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Abstract. We consider packings of the plane using discs of radius 1 and r. A packing
is compact if every disc D is tangent to a sequence of discs Dy, D,, ..., D, such that D;
is tangent to D;.;. We prove that there are only nine values of » with r < 1 for which
such packings are possible. For each of the nine values we describe the possible compact
packings.

1. Introduction

A packing of the plane with discs is said to be compact if every disc D is tangent to a
sequence of discs Dy, D», ..., D, such that D; is tangent to D;.; fori = 1,2,...,n
with D, .1 = D, [3]. If we pack the plane using discs of the same radius, then the only
possible compact packing is the triangular lattice in which each disc is surrounded by
six discs tangent to it. In this paper we ask what compact packings are possible if we
pack the plane using discs of radius 1 and r with r < 1. We do not impose any condition
on the relative number of discs of the two radii except to require that discs of both sizes
be present. We prove that there are only nine values of r for which a compact packing is
possible. For these values we describe the possible compact packings.

The nine values of r which allow compact packings are given in Table 1. Examples
of compact packings for each of the nine values are given in Fig. 1. Compact packings
for seven of the nine possible values of r (all but ¢, and c¢s) appear in L. Fejes T6th’s
classic book [2] and in [7] and [9]. A packing with r = ¢s appears in [8].

An interesting question is to find (for each r) the densest packing of the plane using
discs of radius 1 and r. For six of the above values of r (¢, c3, ¢4, g, ¢7, cg ), Heppes
has proved that the densest packing is a compact packing [5], [6]. We expect that for the
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Table 1. The nine values of r for which a compact packing using discs of radius
1 and r is possible.*

Decimal Exact ijk Sequence
c 0.637556 r*—10r2 —8r4+9=0 320 11117
e 0.545151 P(r)=0 221 11rr
3 0.533296 83 +3r2—-2r—1=0 140 1rirl
s 0.414214 V2-1 400 1111
cs 0.386106 V3 +1—2y/1+31/3 122 rrrl
cs 0.349198 sin(rr/12)/(1 — sin(/12)) 041 lrrir
7 0.280776 (V17 = 3)/4 220 111r
cg 0.154701 2J3/3 -1 300 111
co 0.101021 5-2v6 121 1rr

*The decimal expressions are of course approximations. For six values of r we give
an explicit exact expression. For the other three we give polynomials which have
¢; as aroot. In particular, ¢, is aroot of P(r) = (7 + 4/3)r* + (20 + 123)r3 +
6+ 4\/§)r2 + (=20 — 4«@);’ + 3. The last two columns give information on
the sequence of discs that can appear around a small disc. These two columns are
explained in later sections.

other three values of r the densest packing is also a compact packing. Rigorous bounds
on the densest packing may be found in [1] and [4] and a non-rigorous study is in [8].

2. Values of r that Allow Compact Packings

Theorem 1. The nine values of r given in Table 1 are the only values in (0, 1) for which
there exists a compact packing of the plane using discs of radius r and 1.

This section is devoted to the proof of this theorem. The idea is simple. Consider the
center of some disc and the angles that are formed by drawing line segments from the
center of the disc to the centers of the discs that are tangent to the original disc. There
are only a few possible values for these angles and they are functions of ». The sum of
the angles around the center must be 2, and this constrains r.

To begin the proof, consider three discs that are tangent to each other and the angles
in the triangle whose vertices are their centers. If all three discs have radius 1 or all three
have radius r, then the angles are all 77 /3. If two of the discs have radius 1 and one has
radius r, then the triangle has one angle of « and two of o’ where

cos(a) =1/(1 +7r), a=m—2d. (1)

If two of the discs have radius r and one has radius 1, then the triangle has one angle of
B and two of B’ where

cos(B) =r/(1+r), B=m—-28. 2)
Thus in a compact packing the angles around a disc of radius r can only be 7 /3, o and

B’, and the angles around a disc of radius 1 can only be /3, o’ and 8. Since the angles
around a disc must sum to 27, there must exist non-negative integers i, j, k such that

ia+ jB +kmw/3 =2m 3)
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(g)r =c¢7 =0.280776- - - (h) r = cg = 0.154701 - - - (i) r =c9 =0.101021 - - -

