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Abstract. Given a bipartite graph G = (V,W, E), a two-layered drawing consists of
placing nodes in the first node set V on a straight line L1 and placing nodes in the second
node set W on a parallel line L2. The one-sided crossing minimization problem asks one
to find an ordering of nodes in V to be placed on L1 so that the number of arc crossings is
minimized. In this paper we use a 1.4664-approximation algorithm for this problem. This
improves the previously best bound 3 due to P. Eades and N. C. Wormald [Edge crossing
in drawing bipartite graphs, Algorithmica 11 (1994), 379–403].

1. Introduction

Given a bipartite graph G = (V,W, E), a two-layered drawing consists of placing nodes
in the first node set V on a straight line L1 and placing nodes in the second node set
W on a parallel line L2. The problem of minimizing the number of crossings between
arcs in a two-layered drawing was first introduced by Harary and Schwenk [6], [7]. The
one-sided crossing minimization problem asks one to find an ordering of nodes in V to
be placed on L1 so that the number of arc crossings is minimized (while the ordering of
the nodes in W on L2 is given and fixed).

The problem has many applications such as VLSI layouts [14] and hierarchical draw-
ings [1], [15]. However, the two-sided and one-sided problems are shown to be NP-hard
by Garey and Johnson [5] and by Eades and Wormald [4], respectively. Muñoz et al.
[11] have proven that the one-sided problem remains NP-hard even for sparse graphs

∗ A preliminary version of this paper appeared in Proceedings of the 11th International Symposium on
Graph Drawing (GD2003), Lecture Notes in Computer Science, Vol. 2912. This research was partially sup-
ported by a Scientific Grant in Aid from the Ministry of Education, Culture, Sports, Science and Technology
of Japan.
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such as forests of 4-stars. Dujmović and Whitesides [3] have given an O(ϕk · n2) time
algorithm to the one-sided problem, where k is the number of crossings to be checked,
n = |V | + |W | and ϕ = (1+√5)/2, thus showing that the problem is Fixed Parameter
Tractable. Recently Dujmović et al. [2] gave an O(1.4656k + k|V |2) time algorithm for
this problem.

In this paper we consider the one-sided problem. For this problem, there are sev-
eral heuristics that deliver theoretically or empirically good solutions. The so-called
barycentre heuristic finds an O(

√
n)-approximation solution or a (d−1)-approximation

solution, where d is the maximum degree of nodes in the free side V (see [9] for the
analysis). Eades and Wormald [4] proposed a simple and theoretically better heuristic,
the median heuristic, which constructs an ordering of V by aligning each node v ∈ V on
L1 with respect to the position in L2 of the median neighbour of v (breaking ties by an
adequate rule). They prove that the median heuristic delivers a 3-approximation solution,
and its performance guarantee approaches to 1 if graphs become dense. Yamaguchi and
Sugimoto [16] gave a 2-approximation algorithm if d ≤ 4. All the known performance
guarantees of these heuristics are based on a conventional lower bound that is obtained
by summing up min{cuv, cvu} over all node pairs u, v ∈ V , where cuv denotes the number
of crossings generated by arcs incident to u and v when u precedes v in an ordering.
An extensive computational experiment of several heuristics including the above two
has been conducted by Jünger and Mutzel [8] and by Mäkinen [10]. Jünger and Mutzel
[8] reported that most of the heuristics gave good solutions whose crossing numbers
are nearly equal to the lower bound. However, the theoretically best estimation to the
gap between the optimum and the lower bound is 3 due to the heuristic by Eades and
Wormald [4].

In this paper we prove that, for the one-sided problem, there always exists a solution
whose crossing number is at most 1.4664 times the lower bound. Our argument is
based on a probabilistic analysis, which provides a polynomial randomized algorithm
that delivers a solution whose average number of crossings is at most 1.4664 times the
optimum. The algorithm can be evolved from the median heuristic. A first step might be
to modify the median heuristic as follows: instead of aligning a node u with its median
neighbour, it can be aligned with a neighbour randomly chosen to be in some interval
of neighbours, say between the first quartile and the median, or between the �sdu
th
neighbour and the �tdu
th neighbour for some specified constants 0 < s ≤ t ≤ 1, where
du denotes the degree of u. The algorithm in this paper is even more sophisticated than
this, and first chooses the appropriate interval at random (as well as some care taken in
the case of ties).

The paper is organized as follows. In Section 2 we introduce basic definitions on two-
layered drawing and a geometric representation for crossing numbers cuv and cvu for
two nodes u, v ∈ V . In Section 3 we propose a probabilistic algorithm for determining
a two-layered drawing and show some basic properties for analysing the algorithm. In
Section 4 we show that the algorithm can deliver a solution whose crossing number
is at most 1.4664 times the lower bound. In Section 5 we, however, show that our
approach cannot prove that the gap between the optimum and the lower bound is less
than 1.4414. In Section 6 we discuss deterministic approximation algorithms based on
our probabilistic algorithm proposed in Section 3. In Section 7 we make some concluding
remarks.
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Fig. 1. (a) A two-layered drawing of a bipartite graph. (b) Crossing numbers for each pair of nodes in the
top layer.

2. Preliminaries

Let G = (V,W, E) be a bipartite graph with a partition V and W of a node set. Assume
that G has no isolated node. Let π denote a permutation of {1, 2, . . . , |V |} and σ denote
a permutation of {1, 2, . . . , |W |}. A pair of π and σ defines a two-layered drawing of
G in the plane in such a way that, for two parallel horizontal lines L1 and L2, the nodes
in V (resp., in W ) are arranged on L1 (resp., L2) according to π (resp., σ ) and each
arc is depicted by a straight line segment joining the endnodes, where the directions for
traversing L1 and L2 are taken as the same (see Fig. 1(a)). For any choice of coordinates
of points for nodes in V ∪W in a two-layered drawing of G defined by (π, σ ), two arcs
(v,w), (v′, w′) ∈ E intersect properly (or create a crossing) if and only if π(v) < π(v′)
and σ(w) > σ(w′) (or π(v) > π(v′), σ(w) < σ(w′)). So we simply call a pair (π, σ )
a two-layered drawing of G. In this paper we consider the following problem.

One-Sided Crossing Minimization. Given a bipartite graph G = (V,W, E) and a
permutation σ on W , find a permutation π on V that minimizes the number of crossings
in a two-layered drawing (π, σ ) of G.

Since the permutation σ on W = {1, 2, . . . , |W |} is fixed, we assume throughout the
paper that σ(i) = i for all i ∈ W . For each node u in G, let 
(u) denote the set of nodes
adjacent to u, and let du = |
(u)|. For two nodes u, v ∈ V , let �uv = |
(u) ∩ 
(v)|.
The crossing number cuv for an ordered pair of two nodes u, v ∈ V is the number of
crossings generated by an arc incident to u and an arc incident to v when π(u) < π(v)

holds in a two-layered drawing (π, σ ). (Figure 1(b) shows the crossing numbers in the
graph in Fig. 1(a).) It is a simple matter to see that

dudv = cuv + cvu +�uv,

min{cuv, cvu} ≥ �uv(�uv − 1)

2
.

For a permutation π on V , let

cross(u, v;π) :=
{

cuv if π(u) < π(v),
cvu otherwise.
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Fig. 2. (a) A two-layered drawing of a bipartite graph. (b) Crossing numbers for each pair of nodes in the
top layer.

Define

cross(π) :=
∑

u,v∈V :π(u)<π(v)

cuv =
∑

u,v∈V

cross(u, v;π).

The optimum of the problem is denoted by opt = min{cross(π) | permutation π on V }.
For LB =∑u,v∈V min{cuv, cvu}, it holds that

opt ≥ LB.

Figure 2 shows an example such that opt = 39 and LB = 33. Hence the maximum ratio
LB/opt over all bipartite graphs is at least 13/11 � 1.1818. In this paper we prove the
next result.

Theorem 1. For a bipartite graph G = (V,W, E) with a permutation σ on W , there
exists a permutation π on V such that cross(π) ≤ 1.4664LB.

