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Abstract. Basic properties of finite subsets of the integer lattice Zn are investigated from
the point of view of geometric tomography. Results obtained concern the Minkowski addi-
tion of convex lattice sets and polyominoes, discrete X-rays and the discrete and continuous
covariogram, the determination of symmetric convex lattice sets from the cardinality of
their projections on hyperplanes, and a discrete version of Meyer’s inequality on sections
of convex bodies by coordinate hyperplanes.

1. Introduction

Geometric tomography is the area of mathematics concerning the retrieval of informa-
tion about an unknown geometric object from data concerning its sections by lines or
planes or projections onto lines or planes. When the object is a convex body, many
results from convex geometry come into play. Examples are when the data consists of
X-rays (Hammer’s X-ray problem), or areas of projections (Aleksandrov’s projection
theorem, Shephard’s problem), or areas of central sections (Funk’s section theorem, the
Busemann–Petty problem). See [14] for more information on all these topics.
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The unknown object may also be a finite set. Then discrete X-rays measure line
counts (see Section 2 for formal definitions), and early work of Rényi on projections
of probability distributions and of Ryser on reconstruction of binary matrices from row
and column sums can be regarded as contributions to a discrete version of Hammer’s
X-ray problem; see Note 2.2 of [14]. This topic only took on a life of its own much
later, however, with the introduction in 1994 of the term discrete tomography by Shepp.
When the unknown finite set is restricted to a lattice, it models the atoms in a crystal; the
invention of new methods in electron microscopy that can effectively measure discrete
X-rays of crystals was in fact the major motivation behind discrete tomography. Further
details can be found in [23] and in the references given below.

Summarizing, we have by now a rich theory of geometric tomography, involving
not only X-rays but many other types of data, and a thriving new field called discrete
tomography that more or less concerns only discrete X-rays. The purpose of this paper is
to lay the groundwork for an extension of discrete tomography that will bring it more in
line with geometric tomography. While one can certainly consider arbitrary finite subsets
ofRn , there seems little doubt that the most interesting problems and applications concern
finite subsets of Zn , and we focus on these here.

Corresponding to compact convex sets in Rn are the convex lattice sets in Zn and an
important subclass, the convex polyominoes. Section 3 is a systematic investigation into
the behavior of convexity in the lattice setting under Minkowski addition, and it turns out
that this fundamental operation is far less predictable than in the continuous framework.
For example, the Minkowski sum of convex polyominoes in Zn is a convex polyomino
for n = 2 but not n ≥ 3, and while the Minkowski sum of convex lattice sets need not
in general be convex, it is true that if A is a convex lattice set in Z2, then A + A and
A + (−A) are convex.

In Section 4 we study X-rays and the covariogram. We show that the discrete version
of the covariogram is related to the continuous version, and present an example for the
discrete covariogram that also provides an example for the continuous covariogram that
is in a sense optimal.

Section 5 is motivated by the intriguing possibility, one that apparently has not been
considered before, of discrete versions of Aleksandrov’s projection theorem: When is an
origin-symmetric convex lattice set determined by the cardinalities of its projections on
hyperplanes? We establish a connection with the discrete covariogram, and find several
examples, one of which shows that a discrete Aleksandrov projection theorem must
have additional hypotheses. In Section 6 we turn from projections to sections and find a
best-possible discrete version in Z2 of Meyer’s inequality on sections of convex bodies
by coordinate hyperplanes.

The results of this paper, some positive and some negative, indicate that while the en-
visioned extension of discrete tomography appears feasible, much more work will have
to be done before it reaches the same stage of development as geometric tomography.
Several of the basic tools of convex geometry have discrete analogues, but the discrete
setting appears to render these far less reliable. Nevertheless, the program seems to us em-
inently worthwhile. Lattice sets and polyominoes are fundamental objects of interest, not
only in mathematics but also in physics and computer science; several remarks indicating
connections and applications are scattered throughout this paper. We have also included
several fascinating open problems whose solutions will be valuable contributions.
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2. Definitions and Preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space Rn . If
u ∈ Sn−1, we denote by u⊥ the (n − 1)-dimensional subspace orthogonal to u. The
standard orthonormal basis for Rn will be {e1, . . . , en}.

If A is a set, we denote by |A|, int A, and conv A the cardinality, interior, and convex
hull of A, respectively. The dimension of A is the dimension of its affine hull aff A, and
is denoted by dim A. The notation for the usual orthogonal projection of A on a subspace
S is A | S.

If A and B are subsets of Rn , their vector or Minkowski sum is

A + B = {a + b: a ∈ A, b ∈ B},
and if r ∈ R, then

r A = {ra: a ∈ A}.

Thus −A is the reflection of A in the origin. We also write D A = A − A = A + (−A)
for the difference set of A.

We write Vk for the k-dimensional Lebesgue measure inRn , where k = 1, . . . , n, and
where we identify Vk with the k-dimensional Hausdorff measure. If K is a k-dimensional
convex body in Rn , then V (K ) is its volume Vk(K ). The notation dz will always mean
dVk(z) for the appropriate k = 1, . . . , n.

A set is origin symmetric if it is centrally symmetric, with center at the origin.
Let K be a convex body in Rn , that is, a compact convex set with nonempty interior.

In this case DK = K − K is usually referred to as the difference body of K . We denote
by

hK (x) = max{x · y: y ∈ K }
its support function, by

wK (u) = hK (u)+ hK (−u), (1)

for u ∈ Sn−1, its width function, and by

bK (u) = V (K | u⊥),

for u ∈ Sn−1, its brightness function. The projection body of K is the origin-symmetric
convex body �K defined by

h�K = bK .