Fig. 1. A compact packing is shown for each of the nine values of » which admit compact packings.

and non-negative integers /, m, n such that
ld/ + mB +nm/3 = 2m. 4)

For every value of r there is a trivial solution of both of these equations, namely i =
j=101=m =0,k =n = 6.Inacompact packing that contains discs of both radii, there
must be at least one pair of discs of different radii that are tangent, and so there must be
at least one solution of (3) other than the trivial one and at least one solution of (4) other
than the trivial one. We start by determining when (3) has solutions.
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Define
Fiju(r) =ia+ jB’ +km/3. 5)

Equations (1) and (2) imply that « and B’ are decreasing functions of 7, and so Fj;x(r)
is also decreasing for each choice of ijk. This implies that for each choice of i jk there
is at most one value of r for which Fjj;(r) = 2m.

As r goes to zero, « converges to 77 and 8’ converges to /2. So

lim Fije(r) = im + jm/2 + ke /3. (6)

When r = 1 all the angles are /3, so
Fij(1) = (@ + j + k) /3. (7N

So there is an r € (0, 1) with Fjjx(r) = 27 if and only if we have 6i 43 + 2k > 12
and i 4+ j + k < 6. Thus there are only a finite number of i, j, k for which (3) might
have a solution. There are further constraints on i, j, k. Recall that the sides adjacent
to the angle o both have length 1 + r, the sides adjacent to 8 have lengths 1 4 r and
2r and the sides adjacent to 7r/3 both have length 2r. This implies that j must be even,
and if j equals zero, then one of i and k must be zero. It is now trivial to check that
the only possibilities for i jk are the nine listed in the penultimate column of the table
and one additional case, i = 5, j = 0,k = 0. For this last case, F;;3(r) = 2m at
r = (1 —sin(x/5))/sin(zw/5) = 0.701303 - - -.

The case of r = (1 — sin(;r/5))/sin(;r/5) can be ruled out by considering (4). We
compute ¢’ and B and check if (4) is satisfied for any choice of /, m, n. We find that it is
not. Thus the only » which might allow compact packings are those shown in the table.
The explicit packings shown in Fig. 1(a)—(i) show that compact packings with these nine
values of r are indeed possible. It is straightforward to use the figures to compute the
nine values of 7 given in the table. This completes the proof of Theorem 1.

3. The Compact Packings

In this section we describe the possible compact packings for r = ¢; to ¢g. It will be
helpful to put (3) and (4) in a slightly different form. Consider the triangle formed by
the centers of discs with radii ry, r,, r3 which are tangent to each other. Let 0(ry, 2, 73)
denote the angle at the center of the disc of radius ;. Depending on the values of
ry, 2, 13, 0(ry, ra, r3) is either /3, «, &', B or B'. Now let D be a disc with radius ry

and let Dy, D5, ..., D, be the discs that are tangent to D and such that D; is tangent to
D;yy.Letry, ra, ..., r, be their radii. Then we must have
n
> 0G0, ri,riy) = 2m, ®)
i=1

where 1,11 = r;. Of course each r; is either 1 or 7. So for rg equal to 1 or , we want
to find all finite sequences ry, 12, ..., r, consisting of 1’s and r’s such that the above
equation is satisfied. (As we noted before, we seek solutions beyond the trivial ones with
n==6andr; =---=rg=rgwhich are solutions for all r.)
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We write the cases for which (8) is satisfied in the form
ro IT1rr3 Ty, ©)

meaning that a disc of radius ry can be surrounded by a sequence of discs of radius
ri, 12, ..., 1. Of course, if ro : ryrpr3 - - - 1y, is possible then so is rg @ ryry—17y—2 -+ - 11
as well as any cyclic permutation of r r,r3 - - - r,,. We only list one possibility from each
equivalence class. We refer to (9) as a “sequence for small discs” when ry = r and as a
“sequence for large discs” when ry = 1. When there is only one possible sequence up
to the symmetries just described, we say the sequence is unique.