Note that the one-sided crossing minimization is a purely combinatorial problem in
the sense that the number of crossings is determined by a permutation π , not by the
actual positions of nodes in the layers. However, in this paper we convert the problem
into a geometric problem to derive Theorem 1. For this, we first introduce a geometric
representation that illustrates how two sets 
(u) and 
(v) determine crossing numbers
cuv and cvu in a bipartite graph G. The rectangles that we treat here are axis-parallel in
the xy-coordinate, and they are denoted by the coordinates of the lower-left corner and
the upper-right corner, where the x-coordinate increases in the right direction and the
y-coordinate increases in the upward direction. For example, [(0, 0), ( 1

2 , 1)] represents
the square with four corners (0, 0), (0, 1), ( 1

2 , 0) and ( 1
2 , 1).

Let S denote the square [(0, 0), (1, 1)]. For a connected region R in S, we may use
R to denote the sets of points in the region R, and let a(R) denote the area of R. For
two points b, b′ ∈ S, a line segment connecting b and b′ is denoted by bb′. A part of the
boundary of a region R may be called an edge if it is a line segment. For a line segment
(or an edge) e, its length is denoted by �(e). We say that edge e overlaps with another
edge e′ if the intersection of e and e′ is a line segment of a positive length.
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Fig. 3. Illustration for blocks in a (du , dv)-sliced square S.

A path P between points (0, 0) and (1, 1) in S is called monotone if neither of the x-
and y-coordinates of the point on P decreases when we traverse points on P from (0, 0)
to (1, 1) (in general a monotone path is not necessarily piecewise linear).

For two integers d, d ′ ≥ 1, the square S = [(0, 0), (1, 1)] is called (d, d ′)-sliced if it
is sliced by (d − 1) horizontal line segments and (d ′ − 1) vertical segments so that these
line segments give rise to d × d ′ congruent rectangles (see Fig. 3). Each such rectangle
is called a block, which has four edges.

We represent the positions of nodes in 
(u) and 
(v) in the permutation σ by us-
ing the unit square S in the xy-coordinate. Let 
(u) = {u′1, u′2, . . . , u′du

} and 
(v) =
{v′1, v′2, . . . , v′dv }. For an ordered pair (u, v) of nodes in V , we consider dudv blocks in
the (du, dv)-sliced square S. We denote these blocks by

bl(i, j) =
[(

j − 1

dv
,

i − 1

du

)
,

(
j

dv
,

i

du

)]
, 1 ≤ i ≤ du and 1 ≤ j ≤ dv

(see Fig. 3). We let bl(i, j) correspond to a pair of arcs (u, u′i ) and (v, v′j ). Note that
arcs (u, u′i ) and (v, v′j ) create a crossing in a permutation π with π(u) < π(v) or
π(u) > π(v) if u′i �= v′j , but generate no crossing in any permutation π otherwise. We
call a block bl(i, j)with u′i �= v′j an up-block if arcs (u, u′i ) and (v, v′j ) create a crossing in
a permutation π with π(u) < π(v) and a down-block otherwise. We call a block bl(i, j)
with u′i = v′j a neutral-block. Observe that the number of up-blocks (resp., down-blocks
and neutral-blocks) is equal to cuv (resp., cvu and�uv = �vu). Here we partition the set
of these blocks into two groups UP and DWN as follows (where a neutral-block may be
split into two half-blocks in the partitioning).

Definition 2. For each node u∈ V , where
(u)={w1, w2, . . . , wdu }⊆ {1, 2, . . . , |W |}
(w1 < w2 < · · · < wdu ), we define the median index µ(u) of its neighbours by

µ(u) :=
{
w(du+1)/2 if du is odd,
1
2 (w(du)/2 + w(du)/2+1) if du is even.
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Fig. 4. (a) Two nodes u and v in the top layer, where cuv = 3 and cvu = 8. (b) A (u, v)-path P of a
(4, 3)-sliced square S in the case of (i).

(i) If µ(u) < µ(v), then let UP be the set of all up-blocks, and DWN be the set of
down-blocks and neutral-blocks (see Fig. 4).

(ii) If µ(u) > µ(v), then let UP be the set of all up-blocks and neutral-blocks, and
DWN be the set of down-blocks (see Fig. 5).

(iii) If µ(u) = µ(v), then split each neutral-block [p, q] into two parts by the line
segment pq , and put the upper-left part into U P and the other in DW N . Then
put all up-blocks in UP, and all down-blocks in DWN (see Fig. 6).

The set of all points in the blocks in UP forms a connected region, which we denoted
by Rup. Similarly, Rdwn is defined by DWN.

Note that points in any (half) neutral-block, which is shown by a (half) white block
in Figs. 4–6, belong to Rup or Rdwn. From the definition, we observe the next
property.

Lemma 3. Let Rup and Rdwn be the regions defined for an ordered pair of nodes u and
v in V . Then there is a monotone path P that separates S into Rup and Rdwn, and it holds

u v
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(0,1)

(0,0)

(1,1)

(1,0)

PRup

Rdwn

Fig. 5. (a) Two nodes u and v in the top layer. (b) A (u, v)-path P of a (2, 5)-sliced square S in the case
of (ii).
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Fig. 6. (a) Two nodes u and v in the top layer. (b) A (u, v)-path P of a (5, 3)-sliced square S in the case
of (iii).

that

a(Rup) =




cuv

dudv
if µ(u) < µ(v),

cuv +�uv/2

dudv
if µ(u) = µ(v),

cuv +�uv

dudv
if µ(u) > µ(v).

Moreover, Rup or P contains point (0.5, 0.5) if µ(u) ≥ µ(v).

Such a path P in the lemma is called the (u, v)-path with respect to G and σ .

Lemma 4. Let u, v ∈ V be two nodes in (G, σ ) such that 1 ≤ cuv < cvu and cuv <

2�uv . Then µ(u) < µ(v) holds unless u and v satisfy one of conditions (1)–(3):

cuv = 3, cvu = 4, du = dv = 3 and �uv = 2, (1)

cuv = 3, cvu = 5, {du, dv} = {2, 5} and �uv = 2 (see Fig. 5), (2)

cuv = 5, cvu = 7, {du, dv} = {3, 5} and �uv = 3. (3)

Proof. See the Appendix.

We close this section by showing some technical lemmas.

Lemma 5. For constants a > 0, b, c > 0 and d such that ad − bc ≥ 0, function
f (x) = (ax+b)(1/(cx + d)−2) takes the maximum (1/c)(

√
a−√2(ad − bc))2 over

x with cx + d > 0.

Proof.

(ax + b)

(
1

cx + d
− 2

)
= ax + b

cx + d
− 2ax − 2b
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= −
(√

ad/c − b

cx + d
−
√

2a

c
(cx + d)

)2

+ 1

c

(√
a −

√
2(ad − bc)

)2

≤ 1

c

(√
a −

√
2(ad − bc)

)2
.

Lemma 6. For four positive constants a, b, c and d with b/a < d ≤ 1/
√

2c, func-
tion f (x) = (ax − b)2(1/cx2 − 2) (b/a < x ≤ d) takes the maximum at x =
min{d, (b/2ac)1/3}.

Proof. d f/dx = 2a(ax−b)(1/cx2−2)+(ax−b)2·−2/cx3= 2(ax−b)(−2a+b/cx3).
By ax − b > 0, the f takes the maximum when x = min{d, (b/2ac)1/3}.

3. Algorithm and Analysis

In this paper we propose a randomized algorithm for the one-sided crossing minimization.
We describe an outline of the algorithm here. For each node u ∈ V , the algorithm
constructs an orderingπ of nodes in V as a solution by aligning nodes u ∈ V with respect
to their neighbours κ(u) ∈ 
(u), where a neighbour κ(u) of each node u is determined
by the following procedure. We first choose some interval Iu = (s, t] ⊆ (0, 1] for each
node u ∈ V according to a probabilistic scheme, where a value z ∈ (0, 1] corresponds
the �zdu
th neighbour of u. We then choose a value θ(u) randomly from Iu , and set
κ(u) to be the �θ(u)du
th neighbour of u. In the following, we describe how to choose
intervals Iu .