Aleksandrov’s projection theorem (see, for example, Theorem 3.3.6 of [14]) states that if
K and L are origin-symmetric convex bodies in Rn such that bK = bL (or, equivalently,
�K = �L), then K = L . An introduction to the theory of projection bodies is provided
in Chapter 4 of [14] and Section 3.5 of [31].

Let E be a bounded Lebesgue measurable subset of Rn . The function

gE (x) = Vn(E ∩ (E + x)),
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for x ∈ Rn , is called the covariogram of E . Analogously, we define the discrete covari-
ogram of a finite subset A of Rn by

gA(x) = |A ∩ (A + x)|,
for x ∈ Rn .

A convex polytope is the convex hull of a finite subset of Rn . We sometimes refer to
a finite subset of the n-dimensional integer lattice Zn as a lattice set. A convex lattice
set is a finite subset of Zn such that A = conv A ∩ Zn . If A is a convex lattice set, we
denote the set A+ A+ · · · + A (m summands) by A[m]. (Note that whereas for convex
bodies K we have K + K + · · · + K = K [m] = mK , it is not true for finite sets that
A[m] = m A.)

A polyomino is a finite subset A of Zn such that the union A + [0, 1]n of lattice
unit cubes has a connected interior. We also refer to the set A + [0, 1]n (itself called a
polyomino by many authors) as the animal of the polyomino A. A convex polyomino is
a polyomino that is also a convex lattice set.

One can also consider weaker forms of convexity. Call a vector u ∈ Zn primitive if
the line segment [o, u] contains no lattice points other than o and u. Then a finite subset
A of Zn is called u-convex if the intersection of A with a line L parallel to u consists of
consecutive lattice points in L . When n = 2 and u = e1 (or e2), then u-convex sets have
also been called horizontally convex (or vertically convex, respectively). Such properties
and connectivity of finite sets in Z2 were studied by Daurat [10].

Let A be a finite subset of Zn and let u ∈ Zn\{o}. The discrete X-ray of A parallel to
u is the function Xu A defined by

Xu A(v) = |A ∩ (Lu + v)|,
for each v ∈ u⊥, where Lu denotes the line through o and u. The function Xu A is in effect
the projection, counted with multiplicity, of A on u⊥. For an introduction to the many
known results on discrete X-rays and their applications, see [6], [15], [16], and [23].

3. Minkowski Addition and Convexity

Certain basic topics such as Helly’s theorem have been studied in the context of convex
lattice sets (see, for example, [1] and other papers arising from the work of Doignon
[13]). There is also a large body of work concerning the lattice-point enumerator, some
of which involves obtaining upper or lower bounds for the number of lattice points in the
Minkowski sum of two convex polytopes; see, for example, [17], [20], and the references
given in these papers. Despite this, we are only aware of one very recent paper, that of
Danilov and Koshevoy [9], that considers convexity properties of Minkowski addition
in a lattice setting, and this has almost no overlap with our investigation in this section.

When the two convex lattice sets on the left of Fig. 1 are summed by Minkowski
addition, the resulting set, on the right of Fig. 1, is not convex. (The authors of [9], who
call convex lattice sets “pseudo-convex,” were aware of such examples.) Note that these
lattice sets are even origin symmetric if placed with their centers at the origin.

Polyominoes are of fundamental interest in many areas, and their convexity properties
have also received some attention; see, for example, [12]. The Minkowski sum of two
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+ =

Fig. 1. Minkowski sum does not preserve convexity of lattice sets.

polyominoes is clearly a polyomino, but in three or more dimensions, Minkowski addition
of convex lattice sets fails to preserve convexity even for important special cases. For
example, let

Q = conv{(−1, 1, 0), (1,−1, 0), (1, 2, 0), (−1,−2, 0)} ∩ Z3

and let

A = conv{Q, (0, 0, 2), (0, 0,−2)} ∩ Z3. (2)

Then A is an origin-symmetric convex polyomino in Z3 consisting of the 11 points
in Q and the points (0, 0,±1), (0, 0,±2). (To see this, note that since Q contains no
points with coordinates that are all even, (0, 0, 1) is the only point in A with the last
coordinate 1.) Now clearly x = (−1, 1, 2) ∈ A + A and y = (1, 3, 0) ∈ A + A, but
(x + y)/2 = (0, 2, 1) �∈ A + A, so A + A is not convex. Moreover, since −A = A,
D A = A + (−A) is also not convex.

The following construction provides further examples by lifting sets into one dimen-
sion higher. Let A and B be convex lattice sets in Zn , and choose origin-symmetric
convex polyominoes C and D such that A ⊂ C and B ⊂ D. In Zn+1 take

X = ({−1} × −A) ∪ ({0} × C) ∪ ({1} × A)

and

Y = ({−1} × −B) ∪ ({0} × D) ∪ ({1} × B).

Then X and Y are convex polyominoes in Zn+1, and the intersection of X + Y with
the hyperplane x1 = 2 is precisely A + B. If we let A be the origin-symmetric convex
polyomino from the previous paragraph, take B = A, and apply this construction re-
peatedly, we obtain origin-symmetric convex polyominoes X in Zn , n > 3, such that
X + X = DX is not convex. Furthermore, if we apply this construction to the sets A
and B in Fig. 1, we obtain origin-symmetric convex polyominoes X and Y in Z3 such
that X + Y is not even convex with respect to a coordinate direction.
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In view of these somewhat surprising facts, it is necessary to supply proofs of two
theorems supplying positive results in the planar case, that may otherwise seem rather
obvious.