We have already determined the solutions of (3) and thus the solutions of (8) with
ro = r. For each of the nine values of r there are two possible sequences, r : rrrrrr and
the sequence given in the last column of the table. We argue that r : rrrrrr does not
occur except when r = c¢s. Suppose the configuration contains at least one small disc
with sequence rrrrrr. Consider the small discs that are tangent to at least one small disc
with sequence rrrrrr. They cannot all have sequence rrrrrr. So there is at least one
small disc D whose sequence is not rrrrrr but which is tangent to a small disc with
sequence rrrrrr. This implies that the sequence for D must contain rrr but not be equal
to rrrrrr. So it must contain 1r7r or rrrl. From the table we see that this is possible
only for r = cs.

Finding the possible solutions of (8) with ry = 1 is straightforward. For each of the
nine values of r we compute ¢’ and 8 and check for what choices of r{, r5, ..., r,; (8)
is satisfied with ryp = 1. We list the possibilities as we consider each of the nine values
of r.

For some values of » we can give very explicit descriptions of all possible compact
packings, but for others we can only show that there is a correspondence between pack-
ings and tilings using certain polygons. The order in which we consider the nine values
of r is for the sake of exposition. We start with r = c¢, the only value of r for which the
packing is unique. Of course, we can translate, rotate and reflect any compact packing to
get another compact packing. When we say unique we implicitly mean unique up to these
symmetries. Throughout the arguments that follow we freely use these symmetries to
assume, for example, that a certain feature of the configuration is oriented in a particular
direction.

For the next three values of r, the compact configurations are obtained by starting
with a triangular lattice of large discs and either replacing some of the discs by groups of
small discs (r = ¢s) or filling in some of the holes with small discs (r = cg, ¢y). For the
next three values, c4, ¢7, c2, we can only show that there is a one to one correspondence
between compact packings and tilings of the plane with polygons whose sides all have
length 2. For the last two values, ¢, c3, we show that the packing is made of layers, but
for each layer there is a twofold choice.

Possible Packings for r = cg

There is a unique sequence for small discs and a priori two possible sequences for large
discs:

r:lrrlr.

1:rrrrrrrrrrrr or 111111, (10)
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We argue that the 1 : 111111 sequence does not appear. The argument is similar to
the argument used to rule out r : rrrrrr. If 1 : 111111 appears, then there must be a
large disc D whose sequence is not 111111 but which is tangent to a large disc with
sequence 111111. So the sequence of D must contain 111 but not equal 111111. This
contradicts the above possible sequences around a large disc. Thus the only possible
sequence around a large disc is rrrrrrrrrrr.

We show that these unique sequences imply the configuration is unique. We start
with a large disc which we label a in Fig. 1(f). By the sequence for large discs it is
surrounded by 12 small discs. Consider the small disc labeled b in the figure. Up to
symmetry, there is only one sequence that can surround it. Reflecting the configuration
if necessary, we can assume that the discs around disc b are as shown in the figure,
i.e., discs a, ¢, d, e, f. Applying the sequence for small discs to disc f, we conclude
that discs g and & must be present. Applying the sequence for small discs to disc g,
we conclude that discs i and j are present. Note that we now have three large discs,
a, e and i, forming an equilateral triangle, and by the sequence for large discs each of
them is surrounded by 12 small discs. We can now repeat this argument to fill out the
configuration.

Possible Packings forr = cs

This is the case for which there are two possible sequences for small discs. For the
possible sequences for a large disc we give a number after the sequence to indicate the
number of discs around the large disc. (This is just to aid in reading the following.)

r:lrrrl or rrrrrr.
1:rr11111(7), rrrir111(8), rrri1r11(8), rrirril11(8), (11)
rrllrrl11(8), rrrririrl(9), rrrirrirl(9), rrirrirri(9) or 111111(6).

In the packing shown in Fig. 1(e) we can replace any hexagonal block of seven small
discs by a single large disc. If we replace all such blocks of seven small discs, then the
result will just be the triangular packing of large discs. If we start with the triangular
packing by large discs, take a subset of the discs such that no two of them are tangent,
and replace the discs in this subset by hexagonal blocks of seven small discs, then the
resulting packing will be compact. We claim that all compact packings can be obtained
in this fashion.