Let θ : V → (0, 1] be a function from V to the set of reals in (0, 1], where θ(u) is
called the real key of node u. Given a real-key function θ , we construct a permutation
πθ of {1, 2, . . . , |V |} by the next procedure.

PERMUTE(θ;πθ)
Step 1. For each node u ∈ V , compute j = �θ(u)du
 and define an integer key κ(u)
of u by

κ(u) := wj for the j th neighbour wj ∈ 
(u),
where 
(u) = {w1, w2, . . . , wdu } (w1 < w2 < · · · < wdu ).

Step 2. Sort nodes u ∈ V in the lexicographical order with respect to (κ(u), µ(u)),
where the ties among nodes u with the same key (κ(u), µ(u)) are broken as follows.
For each set {u′1, u′2, . . . , u′�} of nodes that have the same key (κ(u), µ(u)), choose
as an ordering of them one of u′1, u′2, . . . , u′� and u′�, u′�+1, . . . , u′1 randomly (where the
indexing i of u′i is arbitrary). We denote byπθ the resulting permutation of {1, 2, . . . , |V |}.

We see the following important property.
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Lemma 7. For two nodes u, v ∈ V , let Rup and Rdwn be the regions in Definition 2.
Then for a given real-key function θ , πθ(u) < πθ(v) if point (θ(u), θ(v)) is inside Rdwn

and πθ(u) > πθ(v) if point (θ(u), θ(v)) is inside Rup.

A scheme, based on which we choose a real-key function θ probabilistically, is defined
by a set of tuples of reals S = {(si , ti , pi ) | i = 1, 2, . . . , h}, such that 0 < si ≤ ti < 1
and 0 ≤ pi for i = 1, 2, . . . , h and

∑
1≤i≤h pi = 1, where we call each (si , ti , pi )

a subscheme. Given a scheme S, we choose a real-key function θ in the following
manner.

RANDOM-KEY(S; θ)
Step 1. Choose a subscheme (si , ti , pi ) ∈ S with probability pi .

Step 2. For each node u ∈ V , choose a real key θ(u) from (si , ti ] uniformly.

We denote by ES [cross(u, v;πθ)] and ES [cross(πθ )] respectively the expectations
of cross(u, v;πθ) and cross(πθ ) over all real-key functions θ resulting from RANDOM-
KEY. In this paper we prove the next result.

Theorem 8. There is a scheme S such that ES [cross(πθ )] ≤ 1.4664LB.

By the linearity of expectations, if we have a constant α ≥ 1 such that

ES [cross(u, v;πθ)] ≤ αmin{cuv, cvu}, u, v ∈ V,

then it holds that ES [cross(πθ )] ≤ αLB.
In the rest of this paper we fix two nodes u, v ∈ V , and analyse ES [cross(u, v;πθ)] for

a given scheme S. Since the case of max{cuv, cvu} ≤ 1.46 min{cuv, cvu} needs no special
consideration to prove Theorem 8, we consider nodes u and v such that 1.46cuv < cvu

or 1.46cvu < cuv . Without loss of generality we may assume that du ≤ dv by renaming
u and v and that 1.46cuv < cvu by reversing the permutation σ if necessary. Note that
neither (1) nor (3) holds since 1.46cuv < cvu . Moreover, we can assume that cuv ≥ 1
since otherwise (i.e., cuv = 0) πθ(u) < πθ(v) holds in any permutation πθ computed by
PERMUTE due to the first comparison of κ(u) and κ(v) (and the second comparison of
µ(u) and µ(v) even if κ(u) = κ(v)).

For a given scheme S and a region R ⊆ S, let pS(R) denote the probability that point
(θ(u), θ(v)) falls inside R. By Lemma 7, we observe the next formula.

Lemma 9. ES [cross(u, v;πθ)] = pS(Rdwn)cuv + pS(Rup)cvu .

We are ready to derive an important inequality.
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Lemma 10. Assume that 1 ≤ cuv < cvu/1.46 holds. Then it holds that

ES [cross(u, v;πθ)]
min{cuv, cvu} ≤




1+ pS(Rup)(
1

a(Rup)
− 2) if µ(u) < µ(v),

1+ pS(Rup)(
1.5

a(Rup)
− 2.5) if µ(u) ≥ µ(v)

unless (2) holds.

Proof. By Lemma 9, we get

ES [cross(u, v;πθ)]
min{cuv, cvu} = pS(Rdwn)cuv + pS(Rup)cvu

cuv

= (1− pS(Rup))cuv + pS(Rup)(dudv − cuv −�uv)

cuv

= 1+ pS(Rup)

(
dudv −�uv

cuv
− 2

)
.

First consider the case of µ(u) < µ(v). By Lemma 3, we have a(Rup) = cuv/dudv .
Hence

1

cuv
(dudv −�uv)− 2 = 1

cuv

(
cuv

a(Rup)
−�uv

)
− 2 ≤ 1

a(Rup)
− 2.

Next consider the case of µ(u) ≥ µ(v). By Lemma 3, we have a(Rup) ≤ (cuv +
�uv)/dudv . Since 1 ≤ cuv < cvu holds but (2) does not hold for the u and v, Lemma 4
implies that �uv ≤ cuv/2. Then

1

cuv
(dudv−�uv)−2 ≤ 1

cuv

(
cuv+�uv

a(Rup)
−�uv

)
−2= 1

cuv

(
cuv +�uv(1− a(Rup))

a(Rup)

)
− 2

≤ 1

cuv

(
cuv + 1

2 cuv(1− a(Rup))

a(Rup)

)
− 2 = 1.5

a(Rup)
− 2.5.

This completes the proof.

We wish to find an optimal scheme S that minimizes maxu,v∈V ES [cross(u, v;πθ)]/
min{cuv, cvu} (even though finding such an S analytically seems hard).

For this, we consider the set of all monotone paths P for a given scheme S. Let P
be an arbitrary monotone path between points (0, 0) and (1, 1) in a unit square S (not
necessarily a (u, v)-path for particular nodes u, v ∈ V ). Define Rup(P) and Rdwn(P) to
be the regions obtained by splitting S with P , where we assume that Rup(P) is above
Rdwn(P). Let

β(S, P) :=




pS(Rup(P))

(
1

a(Rup(P))
− 2

)
if (0.5, 0.5) �∈ Rup(P),

pS(Rup(P))

(
1.5

a(Rup(P)
)− 2.5

)
if (0.5, 0.5) ∈ Rup(P),
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and β(S) := max{β(S, P) | monotone path P}. Given a scheme S, a monotone path
P from (0, 0) to (1, 1) in a unit square S is called S-maximal if β(S, P) = β(S).

Since the choice of monotone paths P is relaxed, we obtain ES [cross(πθ )] ≤ (1 +
β(S))LB. (Recall that (0.5, 0.5) ∈ Rup holds if µ(u) ≥ µ(v) by Lemma 3.) Let β∗ =
min{β(S) | schemes S}. Therefore, to prove Theorem 8, it suffices to show that β∗ <
0.4664, i.e., there exists a scheme S such that β(S) < 0.4664 (provided the case of (2)
is treated separately to prove Theorem 8).

4. A Scheme S

In this section we present a scheme S that achieves Theorem 8. We consider scheme

S = {(s1 = 0.0957, t1 = 0.5, p1 = 0.5), (s2 = 0.5, t2 = 0.9043, p2 = 0.5)}.
Denote the squares S1 = [(s1, s1), (0.5, 0.5)] and S2 = [(0.5, 0.5), (t2, t2)], and the cor-
ners of these squares by A1=(0.0957, 0.0957), A2=(0.5, 0.5), A3=(0.9043, 0.9043),
B1=(0.5, 0.0957), B2=(0.9043, 0.5), C1=(0.0957, 0.5) and C2=(0.5, 0.9043). (The
constant 0.0957 and others have been determined through some computational exper-
iment.) Figure 7 illustrates this scheme. For simplicity, a square Si corresponding to a
subscheme (si , ti , pi ) is called a subscheme.

We first consider the case of (2).

Lemma 11. For nodes u, v ∈ V satisfying (2), it holds that ES [cross(u, v;πθ)] <
1.4664cuv .