Theorem 3.1. If A and B are convex polyominoes in Z2, then A + B is also a convex
polyomino.

Proof. Let A and B be convex polyominoes inZ2, and let P = conv A and Q = conv B.
Without loss of generality, suppose that o is a vertex of both P and Q. Label the vertices
of P clockwise around the boundary by v1 = o, v2, . . . , vm , and let Ei = [vi , vi+1],
i = 1, . . . ,m, be the edges of P , where the indices are taken modulo m. Since P + Q
is the union of P and the sets Q + x , where x is a boundary point of P , it is easy to see
that P + Q = P ∪ F ∪ G, where

F =
m⋃

i=1

(Q + vi ),

G =
m⋃

i=1

Gi ,

and Gi = Ei + [o, ui ] is a parallelogram with ui a suitable vertex of Q. (Specifically,
ui is chosen so that the line parallel to Ei through ui supports Q on the same side as the
line containing Ei supports P .) Since (Q+vi )∩Z2 ⊂ A+ B for i = 1, . . . ,m, we have
F ∩ Z2 ⊂ A+ B, so to prove the theorem it will suffice to show that G ∩ Z2 ⊂ A+ B.

To this end, fix i ∈ {1, . . . ,m}. Since Ei has endpoints vi and vi+1 and A is a
polyomino, there is a simple polygonal arc Ci =

⋃p
j=1[sj , sj+1] ⊂ P , where s1 = vi ,

sp+1 = vi+1, each line segment [sj , sj+1] is of length one, and each sj ∈ A. Moreover,
we can ensure that if Ri is the open region bounded by Ci and Ei , then Ri ∩ Z2 = ∅.
Similarly, there is a simple polygonal arc Di =

⋃
k Uk ⊂ Q, where each Uk is a line

segment of length one whose endpoints lie in B, such that Di has endpoints o and ui

and the open region bounded by Di and [o, ui ] contains no lattice points. Hence, we
conclude that

Gi ∩ Z2 ⊂ (Ci + [o, ui ]) ∩ Z2 =
p⋃

j=1

([sj , sj+1]+ [o, ui ]) ∩ Z2

⊂
p⋃

j=1

([sj , sj+1]+ Di ) ∩ Z2 =
p+1⋃
j=1

(sj + Di ) ∩ Z2 ⊂ A + B.

Therefore G ∩ Z2 ⊂ A + B, as required.

In Theorem 4 of [28], where planar convex polyominoes are called 4-connected
convex digital sets, it is proved that a planar lattice set A is a convex polyomino if
and only if it satisfies the strong chord property: Given distinct points a, b ∈ A and
t ∈ R, there exist distinct points c, d ∈ A and r, s ∈ R such that c − d has length one,
c ∈ r [−1, 1]2+(1− t)a+ tb, d ∈ s[−1, 1]2+(1− t)a+ tb, and r+s < 2. Theorem 3.1
asserts that the strong chord property is preserved by Minkowski addition.
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It is natural to consider a generalization of Theorem 3.1 whereby convexity is replaced
by u-convexity for a given primitive u ∈ Z2. However, the resulting statement is false.
To see this, let u = (2, 5), let A = [(0, 0), (4, 0)] ∪ [(4, 0), (4, 8)] ∩ Z2, and let B =
{(0, 0), (0, 1), (0, 2)}. Then A and B are u-convex polyominoes, but A + B is not u-
convex, since (0, 0) ∈ A + B and (4, 10) ∈ A + B but (2, 5) �∈ A + B.

Despite the previous example, the following version of Theorem 3.1 holds for vertical
and horizontal convexity.

Theorem 3.2. If A and B are vertically convex (or horizontally convex) polyominoes
in Z2, then A + B is also a vertically convex (or horizontally convex, respectively)
polyomino.

Proof. Suppose that A and B are vertically convex polyominoes; the proof for the
horizontally convex case is similar. We may assume that o ∈ A and that A is contained
in the closed half-plane lying to the left of the y-axis. Suppose that ai ∈ A and bi ∈ B,
i = 1, 2, are such that a1 + b1 lies below a2 + b2 on the same vertical line L . It
suffices to show that each lattice point on L between a1 + b1 and a2 + b2 belongs to
A + B.

From our assumptions it follows that bi lies on or to the right of L , i = 1, 2. Since A
is a polyomino, there is a simple polygonal arc D composed of line segments of length
one whose endpoints lie in A, such that D has endpoints o and a2. Moreover, by the
vertical convexity of A, we may assume that D lies in the closed strip bounded by the
vertical lines through o and a2. Similarly, there is a simple polygonal arc E composed
of line segments of length one whose endpoints lie in B, such that E has endpoints b1

and b2, and by the vertical convexity of B, we may assume that E lies in the closed strip
bounded by the vertical lines through b1 and b2.

Without loss of generality, we may assume that the x-coordinate of b2 is greater than
or equal to that of b1, so that a2 + b1 lies on or to the left of L . Since the polygonal arc
D + b1 has endpoints b1 and a2 + b1, it must meet L at some lattice point, a3 + b1, say.
Now for each lattice point x on E , all the lattice points on the polygonal arc D + x lie
in A+ B, and D+ x meets L . It follows that all the lattice points on L between a3 + b1

and a2 + b2 belong to A + B. Since A is vertically convex, all the lattice points on L
between a1 + b1 and a3 + b1 also belong to A + B. It follows that each lattice point on
L between a1 + b1 and a2 + b2 belongs to A + B.

