ )/2
edges.

We have deleted at most 2n−γ edges to get graph G2. Graph G2 has at most (n+2γ )/2
edges. Thus graph G has at most 2.5n edges. That yields the bound d2(n) ≤ 
2.5n�.
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3. N. Alon and P. Erdős: Disjoint edges in geometric graphs, Discrete Comput. Geom., 4 (1989), 287–290.
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9. Z. Mészáros: Geometrické grafy, Diploma work, Charles University, Prague, 1998 (in Czech).

10. J. Pach: Geometric graph theory, in Surveys in Combinatorics, 1999 (Canterbury). London Mathematical
Society Lecture Note Series, 267, Cambridge University Press, Cambridge, 1999, pp. 167–200.

11. J. Pach and P. K. Agarwal: Combinatorial Geometry, Wiley Interscience, New York, 1995.
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13. G. Tóth: Note on geometric graphs, J. Combin. Theory Ser. A, 80 (2000), 126–132.
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