We begin by showing that every connected component of small discs must consist of
seven small discs arranged in a hexagon like those in Fig. 1(e). A connected component
of small discs must contain a small disc that is tangent to a large disc. We label this disc
a in Fig. 1(e). Since it is tangent to a large disc, there is up to symmetry only one possible
sequence around it. We can assume the sequence is that shown in the figure, i.e., discs
b,c,d, e, f.The possible sequences around c, d and e then imply that discs g, 4, i, j, m
must be present. The possible sequences around % then imply discs k, [ must be present.
Thus small discs can only appear as part of a cluster of seven small discs arranged in a
hexagon and surrounded by six large discs.

Now we replace every hexagonal block of seven small discs in our compact con-
figuration by a single large disc. The result is a compact configuration with only large
discs. The only such configuration is the triangular packing. Thus our original packing
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is obtained by replacing some subset of non-tangent large discs in the triangular packing
by hexagonal blocks of seven small discs.

Possible packings for r = cg

There is a unique sequence for small discs,
ro111, 12)

and 13 sequences for large discs which we do not list. They are not needed in the
argument.

The unique sequence for small discs says that each small disc is surrounded by
three large discs that are tangent to each other. So if we remove the small discs, the
configuration will still be compact. Thus we can remove all the small discs from our
configuration and obtain a compact configuration with only large discs. There is only
one such configuration, the triangular one. Thus we have shown that every compact
configuration is given by putting small discs into some subset of the holes in the triangular
lattice configuration of large discs. (Equivalently, every compact configuration can be
obtained by removing some subset of the small discs from the configuration in Fig. 1(h).)

Possible packings for r = cq

The sequence for small discs is unique:
r:1lrr. (13)

We do not list the 195 possible sequences for large discs. Note that in the configuration
in Fig. 1(i) we have a triangular lattice of large discs with each hole filled with a cluster
of three small discs which are tangent to each other. We can remove any of the clusters
of three tangent small discs and still have a compact configuration. We show that any
compact configuration can be obtained in this way.

Start with a small disc. The sequence for small discs implies it is tangent to two other
small discs which are tangent to each other. The sequence for small discs applied to
these three small discs then implies that they sit inside the hole formed by three large
discs that are tangent to each other. We can remove the three small discs and still have
a compact configuration. Thus we can remove all the small discs and have a compact
configuration with only large discs. It must be the triangular lattice configuration. So
any compact configuration is formed by putting clusters of three small discs into some
of the holes in the triangular lattice configuration of large discs. (Equivalently, we can
form a compact configuration by removing some subset of the clusters of three small
discs from Fig. 1(i).)

Possible packings for r = c4
There is a unique sequence for small discs and four possible sequences for large discs:

r:1111.

1:r1r1111, r11r111, ririrlrl or 111111. (14)
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Fig. 2. Two compact packings and the corresponding tilings. (a) Tiling by squares and triangles for r = c4.
(b) Tiling by rhombi and triangles for r = ¢7.

The sequence for small discs implies that every small disc is surrounded by four
large discs whose vertices form a square with sides of length 2. In the configuration
in Fig. 1(d) these squares tile the plane. However, there are many compact packings in
which they do not tile the plane. We show there is a one to one correspondence between
compact packings with r = ¢4 and tilings of the plane using squares with sides of length
2 and equilateral triangles with sides of length 2. An example of a packing and the
corresponding tiling is shown in Fig. 2(a).

Given a packing, we draw line segments between the centers of any two large discs that
are tangent. These line segments, which all have length 2, divide the plane into squares
and equilateral triangles. To see this, consider a large disc and the possible sequences
around it. For the sequence r1r1111, the large disc is a vertex of two adjacent squares
and three triangles. For the sequence r11r111, the large disc is again a vertex of two
squares and three triangles, but now the two squares do not share a side. For the sequence
rlrlrlrl, the large disc is a vertex of four squares. For the sequence 111111 the large
disc is a vertex of six triangles. So in each case the center of the large disc is a vertex of
squares and triangles that fit together to tile the space around the large disc.

Thus the packing can be used to construct a tiling by squares and triangles. Conversely,
given such a tiling, we can construct a compact packing by putting a large disc at the
vertices of the squares and triangles and then putting a small disc at the center of each
square.

Possible Packings forr = ¢y

The sequence for small discs is unique and there are six sequences for larges discs:

r:111r.
1:rrlr1111(8), rri1lr111(8), rrriririri(10), (15)
rrlrririr1(10), rririrrlr1i(10) or 111111(6).