The next lemma gives a formula for the difference body of a polygon that may be of
some independent interest. It will find application in the proof of Theorem 3.4, which,
together with the set A defined by (2), shows that it does not hold when n ≥ 3.

Lemma 3.3. Let P be a convex polygon in R2 with vertices v1, . . . , vm . Then

D P =
(

m⋃
i=1

(P − vi )

)
∪
(

m⋃
i=1

(−P + vi )

)
. (3)
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Proof. By the definition of D P , we have(
m⋃

i=1

(P − vi )

)
∪
(

m⋃
i=1

(−P + vi )

)
⊂ D P, (4)

so it suffices to prove the reverse containment.
Suppose first that P has no pair of parallel edges. Then each oriented edge of D P

is either a translate of an oriented edge of P , or a translate of an oriented edge of −P .
(This can be seen by noting that in R2 the surface area measure of D P is the sum of the
surface area measures of P and−P , and recalling that inR2 the surface area measure of
a convex polygon is essentially the set of outer normals to its edges, each weighted by
the length of the corresponding edge; see, for example, Section A.1 of [14].) Therefore
we can partition D P into triangles as follows:

D P =
2m⋃
i=1

Ti , (5)

where Ti = conv{Ei , o} shares the oriented edge Ei with D P and has o as a vertex. Fix
i and suppose, without loss of generality, that Ei is a translate of an oriented edge Fi of
P . (The argument for the other case is similar.) Let v ∈ Ei have outer unit normal u.
Then v ∈ D P , so there are pi ∈ P , i = 1, 2, such that v = p1 − p2. Since v is in the
boundary of D P , p1 and p2 must be in the boundary of P and moreover have outer unit
normals u and−u, respectively. The fact that P has no pair of parallel edges implies that
p1 ∈ Fi and p2 = vi , say, is the vertex of P opposite to Fi . As v ∈ Ei was arbitrary, we
conclude that Ei = Fi − vi and therefore Ti ⊂ P − vi . In view of (5) we have proved
the reverse containment to (4), as required.

Now suppose that P has at least one pair of parallel edges. We can write P = limk Pk ,
where each Pk is a convex polygon with the same number of vertices as P but with no
pair of parallel edges. Since (3) holds for each Pk , it also holds for P .

Theorem 3.4. Let A be a convex lattice set in Z2 and let m ∈ N. If A[m] = A +
A + · · · + A (m summands) and D A = A + (−A), then A[m] = (m conv A) ∩ Z2 and
D A = D(conv A) ∩ Z2; in particular, A[m] and D A are also convex lattice sets.

Proof. Let A be a convex lattice set inZ2 and let m ∈ N. Let x be a vertex of P = conv A,
and let {T1, . . . , Tk} be a partition of P into lattice triangles with one vertex at x and the
other two at adjacent vertices of P . Define Ai = Ti ∩ Z2 and let y ∈ m P ∩ Z2. Then
y ∈ mTi∩Z2 for some i ∈ {1, . . . , k}, and if Ai [m] = mTi∩Z2, then y ∈ Ai [m] ⊂ A[m]
and A[m] = m P ∩ Z2.

Therefore to prove A[m] = m P ∩ Z2 we may assume that P = conv A is a lattice
triangle. The proof is by induction on the number r of lattice points in int P . Suppose
that r = 0 and without loss of generality let P = conv{o, p, q}. Note that m P can
be partitioned into translates of P of the form P + i p + jq, i, j ∈ {0, . . . ,m − 1},
i + j ≤ m − 1, and translates of −P of the form −P + i p+ jq, i, j ∈ {0, . . . ,m − 1},
1 ≤ i + j ≤ m. Let z ∈ m P ∩Z2. Since int P contains no lattice points, z must actually
belong to a translate P + i p + jq of P for some i, j ∈ {0, . . . ,m − 1}, i + j ≤ m − 1.
Therefore z ∈ A + i p + jq ⊂ A[m], and the case r = 0 is finished. Suppose that the
inductive hypothesis holds for r < s and int P contains exactly s lattice points. Let v be
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one of these points, and partition P into three lattice triangles P1, P2, and P3, each with
a vertex at v and two others at vertices of P . Let Ai = Pi ∩ Z2, i = 1, 2, 3, and note
that Pi = conv Ai and int Pi has less than s lattice points. Now if w ∈ m P ∩ Z2, then
w ∈ m Pi ∩ Z2 for some i and so w ∈ Ai [m] ⊂ A[m]. This completes the proof that
A[m] = (m conv A) ∩ Z2.

To see that D A = D(conv A)∩Z2, let P = conv A have vertices v1, . . . , vm , and note
that D P = conv D A. Let x ∈ D P ∩Z2. By Lemma 3.3, either x ∈ P − vi for some i or
x ∈ −P+ vi for some i . Since A− vi = (P− vi )∩Z2 and−A+ vi = (−P+ vi )∩Z2,
we have x ∈ D A, as required.

4. X-Rays, the Covariogram, and Their Discrete Analogs

Let E be a bounded Lebesgue measurable set in Rn . It is a well-known fact that E is
determined, up to a set of measure zero, among all bounded Lebesgue measurable sets
by its X-rays Xu E in all directions u ∈ Sn−1; see, for example, Theorem C.1.1 of [14]
and the references given there. In particular, if two convex bodies K and L in Rn have
equal X-rays in all directions, they must be equal. (For an introduction to X-rays of
convex bodies, see Chapter 1 of [14].) The statement that the covariograms of K and
L are equal provides weaker information. Indeed, it can be shown that gK = gL if and
only if for each u ∈ Sn−1, their X-rays Xu K and Xu L parallel to u are rearrangements
of one another. We omit the proof since the main interest here is in finite sets, for which
we prove the analogous statement below in Theorem 4.1.