Proof. For such u and v, cuv = 3, cvu = 5 and pS(Rup) = pS(Rdwn) = 0.5 hold. By
Lemma 9, ES [cross(u, v;πθ)] = pS(Rdwn)cuv + pS(Rup)cvu = 4 < 1.4664cuv .

b0

b1 b2

S1
p1=0.5

B1

A1

A2

S2 p2=0.5

e1

e3

e2

e4

e6

e5

B2

A3

C1

C2

b3
b4

b5 b6

0.0957 0.9043

0.4043

Fig. 7. Illustration of scheme S = {(0.0957, 0.5, 0.5), (0.5, 0.9043, 0.5)}, where a grey line indicates an
example of a monotone path P .
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(a)

P'

(0,1)

(0,0)

(1,1)

(1,0)

(b)

SiP

(0,1)

(0,0)

(1,1)

(1,0)

Rup(P)

Si

Rdwn(P)

Rup(P)

Rdwn(P)

Fig. 8. A monotone path P that passes through a square Si .

Now consider nodes u and v in the general case. It is not difficult to see that an S-
maximal monotone path P consists of axis-parallel line segments, and that the resulting
region Rup(P) contains at most one convex corner in each subscheme Si (i = 1, 2).
For simplicity, we consider a single subscheme Si . It should be noted that pS(Rup) (or
the contribution from Si to pS(Rup)) is given by a(Si ∩ Rup(P))/a(Si ). As shown in
Fig. 8(a), if a monotone path P does not satisfy these properties, then we can modify the
path P into another monotone path P ′ such that a(Si ∩ Rup(P ′)) = a(Si ∩ Rup(P)) and
a(Rup(P ′)) ≤ a(Rup(P)). For such an axis-parallel piecewise linear monotone path P ,
we denote the sequence of the corner points by

b0 = (0, 0), b1, . . . , bk = (1, 1),

and the sequence of the edges by

e1 = b0b1, e2 = b1b2, . . . , ek = bk−1bk

(see Fig. 7). Let e be an edge on a path P , where e may be a partial segment of some edge
ei . Without loss of generality we further assume that an S-maximal monotone path P is
chosen so that the number of edges of squares in subschemes or of the entire unit square
that are overlapped by the edges in P is maximized among all S-maximal monotone
paths.

We define the gain of edge e at a subscheme Si = (si , ti , pi ) ∈ S as follows. Consider
how much the amount of pS(Rup) changes if we move the line segment e in its orthogonal
direction by an infinitesimally small amount ε. The change in pS(Rup) is

ε · �(e ∩ Si ) · pi

(ti − si )2
,

where �(e ∩ Si ) means the length of the intersection of e and Si . On the other hand, the
change in a(Rup(P)) is

ε · �(e).
The gain is defined by the ratio of these two, i.e.,

g(e) = �(e ∩ Si ) · pi

(ti − si )2 · �(e) .



An Improved Bound on the One-Sided Minimum Crossing Number 577

b0

b1 b2

S1

B1A1

A2

S2

e1

e3

e2

e4

e6

e5

B2

A3

C1

C2

b3 b4

b5 b6

Fig. 9. Illustration of a piecewise linear monotone path P .

A vertical line segment e on a path P is called incrementable (resp., decrementable)
if:

• There is a real δ > 0 such that e has the same gain g(e) (with respect to a subscheme
Si ) after translating it rightward (resp., leftward) by any amount δ′ ∈ [0, δ] (i.e., e
remains intersecting Si ).
• For the rectangle R formed between e and the translated edge e′ and the current

path P , there is a monotone path P ′ such that Rup(P ′) = Rup(P) ∪ R (resp.,
Rup(P ′) = Rup(P)− R).

Analogously, the incrementability (resp., decrementability) of a horizontal line seg-
ment e is defined by replacing “rightward” with “ downward” (resp., “leftward” with
“upward”). In Fig. 9, for example, edges e3, A2b3 and e4 are incrementable, and e5, e2

and A1 B1 are decrementable.
An edge ei between two corners in a path P is called a free edge if it does not overlap

with any edge of square Si in a subscheme or of the entire unit square S. For example,
the free edges in Fig. 7 are e2, e3, e4 and e5, and the free edge in Fig. 9 is e4.

By definition, we observe the following.

Lemma 12. For an S-maximal monotone path P , let e and e′ be respectively an incre-
mentable edge and a decrementable edge such that (0.5, 0.5) is not an internal point in
any of e and e′. If e and e′ are not adjacent, then g(e) < g(e′). If e and e′ are adjacent,
then g(e) = g(e′).

Proof. Otherwise we would have another monotone path P ′ such that β(S, P ′) >
β(S, P) or such that β(S, P ′) = β(S, P) and P ′ overlaps with more edges of the
squares than P does.

In particular, there is no pair of non-adjacent free edges in an S-maximal monotone
path P .
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In what follows P is assumed to be an S-maximal monotone path, and for simplicity
Rup(P) is written by Rup. To prove that β(S, P) ≤ 0.4664 holds for our scheme S, we
distinguish the following cases:

Case A. Point (0.5, 0.5) is not on the boundary of Rup or inside Rup; β(S, P) is given
by pS(Rup)(1/a(Rup)− 2).

Case B. Point (0.5, 0.5) is on the boundary of Rup or inside Rup; β(S, P) is given by
pS(Rup)(1.5/a(Rup)− 2.5).

Case (1) Rup contains an internal point from exactly one of S1 and S2; without loss of
generality Rup contains no internal point in S2.

Case (2) Rup contains an internal point from each of S1 and S2.

4.1. Case A(1)

In this case, Rup has no convex corner in S2, and exactly one convex corner b3 in S1 (see
Fig. 10(a)). Consider edges e2 = b1b2 and e3 = b2b3 in P . By (0.5, 0.5) ∈ Rup, e3 does
not overlap with B1 A2, and thereby e3 is a free edge. Let x = �(e2) and ȳ = �(e3).

First consider the case where e2 does not overlap with A1 B1, i.e., e2 is a free edge. Then
g(e2) = 0.5/(0.4043)2 × (x − 0.0957)/x , and g(e3) = 0.5/(0.4043)2 × (ȳ − 0.5)/ȳ.
Since P is S-maximal, it must hold that g(e2) = g(e3) for two free edges. Thus we
have ȳ = (0.5/0.0957)x . Hence by ȳ ≤ 0.9043, we have x < 0.9043× 0.0957/0.5 =
0.17308302. By ȳ = (0.5/0.0957)x , we have ȳ − 0.5 = (0.5/0.0957)x − 0.5 =
(0.5/0.0957)(x − 0.0957). We have a(Rup) = x ȳ and

pS(Rup) = 0.5× (x − 0.0957)(ȳ − 0.5)

(0.4043)2

= 0.5× 0.5

(0.4043)2 × 0.0957
(x − 0.0957)2.

b0

b1 b2

S1

p1=0.5

B1

A1

A2

x

y

_
0.5

e1

e3

e2

P

0.0957

0.9043
0.4043

0.17308302

b0

b1

b2

S1

p1=0.5

B1

A1

A2

xe1

e3

e2

P

0.0957

0.9043

0.4043

(b)(a)

Fig. 10. Illustration for Case A(1), where (a) indicates the case where a corner point of P is inside S1, and
(b) indicates the case where edge A1 B1 of S1 is overlapped by edge e2 of P .
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Then

β(S, P) = pS(Rup)

(
1

a(Rup)
− 2

)

= 0.5× 0.5

(0.4043)2 × 0.0957
(x − 0.0957)2

(
1

(0.5/0.0957)x2
− 2

)
.

By Lemma 6 with a = 1, b = 0.0957 and c = 0.5/0.0957, this takes the maximum at
x = min{0.17308302, (0.0957/(2× 0.5/0.0957))1/3} (the latter is at least 0.209).

Since the maximum is attained at x = 0.17308302, we only have to consider the
case when b2 is on edge A1 B1 (see Fig. 10(b)). Then a(Rup) = 0.9043x and pS(Rup) =
0.5× (x − 0.0957)/0.4043 hold. For x ∈ (0.0957, 0.5),

β(S, P) = pS(Rup)

(
1

a(Rup)
− 2

)
= 0.5

0.4043
(x − 0.0957)

(
1

0.9043x
− 2

)
.

