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Abstract. A result of Eckhoff [3] implies that to every finite T (3)-family of pairwise
disjoint copies of a closed disc of unit diameter there exists a strip of width 1 meeting all
members of the family. Our goal is to generalize this result giving a stricter upper bound
by proving that the narrowest transversal strip has width < 0.65.

1. Introduction, Definitions, Results

Throughout this paper the term disc is used for a closed solid circle of diameter 1 and
unit disc means a closed solid circle of radius 1. D(X) and U (Y ) denote the disc centered
at X and the unit disc centered at Y .

A line transversal to a family of discs is a straight line having a non-empty intersection
with every member of the family. Alternatively, we also say that this family has property
T . A family of at least k discs is a T (k)-family if every k-member subset of it has
property T .

Problems concerning line transversals of families of discs, especially Helly-type ques-
tions, have been studied by many authors. (For an overview of the different results the
reader is advised to consult the survey paper [4].) Disjoint translates of a convex compact
set soon became a favorite field of research. For the special case when the domains are
disjoint congruent circles Danzer [2] proved

Theorem D. Every finite T (5)-family of disjoint congruent discs in the plane has
property T .

∗ This research was partially supported by the Hungarian Science Foundation OTKA, Grant Nos. T037752
and T038397.
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He also points out that if the disjointness hypothesis or the assumption that the discs
are congruent is dropped, then the claim of Theorem D does not hold anymore even if
property T (5) is replaced by property T (r) for any fixed r .

Grünbaum [5] conjectured, however, that property T (5) implies the existence of a
transversal if the family consists of disjoint translates of a compact convex set.

It was Tverberg [11] who finally verified this famous old conjecture proving:

Theorem T. Every finite T (5)-family of disjoint translates of a compact convex domain
in the plane has property T .

Although the statement of Theorem T does not hold anymore if property T (5) is
relaxed to property T (4), Katchalski and Lewis found [10] that even property T (3)
implies the existence of a line which is “almost” a transversal to the family in the
following sense:

Theorem KL. There exists a universal integer constant g such that to every finite T (3)-
family of disjoint translates of a compact convex domain, a line can be found intersecting
all but g members of the family.

Katchalski and Lewis expect g to be a small number. Constructions given for discs
by Bezdek [1] show that in general g cannot be smaller than 2. Holmsen [6]–[8] proved
that g ≤ 22 and found that g is 4 if the domains are translated copies of a parallelogram.
In the case of discs, g ≤ 12 is the best known result, due to Kaiser [9].

In the present paper the term “almost” is used in a different sense. Instead of counting
the exceptional translates which the best line fails to meet we suggest a quatitative
approach and measure the failure by the maximal distance of the best line from the
translates, or by the double of this: i.e. by the width of the narrowest strip intersecting
all members.

The transversal strip of a family of translates is a closed (parallel) strip intersecting all
members of the family and the width of the narrowest transversal strip is the transversal
width of the family.

Using this term the special case of an often cited much more general result of Eckhoff
[3] can be reformulated in the following way:

Theorem E. To every finite T (3)-family of disjoint discs of diameter 1 there exists a
transversal strip of width 1.

Our main goal in this paper is to improve this bound by establishing the following:

Theorem. To every finite T (3)-family of disjoint discs of diameter 1 there exists a
transversal strip of width < 0.65.

Eckhoff expects that the minimal value w5 is attained for a regular arrangement of
five discs (Fig. 1). This expectation can be expressed in the following:

Conjecture. To every finite T (3)-family of disjoint discs of diameter 1 there exists a
transversal strip of width ≤ w5 = 2 sin (π/10) = 0.618 . . . .
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Fig. 1

Notice that the configuration displayed in Fig. 1 is of property T (4), i.e. the truth
of this conjecture would imply that even property T (4) cannot guarantee a narrower
transversal strip than property T (3) does.

Sets S1 and S2 are said to be separated if a straight line λ disjoint from S1 and S2, exists
such that every line segment connecting a point of S1 with a point of S2 is intersecting
λ. We say that S1 and S2 are widely separated if a strip σ of unit width, disjoint from S1

and S2, exists such that every line segment connecting a point of S1 with a point of S2 is
intersecting σ .