The covariogram of a bounded Lebesgue measurable set is clearly unchanged by a
translation or a reflection in the origin. If K is a convex body inRn , then the support of gK

is DK . Therefore, if K and L are convex bodies such that gK = gL , then DK = DL . It
follows that a centrally symmetric convex body K is determined up to translation, among
all convex bodies, by its covariogram. (As Bianchi [4] remarks, this requires also the
observation that gK (o) = V (K ) and the fact that in the class of all convex bodies with
a given difference body, the unique origin-symmetric member has maximal volume, a
consequence of the Brunn–Minkowski inequality.) Matheron [25, p. 86] (or see [18])
observed that gK = gL also implies �K = �L .

Let A be a finite subset of Rn . Again, A is determined among all finite sets by its
discrete X-rays Xu A in all directions u ∈ Sn−1. Indeed, one can say much more. By a
result of Rényi [27], as extended by Heppes [22], if |A| = m then A is determined by
any set of m + 1 discrete X-rays in mutually nonparallel directions.

The discrete covariogram gA of a finite subset A of Rn is also unchanged by a
translation or a reflection in the origin, and the support of gA is the difference set D A =
A + (−A). By Theorem 3.4, we have for n = 2 the convenient fact that when A is a
convex lattice set, gA is supported by the convex lattice set D A. Note that

gA(x) = |{y ∈ A: y − x ∈ A}|,
the number of chords in A that are translates of the line segment [o, x]. Thus the co-
variogram can be identified with the multiset A+ (−A), that is, the set D A where each
element is repeated with multiplicity. In particular, gA = gB if and only if A and B have
the same set of chords, each repeated with multiplicity, and this is true if and only if the
multisets A + (−A) and B + (−B) are equal.
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Finite multisets A and B such that the multisets A + (−A) and B + (−B) are equal
are sometimes called homometric. The structure of homometric multisets turns out to be
important in X-ray crystallography via the Patterson function, by which the difference
set of the atoms in a crystal can be determined from its X-ray diffraction pattern; see,
for example, [19]. Rosenblatt and Seymour [29], using algebraic techniques, find an
algorithm for reconstructing all multisets A with a given difference multiset A+ (−A).
The one-dimensional case of this method is applied by Skiena and Sundaram [35] to the
so-called partial digest problem in the mapping of DNA.

Let u ∈ Zn , let F be a finite subset of Zn , and let j be a nonnegative integer. Define

aF ( j, u) = |{v ∈ u⊥: Xu F(v) ≥ j}|.
If A and B are convex lattice sets in Zn , we say, by analogy with the usual meaning of
the term, that their X-rays Xu A and Xu B are rearrangements of each other if aA( j, u) =
aB( j, u) for each j .

Theorem 4.1. Let A and B be convex lattice sets in Zn . Then gA = gB if and only if
for each u ∈ Zn , the X-rays Xu A and Xu B of A and B parallel to u are rearrangements
of each other.

Proof. Let u ∈ Zn be primitive, let F be a convex lattice set in Zn , and let j be a
nonnegative integer. If v ∈ u⊥ and Xu F(v) = k ≥ j + 1, then there are exactly k − j
chords of F that are translates of [o, ju] lying in the line through v parallel to u. Therefore

gF ( ju) =
∞∑

k= j+1

(k − j)|{v ∈ u⊥: Xu F(v) = k}|

=
∞∑

k= j+1

(k − j)(aF (k, u)− aF (k + 1, u))

=
∞∑

k= j+1

aF (k, u) (6)

for each j . (This is a discrete version of the final equation on p. 512 of [18].) The result
follows immediately.

The previous theorem shows that, as in the continuous case, the statement that two
finite sets have equal discrete covariograms is formally weaker than the statement that
all their X-rays are equal. Below, we examine in more detail what information is given
by the discrete covariogram. The following connection between continuous and discrete
covariograms will be useful.

Lemma 4.2. Let A be a finite subset of Rn with discrete covariogram gA, and let C be
a bounded Lebesgue measurable set in Rn with continuous covariogram gC . Then for
all x ∈ Rn , ∑

a1,a2∈A

Vn((C + a1) ∩ (C + a2 + x)) =
∑

z∈D A

gC(z + x)gA(z).
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Proof. Let x ∈ Rn . We have∑
a1,a2∈A

Vn((C + a1) ∩ (C + a2 + x)) =
∑

a1,a2∈A

Vn(C ∩ (C + a2 − a1 + x))

=
∑

a1,a2∈A

gC(a1 − a2 + x)

=
∑

z∈D A

gC(z + x)gA(z).

Theorem 4.3. Let A and B be finite subsets of Rn with equal discrete covariograms.
If C is a bounded Lebesgue measurable set such that

Vn(A + C) = |A|Vn(C) and Vn(B + C) = |B|Vn(C), (7)

then A + C and B + C have equal continuous covariograms.

