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Abstract. It is shown that every compact convex set K which is centrally symmetric and
has a non-empty interior admits a lattice packing of Euclidean 3-space with density greater
than or equal to 0.53835 . . . . This is an improvement of the result in [8], which achieved a
bound of 0.46421 . . . . Minkowski combinations and the Brunn–Minkowski inequality are
used in conjunction with the construction in [8] to achieve a better result.

1. Introduction

A convex body is a compact convex set having a non-empty interior. In the context of
this paper we are only concerned with convex bodies in Euclidean 3-space (E3) and in
the Euclidean plane (E2) and denote by K an arbitrary convex body. A convex body in
the plane is referred to as a convex disk. K is centrally symmetric if there exists a point
o in K such that o is the midpoint of every chord of K which contains o.

A packing with copies of K is a family {Ki } of sets congruent to K whose interiors
are mutually disjoint. A covering with copies of K is a family {Ki } of sets congruent to
K whose union is the entire space. A family {Ki }which is both a packing and a covering
is called a tiling. Any convex body which admits a tiling is called a convex tile.

Suppose T is a tile and T contains (respectively is contained in) K . If {Ti } is a tiling
with copies of T , then each Ti contains (is contained in) a copy Ki of K . Then {Ki } is a
packing (covering) associated with the tiling {Ti }.

Throughout this paper the measure (volume in 3-space or area in the plane) of any
set S will be denoted by |S|. Also, the length of any segment s will be denoted |s|. Each
packing (covering) is assigned a non-negative number, called the density of the packing
(covering), which, intuitively, corresponds to the ratio of the sum of the measures of the
bodies in the packing (covering) to the measure of the region which they pack (cover).
For a formal definition of density and an investigation concerning its existence and
uniqueness the reader is referred to Section III in Chapter 1 of [4]. The density of a
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tightest packing of Euclidean space with copies of K is called the packing density of
K . Likewise, the density of a thinnest covering of Euclidean space with copies of K is
called the covering density of K . The density of a most efficient packing (covering) with
copies of K by a lattice arrangement is the lattice packing (covering) density of K . In
the case that the packing (covering) {Ki } is associated with the tiling {Ti }, the density
of {Ki } can be computed as |K |/|T |. In general, if {Ki } is a packing (covering) and {Ti }
is a tiling (i = 1, 2, 3, . . .) and there is a number r such that for every positive integer
i the distance between Ki and Ti is less than r , then the density can be computed as
|K |/|T |. Therefore, if {Ki } is a packing (covering) formed by translating copies of K
into a lattice arrangement, then the density can be computed as |K |/|T | where T is the
lattice parallelepiped.

In this paper we investigate the following problem: find the greatest number d0

such that every centrally symmetric convex body admits a lattice packing of Euclidean
3-space with density greater than or equal to d0. We will show that d0 ≥ 0.53835 . . . . A
more general and difficult problem is to find the greatest such number d0 for an arbitrary
convex body. To achieve this bound, the construction in [8] is used, in which the author
shows that every centrally symmetric convex body in E3 will pack space with a density
of at least 0.46421 . . . . This construction was also used in [9] in which the author bounds
the ratio between packing and covering densities for a centrally symmetric convex body
in E3.

The theorem of Minkowski–Hlawka [5] gives a bound for the lattice packing densities
of centrally symmetric convex bodies in dimension d, specifically ζ(d)/2d−1 where
ζ(d) =∑∞k=1 k−d . For example, this theorem gives a density bound in E3 of 0.30051 . . . .
The density bound given in this paper, while much higher, is only for dimension 3.
It is likely that the greatest lower bound in this context is still significantly higher,
since, for example, there is a lattice packing with congruent spheres which has density
π/
√