The union of all straight lines intersecting two disjoint discs D(X) and D(Y ) is a
simply connected closed unbounded domain, the boundary of which consists of parts
of the four lines tangent to both discs (Fig. 2(a)). This unbounded domain is called the
sheaf belonging to the two discs and is denoted by �(X, Y ). Clearly, a third disc has a
common transversal with D(X) and D(Y ) if and only if it intersects the sheaf �(X, Y ).

The outer parallel domain of radius 1
2 of sheaf �(X, Y ), which is the locus of the

centers of the discs intersecting �(X, Y ), is called the center sheaf belonging to X and
Y and is denoted by�c(X, Y ). Two of the (at most) six lines generating the boundary of
the center sheaf �c(X, Y ) are non-separating tangent lines to both unit discs U (X) and
U (Y ) and the four other lines are tangent to one of the two unit discs and pass through
the center of the other one (see Fig. 2(b)).

(a) (b)

Fig. 2
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The generalized center sheaf belonging to two orthogonal segments also play an
important role in the proof. This is the union of all center sheaves belonging to a pair
of discs, one of them centered in the first segment and the other centered in the second
one. The generalized center sheaf is a domain bounded by parts of at most six straight
lines—like in the case of the common center sheaf, however, the generalized center
sheaf is usually not symmetric. �c(X1 X2, Y1Y2) denotes the generalized center sheaf
belonging to the segments X ∈ X1 X2 and Y ∈ Y1Y2, where X1 X2 and Y1Y2 denote the
segments on the x- and y-axis connecting X1 and X2 and Y1 and Y2, respectively. The
notation λ(XY ) is used for the line connecting the points X and Y . λ�(XY ) and λr(XY )
denote the common non-horizontal tangent lines of sets X and Y on the left and on the
right, respectively.

2. The Proof

1. Contrary to our claim suppose that a counterexample exists. Following Tverberg’s
reduction method [11] it can be assumed that the centers are in general position, i.e. no
three centers form the vertices of a right-angled triangle.

Tacitly the following well-known fact will also be used:

Lemma. The disjoint sets S1, S2 and S3 have no common transversal if and only if
each can be separated from the union of the other two sets.

Let σ c denote the narrowest strip covering all centers of the family. Assume that σ c is
horizontal, and its upper boundary line is the x-axis. Then we can assume that there exists
a center A(0,−a) on the lower boundary line y = −a of σ c and two centers B(b, 0)
and C(−c, 0) on the upper one (the x-axis) such that 1.65 ≤ a ≤ 2 and 0 < b ≤ c. We
are going to show that these assumptions lead to contradiction: there exist three discs in
the family without a line transversal.

The sketch of the proof is the following. It is a direct consequence of the T (3)-property
of the discs about A, B and C that to any given value of a there belongs a feasibility
interval for b and for any given a and b a feasibility interval for c. As center C must be
in �c(A, B) our assumption b ≤ c implies

b ∈
(

0,
1√

4− 1/a2

]
. (1)

Since the upper end of the interval is a decreasing function of a and 1/
√

4− 1/1.652 =
0, 5246 . . . the feasibility interval of b is a subinterval of the interval [0, 0.525].

In our proof every pair of values a ∈ [1.65, 2] and b ∈ [0, 0.525] will be considered
although not all of these combinations are feasible in a T (3)-family. Technically, the
intervals will be cut into subintervals: a ∈ [1.65, 2] into five subintervals:

a ∈ [1.65, 1.67], [1.67, 1.70], [1.70, 1.75], [1.75, 1.8], [1.8, 2], (2)

and, independently, b ∈ [0, 0.525] into six subintervals:

b ∈ (0, 0.1], [0.1, 0.3], [0.3, 0.42], [0.42, 0.48], [0.48, 0.51], [0.51, 0.525]. (3)
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Fig. 3. The “parameter boxes.”

This gives 30 “parameter boxes”. For some a-intervals several b-intervals have been
united to reduce the calculations. Finally, we have 23 parameter boxes. (For a graphical
overview see Fig. 3.)

It will be shown that none of these parameter boxes contains a feasible solution, i.e.
a counterexample to the claim of the theorem. Except for the numerical calculations the
proof follows the same line for each box therefore it will be carried out for an arbitrary
parameter box.

The values a1 < a2 and b1 < b2 denote the limits of the selected parameter intervals
and Ai (0,−ai ) and Bi (0, bi ), i = 1, 2, denote the endpoints of the assigned intervals.