Proof. The assumption Vn(A + C) = |A|Vn(C) says that there are no overlaps in the
Minkowski sum A + C , except for sets of measure zero. Specifically, the assumption
implies that for all a1, a2 ∈ A and almost all c1, c2 ∈ C , if a1 + c1 = a2 + c2, then
a1 = a2 and c1 = c2. Using this fact, it is easy to see that

Vn((A + C) ∩ (A + C + x)) =
∑

a1,a2∈A

Vn((C + a1) ∩ (C + a2 + x)) ,

for all x ∈ Rn . By Lemma 4.2, we obtain

gA+C(x) =
∑

z∈D A

gC(z + x)gA(z),

for all x ∈ Rn . The conclusion of the theorem now follows from the hypotheses (7) and
gA = gB , and the consequence D A = DB of the latter equation.

The following is a result of Cabo and Janssen [8]. Since it appeared only in a technical
report, we provide a proof (somewhat shorter than that in [8]).

Proposition 4.4. If C and D are bounded, origin-symmetric, regular (equal to the
closure of their interiors), compact subsets of Rn with equal continuous covariograms,
then C = D.

Proof. It is well known (see, for example, [4]) that for any Lebesgue measurable
set E , gE = 1E ∗ 1−E , the convolution of the characteristic functions of E and −E .
The origin symmetry implies 1C ∗ 1C = 1D ∗ 1D , and taking Fourier transforms, we
obtain (1̂C)

2 = (1̂D)
2. Therefore 1̂C(x) = ±1̂D(x), for each x ∈ Rn . Since the Fourier

transform is analytic, and any analytic function is determined by its values on a set with
a limit point, we conclude that 1̂C = ±1̂D . Fourier inversion yields 1C = 1D almost
everywhere, and since C and D are regular, we have C = D, as required.
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Corollary 4.5. If A and B are finite origin-symmetric subsets ofRn with equal discrete
covariograms, then A = B.

Proof. Let C be an origin-symmetric n-dimensional ball of sufficiently small radius so
that (7) holds. Then gA+C = gB+C , by Theorem 4.3. Since A+C and B+C are bounded,
origin-symmetric, regular compact sets, Proposition 4.4 yields A + C = B + C , and it
follows that A = B.

The covariogram problem, attributed to Matheron (compare p. 86 of [25]) asks
whether gK determines a convex body K , among all convex bodies, up to translation
and reflection in the origin. The answer is affirmative when n = 2 and K is a polygon
(a result of Nagel; see [3] for a complete proof) or when K is C2

+ (see [4] and [5]), and
is negative when n ≥ 4 (proved by Bianchi [4]). Applications of the covariogram to
stereology, image processing, and mathematical morphology are discussed in [7], [30],
and [34]. Remarkably, the problem is still open when n = 2 and 3.

Let A be a finite set in Rn . It is natural to ask whether gA determines a convex lattice
set A, among all convex lattice sets, up to translation and reflection in the origin. The
authors of [11] use the algebraic method of Rosenblatt and Seymour [29] to give an
algorithm for constructing a finite subset of Zn , if one exists, with a given covariogram.
They also note, without giving specific examples, that sets not equal up to translation
and reflection in the origin may have the same covariogram. The question raised above is
also answered negatively in a strong way by the example depicted in Fig. 2. This displays
convex polyominoes A and B that are not congruent, yet satisfy gA = gB .

Examples such as these have some relevance to the (continuous) covariogram problem.
To see this, let A and B be finite subsets of Zn such that gA = gB . If C = [0, 1]n , then by
Theorem 4.3, the sets K = A + [0, 1]n and L = B + [0, 1]n have equal covariograms.
In particular, if A and B are the convex polyominoes shown in Fig. 2, then the animals
A + [0, 1]2 and B + [0, 1]2 have equal covariograms.

Since two convex bodies in Rn have equal covariograms if and only if for each
u ∈ Sn−1, their X-rays parallel to u are rearrangements of one another, this condition is
much stronger than the property that the two bodies have equal chord length distributions;
indeed, the distributions of lengths of chords parallel to any given direction must be equal.
The previous example can therefore be viewed as related to an example of Mallows and
Clark [24]. These authors answered an old question of Blaschke by exhibiting two
noncongruent convex polygons with equal chord length distributions. Thus the polygons
A+ [0, 1]2 and B+ [0, 1]2 have the stronger property that their covariograms are equal,

Fig. 2. Noncongruent convex polyominoes with equal covariograms.
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but on the other hand the polygons are not convex. Indeed, they cannot be convex by
Nagel’s result mentioned above, but they are “close to convex” since they arise from
convex polyominoes, and in this sense the example is probably optimal.

5. Projections of Finite Sets

To set the scene, we briefly describe some previous work on projections of finite sets.
Motivated by a file management problem, Schwenk and Munro [33] consider the mini-
mum of the geometric mean of the cardinality of projections of a finite subset A of Rn

onto coordinate subspaces of fixed dimension k. Their result in the case k = n − 1, for
example, is that (

n∏
j=1

|A|e⊥j |
)1/n

≥ |A|(n−1)/n.

However, this follows immediately from (and is equivalent to) the Loomis–Whitney
inequality (see, for example, p. 340 of [14]), as can be seen by replacing each point
in A by a small cube whose facets are parallel to the coordinate hyperplanes. In [33] a
more general inequality is given, involving projections onto all k-dimensional coordinate
subspaces ofRn , but this too follows from a corresponding generalization of the Loomis–
Whitney inequality due to Hadwiger [21, Theorem 4.4.2]. Schwenk [32] tackles a variant
of the problem above in which the geometric mean is replaced by the maximum, and
solves this when n = 3 and k = 2, noting that the general case appears very difficult.