By Lemma 5 with a = 1, b = −0.0957, c = 0.9043 and d = 0, we have

pS(Rup)

(
1

a(Rup)
− 2

)
≤ 0.5

0.4043
× 1

c

(√
a −

√
2(ad − bc)

)2

= 0.5

0.4043
× 1

0.9043

(√
1−√2× 0.0957× 0.9043

)2

< 0.46638.

4.2. Case A(2)

In this case, A2 = (0.5, 0.5) is not in Rup, but Rup has a convex corner in each Si . Then
we see that e3 and e4 are free edges. Since e3 and e4 are free edges, there is no other
free edge by Lemma 12. Hence edges e2 and e5 must overlap with A1 B1 and B2 A3,
respectively (see Fig. 11).

By Lemma 12, edges e3 and e4 have the same gain, i.e., �(e3) = �(e4). Let t =
�(e4) ∈ (0.4043, 0.8086). Then we have a(Rup) = (0.9043)2 − t2, and pS(Rup) =
2×0.5/0.4043×(0.8086−t) (≤ 2×0.5). Then we haveβ(S, P) = pS(Rup)(1/a(Rup)−
2) < 0.4664 for t ∈ (0.4043, 0.8086). (For example, to prove this, repeat the following
computation after initializing a variable p for pS(Rup) as p := 1:

R := 1

0.4663/p + 2
; t :=

√
(0.9043)2 − R; p := 2× 0.5

0.4043
×(0.8086− t).

After a finite number of iterations, x becomes greater than 0.8086, which implies that
there is no t ∈ (0.4043, 0.8086) such that β(S, P) ≥ 0.4664.)

4.3. Case B(1)

In this case, A2 = (0.5, 0.5) is on the path P by the S-maximality.
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b0

b1

b2

S1

B1A1

A2

S2

e1

e3

e2

e4

e6

e5

B2

A3

C1

C2

b3
b4

b5
b6

t

0.8086

0.0957
0.4043

Fig. 11. Illustration for an S-maximal path P in Case A(2).

First assume that e3 does not overlap with B1 A2. In this case, b3 is on C1 A2, i.e., e4 =
b3 A2. However, edge e4 = b3 A2 is incrementable, e2 is decrementable and g(b3 A2) >

g(e2) holds. By Lemma 12 this contradicts the S-maximality of path P .
Then assume that e3 overlaps with B1 A2 (see Fig. 12). By letting t = �(e3), we have

a(Rup) = 0.5t + 0.25 and pS(Rup) = 0.5× t/0.4043. Then

β(S, P) = pS(Rup)

(
1.5

a(Rup)
− 2.5

)
= 0.5× t

0.4043

(
1.5

0.5t + 0.25
− 2.5

)

= 0.5× t

0.4043

(
1

0.5t + 0.25
× 6

5
− 2

)
× 5

4

= 1.545881771× t

(
1

5
12 t + 5

24

− 2

)
,

which is at most 0.46626 by Lemma 5 with a = 1.545881771, b = 0, c = 5
12 and

d = 5
24 .

b0

b1 b2

S1

p1=0.5

B1

A1

A2

t

S2

p2=0.5

e1

e3

e2

P

C1

0.0957

0.4043

Fig. 12. Illustration for an S-maximal path P in Case B(1), where e3 overlaps with B1 A2.
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S2

e1

e3
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e4
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B2
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C1
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0.0957
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P

(a) (b)

Fig. 13. Illustration for a possible S-maximal path P in Case B(2), where (a) indicates the case where B1 A2

and A2C2 are overlapped by some edges in P , and (b) indicates the case where B1 A2 and A2 B2 are overlapped
by some edges in P .

4.4. Case B(2)

Since Rup contains an internal point from each of S1 and S2, one of the following holds:

(i) C1 A2 and A2C2 are overlapped by some edges in P .
(ii) B1 A2 and A2C2 are overlapped by some edges in P (the case where C1 A2 and

A2 B2 are overlapped can be treated symmetrically). (See Fig. 13(a).)
(iii) B1 A2 and A2 B2 are overlapped by some edges in P . (See Fig. 13(b).)

We show that the first two cases cannot yield an S-maximal path P . In (i) there must
be at least two non-adjacent free edges in P . In (ii), e4 and e5 are incrementable and
decrementable and g(e4) > g(e5). Thus, by Lemma 12, P in (i) and (ii) is notS-maximal.

Consider (iii), where e2 overlaps with A1 B1 or e5 overlaps with B2 A3 (otherwise both
would be non-adjacent free edges); the former case is assumed without loss of generality
(see Fig. 13(b)).

By letting t = �(e4), we have a(Rup) = 0.5t + 0.5× 0.9043 = 0.5t + 0.45215 and
pS(Rup) = 0.5× t/0.4043+ 0.5. Then

β(S, P) = pS(Rup)

(
1.5

a(Rup)
−2.5

)
=
(

0.5× t

0.4043
+0.5

)(
1.5

0.5t+0.45215
−2.5

)

=
(

0.5× t

0.4043
+ 0.5

)(
1

0.5t + 0.45215
× 6

5
− 2

)
5

4

= (1.545881771t + 0.625)

(
1

5
12 t + 0.36425625

− 2

)
,

which is at most 0.46626 by Lemma 5 with a = 1.545881771, b = 0.625, c = 5
12 and

d = 0.45215× 5
6 .

This establishes β(S) < 0.4664 and hence Theorems 8 and 1.
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(0,1)

(0,0)

(1,1)

(1,0)x1=0.2066 x3=0.7934x2=0.5

y1=0.2066

y3=0.7934

y2=0.5

Fig. 14. A partition of a unit square S.

5. Lower Bound on β∗

One may consider whether there is a better scheme S ′ that has β(S ′)much smaller than
0.4667. In this section we show, however, that the scheme S in the previous section is
nearly optimal by proving that there is no scheme S ′ with β(S ′) < 0.4414. That is, we
prove the next result.

Theorem 13. 0.4414 < β∗ < 0.4667.

Since we have shownβ∗ ≤ 0.4667, we now estimateβ∗ from below. LetS be an arbitrary
scheme. For x1 = y1 = 0.2066, x2 = y2 = 0.5 and x3 = y3 = 1 − x1, we partition a
unit square S into 16 blocks by three vertical lines with x-coordinates x1, x2 and x3 and
three horizontal lines with y-coordinates y1, y2 and y3 (see Fig. 14). We consider the
following eight monotone paths:

P1 = 〈(0, 0), (0, y2), (x3, y2), (x3, 1), (1, 1)〉,
P2 = 〈(0, 0), (0, y1), (x2, y1), (x2, 1), (1, 1)〉,
P3 = 〈(0, 0), (x1, 0), (x1, 1), (1, 1)〉,
P4 = 〈(0, 0), (0, y3), (1, y3), (1, 1)〉,
P ′1 = 〈(0, 0), (x1, 0), (x1, y2), (1, y2), (1, 1)〉,
P ′2 = 〈(0, 0), (x2, 0), (x2, y3), (1, y3), (1, 1)〉,
P ′3 = 〈(0, 0), (x3, 0), (x3, 1), (1, 1)〉,
P ′4 = 〈(0, 0), (0, y1), (1, y1), (1, 1)〉.

Let a1 = 0.5× (1− 0.2066) and a2 = 0.2066. Then we have

a(Rup(P1)) = a(Rdwn(P ′1)) = a(Rup(P2)) = a(Rdwn(P ′2)) = a1,

a(Rup(P3)) = a(Rdwn(P ′3)) = a(Rup(P4)) = a(Rdwn(P ′4)) = a2.
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Observe that each block in S is contained in at least two regions from {Rup(P1), . . . ,

Rup(P4), Rdwn(P ′1), . . . , Rdwn(P ′4)}. Therefore, it holds that

4∑
i=1

pup
S (Pi )+

4∑
i=1

pdwn
S (P ′i ) ≥ 2.