2. It is easily seen that in our cases, when the inequalities

1.6 ≤ a ≤ 2, 0 ≤ b1 < 1, 0.5 ≤ c1 < 1 (4)

hold, the generalized center sheaf �c(B1 B2, A1 A2) defined by the segments A1 A2 and
B1 B2 is lying between two polygonal lines (see Fig. 4), one—on the left—consisting of
parts of lines

λ�(U (B1)A1), λ
�(U (B1)U (A1)), λ

�(B2U (A1)), (5)

and the other boundary—on the right—consisting of parts of lines

λr(U (B2)A1), λ
r(U (B2)U (A2), λ

r(B1U (A1)). (6)

Fig. 4. Generalized center sheaves.
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Analogously, the boundary of �c(C1C2, A1 A2) consists of parts of lines

λ�(U (C2)A1), λ
�(U (C2)U (A2)), λ

�(C1U (A1)), (7)

and parts of lines

λr(U (C1)A1), λ
r(U (C1)U (A1)), λ

r(C2U (A1)). (8)

3. To every box of a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2 a feasibility interval [−c2,−c1] can
be calculated for the Cartesian x-coordinate of C(−c, 0) based on the condition b ≤ c,
on the disjointness hypothesis and on the T (3) property of the family. Since the lower
bound for c is a decreasing function of b and the upper bound is a decreasing function
of both a and b we have

c ≥ c1 = max(1− b2, 0.5) (9)

and, from �c(A1 A2, B1 B2),

c ≤ c2 =
a1

√
a2

1 + b2
1 − 1)− a2

1b1

a2
1 − 1

. (10)

Ci (0,−ci ), i = 1, 2, denote the endpoints of the feasibility segment for C .
4. By the T (3) property of the family the three centers A, B and C can always

be covered with a strip of width 1, thus the family, contradicting our claim, contains
further discs. All further centers must lie in the bounded polygonal domain which is the
intersection of strip σ c, center sheaf �c(A, B) defined by the discs about A and B and
center sheaf �c(A,C) defined by the discs about A and C (Fig. 5(a)), moreover, the
centers must lie, by the disjointness condition, outside of the unit discs U (A), U (B) and
U (C) (Fig. 5(b)).

5. Let X (AB) and X (AC) be the images of the x-axis received by reflection on the
line λ(AB) and λ(AC), and let X∗(AB) and X∗(AC) be the lines through A parallel
to X (AB) and X (AC), respectively. Let σ(AB) (σ(AC)) denote the strip bounded by
X (AB) and X∗(AB) (by X (AC) and X∗(AC)). Strips σ c, σ(AB) and σ(AC) have, of
course, the same width (Fig. 6).

(a) (b)

Fig. 5
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Fig. 6

Since there is no center below the lower boundary line y = −a of the narrowest
transversal strip σ c the following holds:

Proposition 1. All centers in the open half-plane x > 0 are strictly above X∗(AB) and
all centers in the open half-plane x < 0 are strictly above X∗(AC) for any a ∈ [1.65, 2]
and b ∈ [0, 0.525].

The proof is left to the reader. (Remember: no triple of centers is supposed to form
a right-angled triangle, hence line X∗(AB) is strictly descending and line X∗(AC) is
strictly ascending.)

Proposition 2. Center C is an inner point of strip σ(AB) and center B is an inner
point of strip σ(AC) for any a ∈ [1.65, 2] and b ∈ [0, 0.525].

The proof is left to the reader. (Hint: consider the intervals b ≤ 0.2 and b ≥ 0.2
separately.)

6. If centers A, B and C are allowed to vary in segments A1 A2, B1 B2 and C1C2,
respectively, then the role of the center sheaves is taken over by the suitable generalized
center sheaves. Exploiting the condition that any other center is disjoint from U (A),
U (B) and U (C) for any choice in the parameter box, a further reduction of this polygonal
domain

Q0 = σ c ∩�c(A1 A2, B1 B2) ∩�c(A1 A2,C1C2)

is possible. Those points which lie outside of U (A) for at least one a ∈ [a1, a2] are the
points of the complement of the set of inner points of U (A) for all a ∈ [a1, a2], which
is the intersection U (A1) ∩ U (A2). Similarly, a point of Q0 is not feasible if it is not
outside of U (B) for at least one value of b ∈ [b1, b2] and outside of U (C) for at least
one value of c ∈ [c1, c2]. Thus the feasibility domain of further centers reduces—in each
box—to

Q = Q0\((U (A1) ∩U (A2)) ∪ (U (B1) ∩U (B2)) ∪ (U (C1) ∩U (C2))). (11)
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(a) (b)

Fig. 7

(Lying in Q is, of course only a necessary condition to be a potential center and it is
far from sufficient.) Qleft and Qright denote the parts of set Q in the half-planes x ≤ 0
and x ≥ 0, respectively.