We begin our investigation with the following connection between projections of
convex lattice sets and the discrete covariogram.

Lemma 5.1. If A is a convex lattice set in Zn and u ∈ Zn is primitive, then

|A | u⊥| = |A| − gA(u). (8)

Proof. By (6), we have

|A|−gA(u) = gA(0u)−gA(1u) = aA(1, u) = |{v ∈ u⊥: Xu A(v) ≥ 1}| = |A | u⊥|.

By analogy with the standard terminology for projection bodies (see, for example,
Chapter 4 of [14]), we write �A = �B if∣∣A | u⊥∣∣ = ∣∣B | u⊥∣∣ ,
for all u ∈ Zn , and say that A and B have equal projection counts. (Note that �A and
�B are not defined separately as sets.)

Corollary 5.2. Let A and B be convex lattice sets in Zn . If gA = gB , then�A = �B.

Proof. Note that�A = �B if and only if |A | u⊥| = |B | u⊥| for all primitive u ∈ Zn .
Since gA(o) = |A|, the implication gA = gB ⇒ �A = �B follows immediately from
Lemma 5.1.
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Fig. 3. Nonhomothetic lattice sets with equal projection counts.

By analogy with Aleksandrov’s projection theorem, it is natural to ask whether, if
centrally symmetric convex lattice sets have equal projection counts, they must be trans-
lates of each other. The symmetry assumption is necessary, since it follows from Corol-
lary 5.2 that the convex lattice sets A1 and B1 shown in Fig. 2 satisfy �A1 = �B1,
yet they are not translates of each other (nor even congruent). Convexity is clearly
essential, but one can ask whether arbitrary finite lattice sets with equal projection
counts must be homothetic. However, this is false, as the sets A2 and B2 in Fig. 3
demonstrate.

Surprisingly, there are actually noncongruent origin-symmetric convex lattice sets A
and B in Z2 with �A = �B, as in Fig. 4. The two on the left in Fig. 4 are also convex
polyominoes; while they are not equal up to a direct rigid motion, each is a reflection of
the other in the line y = x . The convex lattice set on the right (contributed by a referee)
in Fig. 4 is not a convex polyomino.

For any two of the sets in Fig. 4, A3 and B3 say, we have of course D A3 �= DB3,
since if D A3 = DB3, the origin symmetry of the sets and Theorem 3.4 would imply
that A3 = B3. With the symmetry condition removed, however, it is possible to find
noncongruent convex polyominoes with equal projection counts and equal difference
sets. The following general construction can produce such examples. Let C be a finite
origin-symmetric set in Rn , and let p ∈ C and q ∈ C\{p,−p} be such that there
are points r ∈ C\{p, q} and s ∈ C\{−p, q} such that r ∈ [p, q] and s ∈ [−p, q]. Let
A = C\{p, q} and B = C\{−p, q}. Then�A = �B. (Even more general constructions
along these lines are possible.)

If we apply this construction with C = conv{p,−p, q,−q}∩Z2,where p = (−2, 1)
and q = (0,−1), we obtain the convex polyominoes A4 and B4 shown in Fig. 5. Note
that these satisfy not only �A4 = �B4, but also D A4 = DB4. They also show that the
converse of Corollary 5.2 is false, since gA4(x) = 2 �= 1 = gB4(x) when x = (−2, 2).

Now consider the convex polyominoes A5 and B5 on the left and right of Fig. 6. Here
we also have D A5 = DB5, but since |A5| �= |B5|, we have �A5 �= �B5 and hence
gA5 �= gB5 .

Fig. 4. Noncongruent origin-symmetric convex lattice sets with equal projection counts.
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Fig. 5. Noncongruent convex polyominoes with equal projection counts and difference sets.

Despite the example shown in Fig. 3, it might be possible to find a conditional discrete
version of Aleksandrov’s projection theorem, even in Z2. The following question also
remains open, even for origin-symmetric convex polyominoes.

Problem 5.3. Let n ≥ 3, and let A and B be centrally symmetric convex lattice sets in
Z

n with dim A = dim B = n such that for each u ∈ Zn , we have

|A | u⊥| = |B | u⊥|.
Is A a translate of B?

6. Sections of Finite Sets

Dual to Aleksandrov’s projection theorem is Funk’s section theorem (see Theorem 7.2.6
of [14]), which implies that origin-symmetric convex bodies whose intersections with
hyperplanes through the origin have equal volumes must be equal. It is easy to see that
the discrete analog of this fact holds. Indeed, a stronger statement is true. Suppose that
A and B are origin-symmetric convex lattice sets in Zn such that for each u ∈ Zn we
have

|A ∩ u⊥| ≤ |B ∩ u⊥|.
Let v ∈ Zn and let Lv be the line through o and v. Clearly we can choose u ∈ Zn so
that Lv ⊂ u⊥, A ∩ u⊥ = A ∩ Lv , and B ∩ u⊥ = B ∩ Lv . Then |A ∩ Lv| ≤ |B ∩ Lv|. It
follows by convexity and origin symmetry that A ⊂ B. In particular, the dual question
to Problem 5.3 has an affirmative answer.

Let A be a convex lattice set. For u ∈ Zn , let

m A(u) = max{|A ∩ (u⊥ + x)|: x ∈ Zn}.
Suppose that n = 2. If v ∈ Zn is primitive and parallel to u⊥, then kv ∈ D A if and only
if there are x, y ∈ A with x − y = kv and hence if and only if k ≤ m A(u)− 1. It follows
that convex lattice sets A and B in Z2 satisfy m A = m B if and only if D A = DB.
The noncongruent convex polyominoes shown in Fig. 6 therefore satisfy m A = m B .