18 = 0.74048 . . . .
The packing problem for centrally symmetric convex disks in E2 has received much

attention due to its role in the Geometry of Numbers and the bounds achieved leave
much less room for improvement than the one shown here. Tammela [10] has shown
that any centrally symmetric convex disk admits a packing of the plane with density
greater than or equal to 0.89265 . . . . This bound was obtained through an elaboration of
a method of Ennola [2] who suggested this improvement of his own result. However, it is
conjectured that the “smoothed octagon” of Reinhardt [7], for which the packing density
equals 0.90241 . . . , provides the best bound in this context. Furthermore, it is known
that the maximum density for a centrally symmetric convex disk K can be achieved
by a lattice arrangement. This is a consequence of two theorems: The first by Dowker
[1] asserts that among the minimum area hexagons containing K there is one which is
centrally symmetric about the center of K . The second by L. Fejes Toth [3] states that if
K is an arbitrary convex disk and H is a hexagon of minimum area circumscribed about
K , then the greatest packing density possible for K is less than or equal to |K |/|H |. Since
every centrally symmetric hexagon tiles the plane in a lattice manner, the greatest packing
density for a centrally symmetric disk K can be achieved by a lattice arrangement.

In this note the density bound given in [8] is improved by use of Minkowski com-
binations and the Brunn–Minkowski inequality. Though both of these apply to Ed , we
only state and apply them in the context of E2.
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Given two compact convex sets K and L in E2, and a, b ≥ 0, denote

aK + bL = {ax + by | x ∈ K , y ∈ L}.

The convex set aK + bL is called a Minkowski combination of the sets K and L . The
Brunn–Minkowski inequality asserts that the square root of area is a concave function
with respect to Minkowski sums, that is, for 0 ≤ x ≤ 1,

√
|(1− x)K + x L| ≥ (1− x)

√
|K | + x

√
|L|.

When the sets have non-empty interiors (i.e., they are convex disks), equality will
hold if and only if K and L are homothetic, that is they differ by translations and/or
dilations. In a classic result (for volumes in dimension d) due to Minkowski [6], it is
shown that areas of Minkowski linear combinations can be represented by polynomials
of the form

|aK + bL| = a2|K | + 2ab|(K , L)| + b2|L|, (1)

where the coefficient |(K , L)| is called the mixed area of K and L . The above equation
with the Brunn–Minkowki inequality implies Minkowski’s inequality which assures

|(K , L)| ≥
√
|K |

√
|L| (2)

with equality only when K and L are homothetic.

2. The Theorem

Theorem. If K is a centrally symmetric convex body in E3, then K admits a packing
of E3 with density greater than or equal to 0.53835 . . . .

Proof. We begin by constructing a packing of E3 with copies of K . For simplicity, we
assume that K is strictly convex and has a smooth boundary, since any convex body can
be approximated arbitrarily closely by a smooth, strictly convex body. Let d be a chord
in K of maximum length. This chord must contain the center of symmetry. Otherwise,
there would be two such parallel chords which would imply the existence of a longer
chord. Let L and N be planes of support of K such that they each contain an endpoint of
d. Observe that d is normal to both planes, since otherwise it would not be of maximum
length. As a matter of convenience, we say that the orientation of the planes is horizontal
and the orientation of d is vertical. Let o be the center of symmetry for K and let M be
the plane parallel to L which contains o. Let C be the intersection of M with K .

Now we pack the plane M with copies of C in a lattice arrangement so that the
density of this packing is maximal among all packings. Before we proceed, we prove
the following claim:

Claim. If {Ci } is a maximal density lattice packing of M with copies of C , then each
copy of C touches exactly six other copies.
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Fig. 1. A row of translates of C .

Proof. We assume we have a lattice packing of maximal density. Since the density
is as large as possible, it is obvious that C must touch a copy of itself. The vector �v
connecting their centers is a lattice vector, therefore there is a linear row of translates of
C such that each touches two others, as seen in Fig. 1. The packing of M must consist
of parallel rows identical to this one. Since C is strictly convex, it is clear that C cannot
touch more than two copies of itself in the adjacent row. Assume that C touches only
one translate of itself in the adjacent row. Then this row can be shifted a small amount
in the direction of �v or −�v so that C does not contact it (see Fig. 2). Now the rows can
be pushed closer together which increases the density of the packing. Therefore, if the
packing has maximal density, C must contact two members of each adjacent row as well
as two members of its own row. Thus the claim is proven.