In the rest of the propositions it is assumed—without mentioning it repeatedly—that
the parameters a and b belong to one of the 23 parameter boxes defined above.

Let XR be the line parallel to X (A1 B2) and passing through B1 (Fig. 7(a)) and let XL

be the line parallel to X (A1C2) and passing through C1. Then the following holds:

Proposition 3. Inside the quarter plane x > 0, y < 0, line X (AB) (the upper bound-
ary of σ(AB)) runs above XR for any A and B of the box and inside the quarter plane
x < 0, y < 0 line X (AC) (the upper boundary of σ(AC)) runs above XL for any A and
C of the box.

Proof. On one hand the steepness of line X (AB) is a decreasing function of the steep-
ness of segment AB, and (within a parameter box) X (AB) is never steeper than X (A1 B2).
On the other hand X (AB) intersects segment B1 B2.

We also have

Proposition 4. Domain Qright lies strictly below XR (Fig. 7(a)) and Qleft lies strictly
below XL.

Proof. This is easily verified by checking that every vertex of conv(Qright), a polygon,
is strictly below XR and every vertex of conv(Qleft) is strictly below XL.

Then the feasibility domain Qright has no point above X (AB) and Qleft has no point
above X (AC) for any choice of parameters in the parameter box.

Combining Propositions 1, 3 and 4 we have

Proposition 5. For any choice of parameters in a given box, all centers of the x > 0
half-plane lie in the interior of σ(AB) except for B, which is on its boundary and all
centers of the x < 0 half-plane lie in the interior of σ(AC) except for C , which is on its
boundary.
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By Propositions 5 and 2 the set of centers A, B and C and those finite number of
further centers which might be in the interior of σ(AB) can be covered by a strip narrower
than σ c. Consequently, then we have

Corollary E. There exists a center E0 in the half-plane x ≤ 0, i.e. in domain Qleft,
which is not an inner point of strip σ(AB).

As the lower boundary X∗(AB) of strip σ(AB), intersecting segment A1 A2, is never
steeper than line X∗(A1 B2) the following holds:

Proposition 6. Line X∗(AB) either coincides with line X∗(A1 B2) or runs below it in
the x < 0, y < 0 quarter plane for any choice of parameters of the box.

Hence center E0 must lie below X∗(A1 B2) or on it. The part of Qleft consisting of
points below or on line X∗(A1 B2) will be denoted by Q∗left (Fig. 7(b)).

By a similar argument we have

Corollary F. There exists a center F0 in the half-plane x ≥ 0, i.e. in domain Qright,
which is not an inner point of strip σ(AC).

In what follows Q∗right denotes the domain which is the rest of Qright having the part
above line X∗(A1C2) removed.

7. Some special points play a key role in the rest of the proof. Points Ei (xEi , yEi ), i =
1, . . . 7, defined below, are selected so that the convex hull of them is covering Q∗left in
each case. This simplifies the required calculations.

The first three are points of line X∗(A1 B2). E1 is on the upper half of the boundary
of disc U (A2), E2 is on line λ�(U (B1)U (A1)) and E3 is on line λ�(B2U (A1)). In some
cases—like, e.g. in case of box a ∈ [−1.8,−1.75], b ∈ [0.42, 0.525]—E2 is a vertex and
E3 is not, while in other cases—like, e.g. in box a ∈ [−1.75,−1.7], b ∈ [0, 0.1]—E3

is a vertex and E2 is not (see Fig. 8). E4 is the point of intersection of lines λ�(B2U (A1))

(a) (b)

Fig. 8
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Fig. 9

and λ�(C2U (A2)). E5, E6 and E7 are points of line y = −a2 on one hand; and lying
on λ�(U (C2)U (A2)), on λl(U (B1)U (A1)) and on the x < 0 half of the boundary of the
disc U (A1) on the other hand. (We mentioned that the convex hull of Q∗left is always a
pentagon. That one of E2 and E3 which has the smaller x-coordinate and E1 are vertices
of the convex hull of Q∗left. That one of E5 and E6 which has the smaller x-coordinate
and E7 are also vertices of the convex hull of Q∗left.)