Fig. 6. Noncongruent convex polyominoes with equal difference sets but different cardinalities.
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However, the following is a discrete version of the old and still-unsolved problem of
Bonnesen (see Problem 8.10(i) of [14]).

Problem 6.1. Let A and B be convex lattice sets in Zn with dim A = dim B = n. If
n ≥ 3 and m A = m B , is A = B up to translation and reflection in the origin?

For the remainder of this section, we consider a discrete version of the following dual
Loomis–Whitney inequality proved by Meyer [26]. This states that if K is a convex body
in Rn , then

V (K )n−1 ≥ dn

n∏
i=1

V (K ∩ e⊥i ), (9)

where

dn = ((n − 1)!)n

(n!)n−1
, (10)

and equality holds if and only if K is a cross-polytope with vertices on the coordinate
axes.

Problem 6.2. Find the best-possible constants cn such that if A is a convex lattice set
in Zn , then

|A|n−1 ≥ cn

n∏
i=1

|A ∩ e⊥i |. (11)

We claim that cn ≤ dn , where dn is given by (10). To see this, one can use the fact
that for each convex body K in Rn , the number G(K ) of lattice points in K satisfies

|G(mK )− V (mK )| = O(mn−1), (12)

for large m; see, for example, [2]. Now let K = conv{±ei , i = 1, . . . , n} be the standard
cross-polytope in Rn , and let ε > 0 be given. Let m ∈ N and Am = mK ∩ Zn . Then,
using (12) and the equality condition for (9), we have

|Am |n−1 ≥ (V (mK )− O
(
mn−1

))n−1 = V (mK )n−1 − O(mn2−n−1)

= dn

n∏
i=1

V
(
(mK ) ∩ e⊥i

)−O(mn2−n−1)

≥ dn

n∏
i=1

(∣∣Am ∩ e⊥i
∣∣−O

(
mn−2

))−O(mn2−n−1)

= dn

n∏
i=1

∣∣Am ∩ e⊥i
∣∣− O(mn2−n−1)

≥ (dn − ε)
n∏

i=1

∣∣Am ∩ e⊥i
∣∣ ,

for sufficiently large m. This proves the claim.
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Let A = {±ei : 1 ≤ i ≤ n − 1,± jen: 0 ≤ j ≤ m} ⊂ Zn . Then |A| = 2m + 2n − 1,
|A ∩ e⊥n | = 2n − 1, and |A ∩ e⊥i | = 2m + 2n − 3. This shows that cn ≤ 1/(2n − 1).
Note that d3 = 2

9 >
1
5 , while dn < 1/(2n − 1) for n ≥ 4.

Theorem 6.3. If A is a convex lattice set in Z2, then

|A| ≥ 1

3

2∏
i=1

|A ∩ e⊥i |, (13)

and the constant 1
3 is the best possible.

Proof. It will be convenient to set x = |A ∩ e⊥1 | and y = |A ∩ e⊥2 |.
Suppose first that o ∈ A. Let A ∩ e⊥1 = {−a2,−a2 + 1, . . . , a1} and A ∩ e⊥2 =

{−b2,−b2 + 1, . . . , b1}. If a2 = b2 = 0, we have

|A| ≥ (a1 + 1)(b1 + 1)/2+ 1. (14)

Using (14) in each quadrant, we see that in general we have

|A| ≥
(
(a1 + 1)(b1 + 1)+ (a1 + 1)(b2 + 1)+(a2 + 1)(b1 + 1)+ (a2 + 1)(b2 + 1)

2

)
+ 4− (a1 + a2 + 1)− (b1 + b2 + 1)− 1

= (a1 + a2)(b1 + b2)

2
+ 3 = (x − 1)(y − 1)

2
+ 3.

Now if x, y ≥ 3, we have

(x − 1)(y − 1)

2
+ 3 ≥ xy

3
⇔ (x − 3)(y − 3)

6
+ 2 ≥ 0,

which is true. If x ≤ 2, say, then |A| ≥ y + 1 ≥ (xy)/2+ 1 ≥ (xy)/3.
Now suppose that o �∈ A. Since A is convex, it suffices to consider the situation when

A ∩ e⊥1 = {a2, a2 + 1, . . . , a1} and A ∩ e⊥2 = {b2, b2 + 1, . . . , b1}, where 0 < a2 ≤ a1

and 0 < b2 ≤ b1. Using (14) again, we obtain

|A| ≥ (a1 + 1)(b1 + 1)

2
+ 1−

(
(a2 + 1)(b2 + 1)

2
− 1

)
= (a1 − a2 + 1)(b1 − b2 + 1)+ a2(b1 − b2)+ b2(a1 − a2)

2
≥ xy

2
,

an even better estimate in this case than the one required.
We have proved that c2 ≥ 1

3 . Let A = {(±1, 0), (0,±i): 0 ≤ i ≤ m}. Then |A| =
2m + 3, x = 3, and y = 2m + 1, which shows that c2 ≤ 1

3 .
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2. U. Betke and K. Böröczky, Jr., Asymptotic formulae for the lattice point enumerator, Canad. J. Math. 51
(1999), 225–249.

3. G. Bianchi, Determining convex polygons from their covariograms, Adv. in Appl. Prob. 34 (2002), 261–
266.

4. G. Bianchi, Matheron’s conjecture for the covariogram problem, J. London Math. Soc. (2) 71 (2005),
203–220.
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