The third of the possibilities for a large disc implies that there is a small disc that is
tangent to two other small discs. This contradicts the sequence for small discs. So the
third possibility for large discs does not occur.
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The sequence for small discs implies that each small disc is tangent to one other
small disc and this pair is surrounded by four large discs. The centers of these four large
discs are the vertices of a rhombus whose sides are of length 2 and whose acute angle
is 2cos~' ((—1 + +/17)/4). Small discs can only appear as pairs inside such rhombi. In
the packing shown in Fig. 1(g) these rhombi tile the plane.

There are many possible compact packings for r = ¢;. We claim there is a one
to one correspondence between compact packings and tilings of the plane using these
rhombi and equilateral triangles with sides of length 2. An example of a packing and
the corresponding tiling is shown in Fig. 2(b). Given a packing we construct the tiling
by drawing line segments between the centers of any pair of large discs that are tangent
to each other. To see that this produces a tiling of the plane by rhombi and triangles, we
can argue as we did in the case of r = c4. We consider the possible sequences for a large
disc and see that in each case the center of the disc is a vertex of rhombi and triangles
that fit together to tile the space around the disc. Given a tiling we construct a packing
by putting a large disc at each vertex of each triangle and each rhombi. Then we put a
pair of small discs inside each rhombi.

Possible Packings forr = c;

The sequence for small discs is unique, and there are three possible sequences for large
discs:

r:111rr.

1
1:rr1r11l, rllrlilr or 111111. (16)

In addition to the packing in Fig. 1(b), we give a second example in Fig. 3(a). As in
the previous two cases we show that the possible compact packings are equivalent to a
tiling problem. In both of the figures the small discs all appear in clusters of three. We
argue that this property is true in any compact packing. The sequence for small discs
implies that every small disc is tangent to two other small discs which are tangent to
each other. The sequence for small discs applied to these three small discs then implies
that they are surrounded by six large discs. The vertices of these six large discs form a
six-sided polygon with sides of length 2. We have drawn one in Fig. 1(b).

@r=c d)r=c

Fig. 3. Two more compact packings.
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We construct the tilings in the same way as in the previous two cases. We draw a
line segment between the centers of any two discs of radius 2 that are tangent. These
lines form equilateral triangles in addition to the six-sided polygons. The same argu-
ments used in the previous cases show that given a packing, the six-sided polygons and
triangles tile the plane and, conversely, given such a tiling we can construct a compact
packing.

Possible Packings forr = c;

The possible sequences are

r:1111r.

(I7)
1:rlrirlr or 111111.

Start with a small disc. The unique sequence for small discs implies it touches one other
small disc. By the sequence for small discs, this pair of tangent small discs is surrounded
by six large discs. The centers of these six large discs are the vertices of a flattened
hexagon. (An example of the flattened hexagon is shown in Fig. 1(a).) We show that
these flattened hexagons tile the plane.

The flattened hexagon has two different angles in it which we call 6; and 6, with
01 < 0,. We have four 6,’s and two 6,’s in the flattened hexagon. The sequence for large
discs implies that at every large disc we must have two 6;’s and one 6,. It follows that
the flattened hexagons tile the plane.

To determine the possible tilings, we consider two cases. The first case is that all the
flattened hexagons have the same orientation. The second case is that they do not. It is
easy to see that in the first case the configuration must be the one shown in Fig. 1(a). In
the second case there must be two flattened hexagons that share a side but have different
orientations. So we have two flattened hexagons which fit together as shown by the two
bold hexagons in Fig. 3(b). Using the constraint that each large disc has two 6,’s and one
6,, it follows that all the shaded hexagons must be present, extending to infinity in both
directions.

Next we consider what can happen above and below this shaded layer. Consider
adding a flattened hexagon with two sides adjacent to the shaded layer. There are two
possible orientations, but as soon as we add one flattened hexagon, the orientation of
all the other ones touching this boundary of the shaded region must be the same. In
the figure we have added one above the shaded region with the same orientation as the
shaded flattened hexagons along this upper boundary. Below the shaded region we have
added one whose orientation is different from the shaded flattened hexagons along the
lower boundary. It follows that the configuration must consist of such layers with the
freedom to chose an orientation for each layer.