In the other half-plane let F1(xF1 , yF1) be the point of intersection of X∗(A1C2) with
the upper half of the boundary of U (A2), and let F2(xF2 , yF2) be the point of intersection
of λr(U (C1)U (A1)) and the lower half of the boundary of unit disc U (B1).

8. Consider now the upper tangent line W1 of unit disc U (E1) passing through C2

and the lower tangent line W2 of both unit discs U (E7) and U (B2) and denote the point
of intersection of W1 and W2 by K (xK , yK ) (Fig. 9).

Simple substitution based on equations of X∗(A1 B2) and W1 shows that W1 is steeper
than X∗(A1 B2) (in each box). Hence E1 is the point of Q∗left nearest to W1, thus Q∗left is
widely separated from the points above W1. This implies

Proposition 7. If F0 ∈ Q∗right is above W1 then E0 is widely separated from C ∪ F0.

Similarly, it is easy to check that W2 is a lower support line of the outer parallel
domain of radius 1 of Q∗left (the critical point being E7) hence the following holds:

Proposition 8. If F0 ∈ Q∗right is below W2 then F0 is widely separated from B ∪ E0.

Let F3(xF3 , yF3) be the point of intersection of W1 and X∗(A1C2). Simple substitutions
yield, in each parameter box:

Proposition 9. K is an inner point of U (A2).
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Proposition 10. F3 is an inner point of U (A2).

By Propositions 9 and 10 the segment of W2 between y = −a2 and y = yK runs
inside U (A2) and segments K F3 and F3 F1 run inside U (A2) as well. In addition, the
part of U (A2) above y = yF1 is to the left of X∗(A1C2). Hence no point of Q∗right lies to
the left of W1 above line y = yK and no point of Q∗right lies to the left of W2 below line
y = yK . Consequently, F0 lies either above W1 or below W2.

Let us now decompose domain Q∗right into two parts by line y = yK . Qupper and
Qlower denote the closures of the upper and lower parts of Q∗right, respectively. Using this
notation Proposition 7 implies

Proposition 11. E0 is widely separated from C ∪ F0 if F0 ∈ Qupper.

It is easy to check the truth of the next proposition for each box of parameters:

Proposition 12. F0 is widely separated from E0 ∪ C if F0 ∈ Qupper.

Proof. Consider the line λ(C1 E1). The substitutions show (in each box) that corner E7

is to the left of the line, consequently λ(C1 E1) is the support line to the whole domain
Q∗left, where E0 is supposed to lie. Point F1 is on the right of λ(C1 E1) and its distance
from the line is larger than 1. As λ(C1 E1) is steeper than X∗(A1C2) the line parallel to
it and passing through F1 is a support line of F1 ∪ Qupper, thus every point F0 of it is
widely separated from E0 ∪ C .

We need also

Proposition 13. C is widely separated from E0 ∪ F0 if F0 ∈ Qupper.

Proof. Since the shape of Qupper depends on the choice of the parameter box, this
proposition requires more, however simple, calculation to verify that the distance of C
and Q∗left ∪ Qupper is larger than 1 (in each box) as claimed.

Based on Propositions 11–13 we have

Corollary U. The discs about C , E0 and F0 have no common transversal if F0 ∈ Qupper,
thus F0 cannot lie in the upper part of Q∗right.

Analogously, since Qlower is below line W2, Proposition 8 implies

Proposition 14. F0 is widely separated from E0 ∪ B if F0 ∈ Qlower.

The last two steps are rather simple to prove:

Proposition 15. E0 is widely separated from B ∪ F0 if F0 ∈ Qlower.
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Proof. The strip of unit width between lines y = −4x and y = −4x − √17 widely
separates E1 and K while the lines through E1 and K and parallel to y = −4x are
support lines of Q∗left and K ∪ Qlower, respectively. Hence the claim is proved.

Proposition 16. B is widely separated from E0 ∪ F0 if F0 ∈ Qlower.

Proof. This is a simple consequence of the fact that the topmost point of Q∗left (E2 or
E3) as well as point K lie below line y = −1.

Propositions 14–16 imply

Corollary L. The discs about B, E0 and F0 have no common transversal if F0 ∈ Qlower,
thus F0 cannot lie in the lower part of Q∗right.

Corollaries E, F, U and L together yield contradiction and this concludes the proof to
the theorem.
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