By definition, β∗ satisfies

pup
S (Pi )

(
1.5

a(Rup(Pi ))
− 2.5

)
≤ β∗ (i = 1, 2),

pup
S (Pi )

(
1

a(Rup(Pi ))
− 2

)
≤ β∗ (i = 3, 4).

Similarly, by considering path P ′i as a monotone path from (1, 1) to (0, 0), we have

pdwn
S (P ′i )

(
1.5

a(Rdwn(P ′i ))
− 2.5

)
≤ β∗ (i = 1, 2),

pdwn
S (P ′i )

(
1

a(Rdwn(P ′i ))
− 2

)
≤ β∗ (i = 3, 4).

Hence it holds that

4∑
i=1

pup
S (Pi )+

4∑
i=1

pdwn
S (P ′i )

≤ β∗
∑
i=1,2

1

1.5/a(Rup(Pi ))− 2.5
+ β∗

∑
i=3,4

1

1/a(Rup(Pi ))− 2

+ β∗
∑
i=1,2

1

1.5/a(Rdwn(P ′i ))− 2.5
+ β∗

∑
i=3,4

1

1/a(Rdwn(P ′i ))− 2

= β∗
(

4

1.5/a1 − 2.5
+ 4

1/a2 − 2

)
.

From this, we have

β∗≥
∑4

i=1 pup
S (Pi )+

∑4
i=1 pdwn

S (P ′i )
4/(1.5/a1−2.5)+ 4/(1/a2−2)

≥ 2

4/(1.5/a1−2.5)+ 4/(1/a2−2)
>0.4414,

as required.

6. Deterministic Algorithms

Based on the algorithm in Section 3, in this section we present deterministic algorithms.
Let n1 = |V |, n2 = |W | and m = |E |. We first review the following result.
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Lemma 14 [13]. The number of crossings in a two-layered drawing (π, σ ) can be
computed in O(min{n1n2,m log(min{n1, n2})}) time.

In what follows we assume that nodes in W are numbered according to a given
permutation σ . Here we observe how to compute {µ(u) | u ∈ V }, {cuv, cvu | u, v ∈ V }
and area Rup for each pair u, v ∈ V . For each node u ∈ V , µ(u) can be computed in
O(du) time by using a linear time median algorithm. By computing a sorted ordering
of 
(u) ∪ 
(v) in O((du + dv) log(du + dv)) time, we can identify the (u, v)-path
Puv with respect to G and σ . Based on Puv , we can compute cuv , cvu and Rup for
u, v ∈ V in O(du + dv) time. The total time for computing these values is O(

∑
(du +

dv) log(du+dv)) = O(mn1 log n1). For a schemeS which consists of a single subscheme
(s, t, 1), we can compute ES [cross(u, v;πθ)] = pS(Rdwn)cuv + pS(Rup)cvu for each
pair u, v ∈ V in O(du + dv) time, and the expected crossing number ES [cross(πθ )] =∑

u,v∈V ES [cross(u, v;πθ)] in O(
∑
(du+dv)) = O(mn1) time. Based on this, we prove

the following.

Theorem 15. For a given schemeS={(si , ti , pi ) | i=1, 2, . . . , h}, PERMUTE(θ;πθ)
can be derandomized into an O((h+n1)n1m) time deterministic algorithm that delivers
a permutation π of V with cross(π) ≤ ES [cross(πθ )].

LetS = {Si = (si , ti , pi ) | i = 1, 2, . . . , h}. We can derandomize PERMUTE(θ;πθ)
as follows. We first determine which subscheme Si ∈ S will construct an orderingπ of V
whose expected crossing number is at most ES [cross(πθ )]. Let Sk be such a subscheme
(i.e., E(sk ,tk ,1)[cross(πθ )] ≤ ES [cross(πθ )]). Then we consider θ(u) ∈ (sk, tk] for a node
u ∈ V . Since a real key x = θ(u) will be mapped to an integer key �xdu
 ∈ [1, du],
we can partition interval (sk, tk] into subintervals such that any θ(u) chosen from a
subinterval is mapped to the same integer. Then we can choose a subinterval for θ(u)
which will construct an ordering whose crossing number is at most the current expected
crossing number E(sk ,tk ,1)[cross(πθ )]. By repeating this for all nodes in V , we choose
the best subinterval for each node u ∈ V , from which the lexicographical order with
respect to (κ(u), µ(u)) is uniquely determined except for subsets of nodes u with the
same key (κ(u), µ(u)). We can break a tie for each such subset by choosing a better one
from two possible orderings for the subset (where one is the reverse of the other). All
the above procedures are deterministic, and the resulting ordering π of V has a crossing
number less than or equal to ES [cross(πθ )]. The entire algorithm can be described as
follows.

DERANDOMIZE(S,G, σ )

Step 1 (Choose the best subscheme). For each subscheme (si , ti , pi ) ∈ S, con-
sider scheme Si = {(si , ti , 1)}, and compute ESi [cross(u, v;πθi )] = pSi (Rdwn)cuv +
pSi (Rup)cvu for every pair u, v ∈ V , and ESi [cross(πθi )]=

∑
u,v∈V ESi [cross(u, v;πθi )],

where πθi denotes an ordering of V which will be obtained by scheme Si . Then
choose a scheme Sk = {(sk, tk, 1)} that has the minimum expected number of crossings
ESi [cross(πθi )] among Si , i = 1, 2, . . . , h.
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Step 2. (Choose the best subinterval for each θ(u)). Let V ′ := V ; s := sk ; t := tk ;
Iv := (s, t] for all v ∈ V ; I := {Iv | v ∈ V };
while V ′ �= ∅ do

Choose a node u ∈ V ′, and let V ′ := V ′ − u; We change Iu with a subinterval of
Iu as follows. Partition Iu = (s, t] into subintervals

I ′1 = (s, s], I ′2 = (s, s + 1/du], I ′3 = (s + 1/du, s + 2/du], . . . , I ′q = (t t],
so that all values x in each subinterval I ′j are mapped to the same integer �xdu
 ∈
[1, du] (where s = (�sdu� + 1)/du , t = (�tdu
 − 1)/du and q = �tdu
 − �sdu�).
For each I ′j , by setting Iu := I ′j temporarily, we compute EI[cross(πI)] =∑

u,v∈V EI[cross(u, v;πI)], the expected number of crossings of an ordering
πI which will be constructed by PERMUTE with uniform random real keys
θ(v) ∈ Iv ∈ I, v ∈ V . Then fix Iu to be the subscheme I ′j that minimizes
EI[cross(πI)] among all subintervals I ′j of Iu = (s, t].

Step 3. (Choose better tie-break). Note that, after fixing interval Iv for all v ∈ V ,
PERMUTE now computes unique integer keys κ(v), v ∈ V . Sort nodes u ∈ V in
the lexicographical order with respect to (κ(u), µ(u)), where the ties among nodes u
with the same key (κ(u), µ(u)) are broken as follows. For each set {u′1, u′2, . . . , u′�} of
nodes that have the same key (κ(u), µ(u)), choose an ordering from u′1, u′2, . . . , u′� and
u′�, u′�+1, . . . , u′1 so as to minimize the number of crossings.

We can compute pSi and pSi (Rup) in O(dudv) time for each pair u, v ∈ V . Then Step 1
can be executed in O(h

∑
dudv) = O(hmn1) time, including the time to choose the best

subscheme. In Step 2 let u be a node chosen from V ′. Since {I ′j | j = 1, 2, . . . , q} is a par-
tition of Iu , it is not difficult to see that the expected number of crossings EI[cross(πI)]
for all I ′j can be computed in O(mn1) time. Then Step 2 can be implemented to run in
O(mn2

1) time. Step 3 can be executed in O(m log n1) time, since a lexicographical order
with respect to (κ(u), µ(u)) can be obtained in O(n1 log n1) time and one of the two
orderings of each set {u′1, u′2, . . . , u′�} of nodes that have the same key (κ(u), µ(u)) can
be chosen in O((du′1 + du′2 + · · · + du′

�
) log n1) time. This proves Theorem 15.