Possible Packings forr = c3

The sequence for small discs is unique, and there are five possible sequences for large
discs:
r:1rirl.

1:rrr1l111, rrrerirl, rrrerelrrl, rrrlrrrl or 111111,

(18)
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(@ (b)

Fig.4. Examples of the two types of compact packings for » = c¢3. (a) Example of the first class. (b) Example
of the second class.

We show that there are two types of compact configurations for this value of r. Figure 4(a)
gives an example from the first class. In general, a configuration in this class is formed
of layers of large discs and layers of small discs (which oscillate up and down slightly
as in the figure). The only constraint on the sequence of layers is that we cannot have
two adjacent layers of small discs. An example from the second class is shown in Fig.
4(b). These configurations are formed by layers made up of large discs alternating with
two tangent small discs aligned vertically. (For example, the shaded discs in Fig. 4(b)
consist of three layers.) Each layer has two possible locations relative to the layer above
(or below) it. Note that the configuration in Fig. 1(c) belongs to both classes and is the
only configuration that does.

‘We start by showing that the sequence 1 : rrrrr1r1 does not occur. Consider the small
disc represented by the last r. It touches the large disc at the center of the sequence, and
there are two other large discs tangent to the small disc and the large disc at the center.
So the sequence around the small disc must contain 111 which is not possible. So the
sequence 1 : rrrrri1r1 does not occur.

We now divide into two cases. The first case is that at least one large disc has the
sequence 1 : rrr1111. The second case is that no large disc has this sequence. We show
that in the first case the configuration is of the first type described above, and in the
second case it is of the second type.

In Fig. 4(a) the large disc that is assumed to have the sequence 1 : rrr1111 is labeled
a. Itis surrounded by b, c, d, e, f, g, h. Using the possible sequences, we now have

e = i,j,k,1,
h = m,n,o,p, (19)
c = q,r.

The large discs e and & are now surrounded by the same sequence that a is. Repeating
this argument, we conclude that all of the shaded discs are present. We now consider
what can happen above and below the shaded discs. Consider two large shaded discs that
are tangent to each other and at the edge of the shaded discs. They must both be tangent
to a disc that is not shaded. It is either small or large. The case of a small disc is shown
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by s above the shaded discs, and the case of a large disc is shown by ¢ below the shaded
discs. It is now straightforward to show that s forces the layer of small unshaded discs
just above the shaded discs as well as the layer of large unshaded discs at the top edge
of the figure. The small disc ¢ is easily shown to imply the layer of large unshaded discs
just below the shaded discs.

For the second case we refer to Fig. 4(b). In the second case we are assuming that
the sequence 1 : rrr1111 does not occur. It is easy to see that this implies that if the
configuration contains at least one small disc, then the sequence 1 : 111111 cannot
occur. So the only possible sequences around a large disc are rrrr1rrl and rrrirrrl.
If the sequence rrrr1rr1 never appears, then it is easy to show that the configuration
must be that shown in Fig. 1(c). So we now assume there is at least one large disc with
the sequence rrrr1rrl. In Fig. 4(b) this disc is labeled a, and the discs surrounding it
b,c,d,e, f, g, h,i. We now have

S

a O = =
N R R A

j’kv

l,m,

Q

n,o,

[7,
qus S,t,
u,

u v, w, X, Y.

This shows that the large discs o and u have the same sequence around them as the large
disc a. So we can repeat this argument and conclude that all of the shaded discs must be
present.

We now ask what can happen above and below the shaded discs in Fig. 4(b). The
large discs i must touch one more large disc and one more small disc in addition to the
shaded discs. There are two possible locations for the additional small disc.

One possibility is given by the disc z just above the shaded region, and the other
possibility by the disc z just below the shaded region. It is now easy to show that the
presence of the z disc just above the shaded discs forces all of the layer of unshaded
discs above the shaded ones. The presence of z as shown below the shaded discs forces
the layer of unshaded discs below the shaded ones. We conclude that the configuration
in the second case is made up of layers. (In the figure there are three layers with shaded
discs and single layers above and below them that are unshaded.) Each layer has two
possible locations relative to the layer below (or above) it.
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