Shown in Fig. 3 are C and its translates in the lattice packing of M with their centers at
the points of the lattice. We now consider a lattice arrangement of copies of K such that
each copy of C is a cross section of a copy of K . Assume that C and one of its translates
C ′ in this arrangement have a boundary point p in common. K ′ is the translate of K in
this arrangement which contains C ′. Because of symmetry, p must be the midpoint of
the segment which joins the center of K with the center of K ′. Furthermore, the support
plane of K ′ containing p must be parallel to the support plane of K at p. Thus the support
planes coincide, which implies that the interior of K has no point in common with the
interior of K ′. Therefore, this arrangement of translates of K between the planes L and
N is a packing.

Our packing of E3 will consist of copies of the layer which was just constructed. The
layers in the packing will be translates of the first layer. This will be a lattice packing
of E3, therefore it will only be necessary to look at two adjacent layers in order to
understand the entire packing. We denote the original lower layer	 and the upper layer
	∗. We arrange the layers so that their supporting planes are parallel and so that K in	
touches its counterpart K ∗ in	∗. Seen in Fig. 4 are dots which represent the projections
of segment d and its copies onto the plane M . These points correspond to the extreme
points or “peaks” in 	 on either side. Indicated by small circles are the projections of
the peaks in 	∗ when they are pushed as far as possible into 	 without one copy of K

. . .

. . .. . .

. . .

Fig. 2. Two rows which could be packed more closely.
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Fig. 3. A packing of M with translates of C .

penetrating the interior of another. It is easy to observe that K will now be touching at
least three copies of itself in 	∗. Otherwise, 	 could be shifted within its supporting
planes in some direction until K does not touch any member of 	∗, allowing the layers
to be pushed closer together. Since these are translates of a centrally symmetric convex
body, each of these points of contact must be the midpoint of a segment which joins the
center o of K with the center of some translate of K in the other layer. Therefore their
convex hull must lie in a plane which is parallel to M . The triangles formed by the points
of contact between each member of 	 with members of 	∗ are seen in Fig. 5.

The triangle corresponding to K is denoted T 1
K . Denote its reflection through the center

of symmetry o by −T 1
K . Due to the symmetry of K and of the lattice parallelepiped, 	∗

will be a reflection of 	 through the midpoint of the segment joining the centers of
K and K ∗. Therefore, K ∗ will contain the reflection of triangle T 1

K through one of its
vertices. Figure 6 represents all such triangles in 	∗ (shaded), along with the triangles
which were seen in Fig. 5. Notice that the sides of each triangle are parallel to the lattice
vectors of a single layer and that each triangle has one-eighth of the area of the lattice
parallelogram P .

The small circles in Fig. 7 indicate alternate locations for the peaks of	∗ to be pushed
into 	 so that each copy of K touches three copies of K in 	 (compare with Fig. 4).
These points of contact between layers yield an analogous arrangement of congruent
triangles identical to the arrangement in Fig. 6, but rotated 180◦ about some point in
one of the white triangles and possibly shifted a little (as seen in Fig. 8, with the lighter
shading, superimposed upon the first arrangement). We denote the alternate triangle in
K by T 2

K . Of these two arrangements of the layers, we choose the one which allows the
layers to penetrate each other more deeply, which we have previously assumed to be the

Fig. 4. Projections of the peaks of 	 and 	∗.
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Fig. 5. Convex hulls of contact points for each translate in 	.

Fig. 6. The triangles of Fig. 5 with each of their reflections in 	∗.

Fig. 7. Alternate locations for the peaks of 	∗.

Fig. 8. The triangles for both the original and the alternate arrangements.
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Fig. 9. The area of HK is computed.

first one. Then the convex hull of T 2
K with−T 1

K is a cylinder of triangular base. Its cross
section in the plane containing T 1

K is a translate of T 2
K . The convex hull of this cross

section with T 1
K is a hexagon HK , possibly degenerated to a parallelogram. To compute

its area, consider the arrangement of the triangles seen in Fig. 9. It is clear that the area
of the convex hull is equal to the base of one triangle times its height. If a triangle is
translated so that one of its vertices is in the interior of the other triangle, the area of the
convex hull will increase. Consequently, the area of the hexagon is at least twice that of
one triangle or a quarter of the area of the lattice parallelogram P .