Based on a different scheme, we show a faster deterministic algorithm that computes
a permutation π with cross(π) ≤ 1.803107LB in O(min{n1n2, m log(min{n1, n2})})
time. We consider a scheme S which consists of 2k subschemes Si = (si , ti , pi ),
i = 1, 2, . . . , 2k, such that si = ti for i = 1, 2, . . . , 2k and sj = s2k+1− j and
pj = p2k+1− j for j = k + 1, k + 2, . . . , 2k. Note that, once we choose a subscheme
Si in Step 1 of RANDOM KEY, θ(u) = si holds for all nodes u ∈ V in Step 2,
and the permutation πθ in PERMUTE can be computed in O(n1 + n2) time using
bucket sort. Therefore, for the above type of scheme S, we can obtain a permutation π
such that cross(π) ≤ ES [cross(πθ )] by choosing the best permutation among those
πθ computed for all subschemes Si . Hence we can compute a permutation π with
cross(π) ≤ ES [cross(πθ )] ≤ (1 + β(S))LB in O(k min{n1n2,m log(min{n1, n2})})
time (provided that the case of condition (2) is treated separately). Also note that for any
S-maximal path P , the region Rup(P) has convex corners from {(si , si ) | 1 ≤ i ≤ 2k}.
Hence we only need to check 22k such paths to estimate β(S).
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For an example of such a schemeS with k = 12, consider si and pi (i = 1, 2, . . . , 12)
as follows: s1 = 0.02, p1 = 0.1

60.2 , s2 = 0.06, p2 = 1
60.2 , s3 = 0.10, p3 = 2

60.2 , s4 = 0.14,
p4 = 3

60.2 , s5 = 0.18, p5 = 3
60.2 , s6 = 0.22, p6 = 3

60.2 , s7 = 0.26, p7 = 3
60.2 , s8 = 0.30,

p8 = 3
60.2 , s9 = 0.34, p9 = 3

60.2 , s10 = 0.38, p10 = 3
60.2 , s11 = 0.42, p11 = 3

60.2 ,
s12 = 0.46 and p12 = 3

60.2 .
By inspecting all possible 224 S-maximal paths, we can prove that β(S) < 0.803107.

In condition (2), max{cuv, cvu}/min{cuv, cvu} = 5/3 < 1.8 holds. Therefore, for this
schemeS, the above deterministic algorithm delivers a 1.803107-approximation solution
in O(min{n1n2,m log(min{n1, n2})}) time.

7. Concluding Remarks

In this paper we have shown that the conventional lower bound LB is much closer to the
optimal one than the previous best estimation asserted. The proof is based on a probabilis-
tic argument, which provides a randomized algorithm that delivers an approximation so-
lution with the claimed performance guarantee 1.4664. There may be some other scheme
that achieves a better ratio. We, however, show that, for our current approach based on
Lemma 10, no scheme achieves a performance guarantee better than 1.4414. Needless to
say, this does not imply that the gap between the optimum and the lower bound is actually
1.4414. The current known gap is 13/11 � 1.1818, which is attained by the example
in Fig. 2. The current estimation on ES [cross(u, v;πθ)]/min{cuv, cvu} in Lemma 10
depends on a pair of nodes u and v with rather small degrees. For a class of graphs with
special structures such as regular graphs and graphs with a large minimum degree, it
seems possible to get a better estimation on ES [cross(u, v;πθ)]/min{cuv, cvu}, which
would lead to an upper bound better than 1.4664. Recently, Nagamochi [12] proved that
there always exits a solution whose crossing number is at most (1.2964+12/(δ−4))LB
if the minimum degree δ of nodes in V is at least 5.
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Appendix. Proof of Lemma 4

We assume that du ≤ dv holds; by the definitions of cuv and µ, the other case can be
treated by reversing permutations π and σ and by exchanging node names u and v.
Let u′1 < u′2 < · · · < u′du

and v′1 < v′2 < · · · < v′dv be the nodes in 
(u) and 
(v),
respectively, and let w1 < w2 < · · · < w�uv be the nodes in 
(u) ∩ 
(v). Recall that
�uv(�uv − 1)/2 ≤ min{cuv, cvu} holds. By the assumption cvu > cuv < 2�uv , we have

1 ≤ �uv ≤ 4

since otherwise (if�uv ≥ 5) 2�uv≤�uv(�uv−1)/2 would imply 2�uv≤min{cuv, cvu}.
Since 2�uv ≤ �uv(�uv − 1)/2+ 3 holds, we see that 2�uv ≤ cuv holds if �uv(�uv −
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W

V

µ(v)µ(u) µ(v)µ(u)

(a)

µ(v)µ(u)

(c)(b)

u v

w1

u v

w1

u v

w1

Fig. 15. Possible configurations for the case �uv = 1, 1 = cuv < cvu and du ≤ dv .

1)/2 + 3 ≤ cuv . Let cuv ≤ �uv(�uv − 1)/2 + 2. If cuv = �uv(�uv − 1)/2, then we
have du > �uv or dv > �uv (since otherwise du = dv = �uv would imply cuv = cvu),
indicating that µ(u) < µ(v) holds. Let

cuv − �uv(�uv − 1)

2
∈ {1, 2}.

Case 1: �uv = 1. Then cuv = 1 by the assumption that 1 ≤ cuv < 2�uv . Consider
the following three cases: (a) w1 < u′du

, (b) w1 = u′du
and du ≥ 2 and (c) w1 = u′du

and du = 1 (see Fig. 15). In (a), by cuv = �uv = 1, w1 = u′du−1 = v′1 holds, and by
dv ≥ du ≥ 2, u′du

< v′2 holds, implying µ(u) ≤ (w1+u′du
)/2 < (w1+v′2)/2 ≤ µ(v). In

(b), by cuv = �uv = 1,w1 = u′du
= v′2 holds, and by du ≥ 2, u′du−1 < v′1 holds, implying

µ(u) ≤ (u′du−1+w1)/2 < (v′1+w1)/2 ≤ µ(v). In (c), by cuv = �uv = 1,w1 = u′1 = v′2
holds, and by cuv < cvu , dv ≥ 4 holds, implying µ(u) = w1 < (w1 + v′3)/2 ≤ µ(v).
Case 2: �uv = 2. First consider the case cuv −�uv(�uv − 1)/2 = 1. Thus cuv = 2,
where one crossing in cuv is created by arcs (u, w2) and (v,w1) and the other is created
by one of these arcs and an arc between u (or v) and its neighbourw′ withw1 < w′ < w2.
We distinguish four cases: (a) w′ = u′du−1 and du ≥ 4, (b) w′ = u′du−1 and du = 3, (c)
w′ = v′2 and du ≥ 3 and (d)w′ = v′2 and du = 2 (see Fig. 16). In (d), dv ≥ 4 by cuv < cvu .
We have µ(u) ≤ (w1 +w′)/2 < (w1 +w2)/2 ≤ µ(v) in (a), µ(u) = w′ < w2 ≤ µ(v)
in (b), µ(u) ≤ w1 < w′ ≤ µ(v) in (c) and µ(u) = (w1+w2)/2 < (w′ +w2)/2 ≤ µ(v)
in (d).

Next consider the case cuv − �uv(�uv − 1)/2 = 2. Thus cuv = 3. One crossing in
cuv = 3 is created by arcs (u, w2) and (v,w1). There are two cases: (e) the other two
crossings are on an arc between u (or v) and its neighbour w′ with w1 < w2 < w′ or

W

V

µ(v)µ(u)

w'

u v

w1 w2

µ(v)µ(u)

u v

w1 w2

µ(v)µ(u)

u v

w1 w2

µ(v)µ(u)

u v

w1 w2w' w' w'

(a) (c)(b) (d)

Fig. 16. Possible configurations for the case �uv = 2, cuv −�uv(�uv − 1)/2 = 1 and du ≤ dv .
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W

V

µ(v)
µ(u)

u v

w1 w2

µ(u)

u v

w1 w2w' w'

(e)  w2<w' (e) w'<w2

µ(v)

Fig. 17. Possible configurations for case (e): �uv = 2, cuv −�uv(�uv − 1)/2 = 2 and du ≤ dv .

w′ < w1 < w2 (see Fig. 17), and (f) the other two crossings are respectively on two arcs
between u (or v) and its neighbours w′ and w′′ with w1 < w′ < w′′ < w2 (see Fig. 18).
Consider case (e), where du ≥ 3 by cuv < cvu . Then cvu = 4 and µ(u) = µ(v) hold if
du = dv = 3 (i.e., condition (1)); µ(u) < µ(v) holds otherwise (i.e., dv ≥ 4).

Consider case (f). If (u, w′), (u, w′′) ∈ E , then dv ≥ du ≥ 4 and µ(u) ≤ (w′ +
w′′)/2 < (w2+v′3) ≤ µ(v) hold. If (u, w′), (v,w′′) ∈ E , thenµ(u) ≤ w′ < w′′ ≤ µ(v)
holds. Let (v,w′), (v,w′′) ∈ E . If du ≥ 3, thenµ(u) ≤ w1 < (w′+w′′)/2 ≤ µ(v)holds.
If du = 2, then dv ≥ 5 (otherwise dv = 4 would imply cvu = 2 · 4 − cuv − �uv = 3,
contradicting the assumption cuv < cvu). For du = 2 and dv = 5, µ(u) = (w1 +
w2)/2 ≥ w′′ = µ(v) may hold (i.e., condition (2)). For du = 2 and dv ≥ 6, we have
µ(u) = (w1 + w2)/2 < (w′′ + w2)/2 ≤ µ(v).
Case 3: �uv = 3. First consider the case cuv −�uv(�uv − 1)/2 = 1. Thus cuv = 4,
where three crossings in cuv are created by arcs (u, w2), (u, w3), (v,w1) and (v,w2), and
the other is created by one of these arcs and an arc between u (or v) and its neighbour
w′ with w1 < w′ < w3. We distinguish two cases: (a) w′ < w2 and (b) w2 < w′

(see Fig. 19). We have µ(u) ≤ (w′ + w2)/2 < w2 ≤ µ(v) in (a), and µ(u) ≤ w2 <

(w2 + w′)/2 ≤ µ(v) in (b).
Next consider the case cuv − �uv(�uv − 1)/2 = 2. Thus cuv = 5. Three crossings

in cuv are created by arcs (u, w2), (u, w3), (v,w1) and (v,w2). There are two cases:
(c) the other two crossings are on an arc between u (resp., v) and its neighbour w′

with w2 < w′ < w3 (resp., w1 < w′ < w2) (see Fig. 20), and (d) the other two
crossings are respectively on two arcs between u (or v) and its neighboursw′ andw′′ with
w1 < w′ < w2 < w′′ < w3,w1 < w′ < w′′ < w2 orw2 < w′ < w′′ < w3 (see Fig. 21).
In (c) if (u, w′) ∈ E , then by dv ≥ du ≥ 4,µ(u) ≤ (w2+w′)/2 < (w2+w3)/2 ≤ µ(v).
Consider the case (v,w′) ∈ E in (c). If du ≥ 4, then µ(u) ≤ (w1 + w2)/2 < (w′ +
w2)/2 ≤ µ(v). If du = 3 and dv ≥ 6, then µ(u) = w2 < (w2 + w3)/2 ≤ µ(v). For
du = 3 and dv = 5, we have cvu = 7 and µ(u) = µ(v) = w2 (i.e., condition (3)).

Consider case (d). If (u, w′), (v,w′′) ∈ E , thenµ(u) ≤ (w′+w2)/2 < (w2+w′′)/2 ≤
µ(v) holds. If (u, w′), (u, w′′) ∈ E , then dv ≥ du ≥ 5 and µ(u) ≤ w′′ < w3 ≤ µ(v)
hold. If (v,w′), (v,w′′) ∈ E , then µ(u) ≤ w2 < w′ ≤ µ(v) holds.

Case 4: �uv = 4. By cuv − �uv(�uv − 1)/2 ∈ {1, 2}, cuv ∈ {7, 8}. There are the
following seven cases: (a) cuv = 7, and (u, w′) ∈ E for a nodew′ ∈ W withw1 < w′ <
w2, (b) cuv = 7, and (v,w′) ∈ E for a node w′ ∈ W with w3 < w′ < w4, (c) cuv = 8,
and (u, w′) ∈ E for a node w′ ∈ W with w2 < w′ < w3, (d) cuv = 8, and (v,w′) ∈ E
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W

V

µ(u)

u v

w1 w2

µ(u)

u v

w1 w2w' w"

(f)  (u,w'),(u,w")

µ(v)

w' w"

µ(v)

(f)  (u,w'),(v,w") (f)  (v,w'),(v,w")

µ(u)

u v

w1 w2w' w"

µ(v)

Fig. 18. Possible configurations for case (f): �uv = 2, cuv −�uv(�uv − 1)/2 = 2 and du ≤ dv .

W

V

µ(u)

w'

(a) 

u v

w1 w2 w3

u v

w1 w2 w3

µ(v)

(b) 

w'

µ(u) µ(v)

Fig. 19. Possible configurations for case �uv = 3, cuv −�uv(�uv − 1)/2 = 1 and du ≤ dv .

W

V

µ(u)

w'

(c) (v,w'), du>3 

u v

w1 w2 w3

u v

w1 w2 w3

µ(v)

w'

µ(u) µ(v)

(c) (u,w') 

µ(u)

w'

(c) (v,w'), du=3 

u v

w1 w2 w3

µ(v)

Fig. 20. Possible configurations for case (c): �uv = 3, cuv −�uv(�uv − 1)/2 = 2 and du ≤ dv .

W

V

µ(u)

w'

(d) (u,w'),(u,w'')

u v

w1
w2 w3

u v

w1 w2 w3

µ(v)

w"

µ(u) µ(v)

(d) (u,w'),(v,w'') 

µ(u)

(d) (v,w'),(v,w'') 

u v

w1 w2 w3w'w"

µ(v)

w'w"

Fig. 21. Possible configurations for the case (d): �uv = 3, cuv −�uv(�uv − 1)/2 = 2 and du ≤ dv .
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W

V

w'

(b)  

w1 w2 w3 w"

µ(u) µ(v)

(a)  

µ(u)

(c)  

µ(v)

w4

u v u v u vu v

w'w1 w2 w3 w4 w'w1 w2 w3 w4 w'w1 w2
w3 w4

µ(u) µ(v) µ(u) µ(v)

(d)  

w"w'

W

V

w'

(f)  

w1 w2 w3w"

µ(u)µ(v)

(e)  (g)  

w4

u v u vu v

w'w2 w3 w4w'w1 w2 w3 w4

µ(u) µ(v)µ(u) µ(v)

Fig. 22. Possible configurations for the case �uv = 4, cuv −�uv(�uv − 1)/2 ∈ {1, 2} and du ≤ dv .

for a node w′ ∈ W with w2 < w′ < w3, (e) cuv = 8, and (u, w′), (v,w′′) ∈ E
for nodes w′, w′′ ∈ W with w1 < w′ < w2 < w3 < w′′ < w4, (f) cuv = 8, and
(u, w′), (u, w′′) ∈ E for a node w′w′′ ∈ W with w1 < w′ < w′′ < w2, and (g) cuv = 8,
and (v,w′), (v,w′′) ∈ E for a node w′w′′ ∈ W with w3 < w′ < w′′ < w4 (see Fig. 22).

We see that µ(u) ≤ w2 < w3 ≤ µ(v) in (a), µ(u) ≤ (w2 + w3)/2 < w3 ≤ µ(v) in
(b), µ(u) ≤ (w′′ +w2)/2 < (w3+w4)/2 ≤ µ(v) in (c), µ(u) ≤ (w2+w3)/2 < (w3+
w′)/2 ≤ µ(v) in (d), µ(u) ≤ w2 < w3 ≤ µ(v) in (e), and µ(u) ≤ w′ < w3 ≤ µ(v) in
(f), respectively. In (g), du ≥ 5 or dv ≥ 6 since otherwise cuv = cvu = 5 would hold,
contradicting the assumption cuv < cvu . Hence in (g) we have µ(u) ≤ w2 < w′ ≤ µ(v)
or µ(u) ≤ (w2 + w3)/2 < (w′ + w3)/2 ≤ µ(v).
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