Note that HK has its own center of symmetry. Then its reflection −HK through o is
identical and in a plane parallel to the plane which contains HK . Let h be the vertical
distance between HK and −HK . Notice that h is also the vertical distance between the
centers of the translates in adjacent layers. Therefore, the lattice parallelepiped in this
packing has a volume of h|P|, implying a density of |K |/h|P|. K contains the convex
hull of C , HK , −HK , and d . We examine this convex hull more closely in order to
establish a lower bound for |K |. To begin, we compute the volume of the convex hull
of C and HK . The cross sections of this convex hull in planes parallel to M will be all
the Minkowski combinations of C and HK of the form xC + (1− x)HK where x ranges
from 0 to 1. Thus its volume is

h

2

∫ 1

0
(|xC + (1− x)HK |) dx

which by (1) is

h

2

∫ 1

0
(x2|C | + x(1− x)|(C, HK )| + (1− x)2|HK |) dx = h

6
(|C |+ |(C, HK )|+ |HK |).

By Minkowki’s inequality (2), this is greater than

h

6
(|C | +

√
|C |
√
|HK | + |HK |).

Therefore, the convex hull of C , HK , −HK , and d is greater than

|HK |(|d| − h)

3
+ h

3
(|C | +

√
|C |
√
|HK | + |HK |).
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Recalling that |HK | = |P|/4 and that this convex hull is in K , we have

|K | > |P|(|d| − h)

12
+ h

3
(|C | +

√
|C |
√
|P|/4| + |P|/4).

Because of the affine invariant nature of this problem, we can assume |P| = 1 and
|d| = 1. Then

|K | > (1− h)

12
+ h

3

(
|C | +

√|C |
2
+ 1

4

)
.

That is,

|K | > 1

12
+ h|C |

3
+ h
√|C |

6
.

Thus, we can say in regard to the density D (= |K |/h|P|) of this packing,

D >
1

12h
+ |C |

3
+
√|C |

6
.

Obviously, D is minimized when h is large. Since h cannot be larger than |d| (actually
h must be less than |d|), we minimize the density bound by setting h = |d| = 1. Thus,

D >
1

12
+ |C |

3
+
√|C |

6
.

The copies of C were packed in their plane with the greatest possible density. Therefore,
by the result of Tammela [10] mentioned above, |C | ≥ 0.89265 . . . , which means that
D ≥ 0.53835 . . . .

This completes the proof of the theorem.

References

1. C. H. Dowker, On minimum circumscribed polygons, Bull. Amer. Math. Soc. 50 (1944), 120–122.
2. V. Ennola, On the lattice constant of a symmetric convex domain, J. London Math. Soc. 36 (1961),

135–138.
3. L. Fejes Toth, Some packing and covering theorems, Acta Sci. Math. Szeged 12/A (1950), 62–67.
4. L. Fejes Toth, Lagerungen in der Ebene, auf der Kugel und im Raum, Springer, Berlin, 1972.
5. E. Hlawka, Zur Geometrie der Zahlen, Math. Z. 49 (1944), 285–312.
6. H. Minkowski, Theorie der Konvexen Körper, insbesondere Begründung ihres Oberflachenbegriffs, in

Gesammelte Abhandlungen von Hermann Minkowski (D. Hilbert, A. Speiser and H. Weyl, Eds.), Vol. 2,
pp. 131–229, Teubner, Leipzig, 1911.

7. K. Reinhardt, Uber die dichteste gitterformige Lagerung kongruenter Bereiche in der Ebene und eine
besondere Art konvexer Kurven, Abh. Math Sem. Hansischer Univ. 10 (1934) 216–230.

8. E. H. Smith, A density bound for efficient packings of 3-space with centrally symmetric convex bodies,
Mathematika 46 (1999), 137–144.

9. E. H. Smith, A bound on the ratio between the packing and covering densities of a convex body, Discrete
Comput. Geom. 23 (2000), 325–331.

10. P. Tammela, An estimate of the critical determinant of a two-dimensional convex symmetric domain
(Russian), Izv. Vyssh. Ucebn. Zaved. Mat. 12 (1970), 103–107.

Received August 29, 2003, and in revised form October 24, 2004. Online publication July 8, 2005.


