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Abstract. Three theorems of this paper generalize previous results of the author on con-
jectures of A. Bezdek and V. V. Proizvolov. They show the existence of mappings from a
given point set to the set of facets of a given polytope that satistfy some special conditions.

Developing the same technique, some results on convex polytope partitions are pre-
sented, two of them dealing with partitions with prescribed measures of parts. Then we
prove a corollary on the existence of a possibly nonconvex polytope with a given set of
vertices, containing given points in its interior.

We also consider problems of the following type: find an assignment of vectors from a
given set to the parts of a given convex partition of Rn so that the shifts of the parts by their
corresponding vectors either do not intersect by interior points or cover Rn .

1. Introduction

Theorems 1–3 generalize Theorems 2–4 of [2]. They show the existence of mapping
f of a given finite set in Rn to the set of facets of a given polytope such that some
conditions hold: for example, the convex hulls conv F ∪ f −1(F) for different facets F
do not intersect pairwise by interior points.

Some of the results in [2] may be considered as a case of Theorems 1–3 when the
number of points to be mapped equals the number of facets. These theorems also lead
to Corollary 2 about convex partitions of Rn that generalizes the corollaries from [2].
Corollary 2 shows that for the partition of a special type, defined in this paper, one can
find an assignment of vectors from a given set to the parts of this convex partition of Rn

so that the shifts of the parts by their corresponding vectors either do not intersect by
interior points or cover Rn .

∗ This research was supported by the Russian Fund of Fundamental Researches Grants Nos. 03-01-00801
and 03-01-06207.
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Theorems 4 and 5 generalize Theorem 4 from [1] to the case of Rn . They deal with
the following problem: find a partition of a given polytope such that its parts have given
measures and every part contains a prescribed facet of the polytope.

Now we introduce some notation. Let V ⊆ Rn , then

1. conv V , lin V , and aff V denote the convex, linear, and affine hull of V ;
2. int V , rint V , cl V , bd V , and |V | denote the interior, relative interior (if V is

convex), closure, boundary, and number of elements of V ;
3. diml V , dima V , and codim V denote the linear dimension, affine dimension, and

codimension of V ;
4. Im = {1, 2, . . .m} denotes the set of indices and Sm denotes the group of permu-

tations of Im ;
5. dist(x, y) and dist(X, Y ) denote the distance between points x and y or subsets X

and Y of some metric space;
6. for A, B ⊆ Rn denote

A + B = {a + b : a ∈ A, b ∈ B}, A
∗− B = {x : x + B ⊆ A},

the Minkowski sum and the geometric difference of A and B.

Let Ln
1 be a space of affine functions (polynomials of degree 1) on Rn . Suppose

f ∈ Ln
1; by definition, put

1. H( f ) = {x ∈ Rn : f (x) = 0}—the hyperplane;
2. H−( f ) = {x ∈ Rn : f (x) < 0}—the open halfspace;
3. H+( f ) = {x ∈ Rn : f (x) ≥ 0}—the closed halfspace.

Recall that a polyhedral set is an intersection of a family of halfspaces

X =
⋂
i∈Im

H+( fi ).

Suppose X is a polyhedral set, denote Fi = H( fi ) ∩ X . We assume that codim Fi = 1
for all i ∈ Im and define the facets of X to be the sets {Fi }i∈Im .

Also, put Hi = H−( fi ) for all i ∈ Im .
If a polyhedral set is bounded, then it is called a polytope.

Theorem 1. Let X be a polytope in Rn , and let {Fi }i∈Im
be its facets. Let A ⊂ Rn ,

l = |A|, and let {li }i∈Im be a set of positive integers such that
∑

i∈Im
li = l. Then there

exists a partition of A into Ai (i ∈ Im) satisfying the following conditions:

1. |Ai | = li for any i ∈ Im ;
2. let Ci =

⋂
a∈Ai

conv(a ∪ Fi ), then sets {Ci }i∈Im cover X , in other words,

X ⊆
⋃
i∈Im

Ci .

Theorem 1 is formulated for a bounded polytope, so it is natural to ask what can
be done for an unbounded polyhedral set. This theorem is true for a given set A and a
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polytope. Then we can apply a projective transformation that maps one facet to a subset
of the hyperplane at infinity; note that any polyhedral set that does not contain a straight
line can be obtained this way.

Theorem 1 will be true for such an unbounded polyhedral set X if we consider the
facet at infinity Fm along with m − 1 normal facets, denote

I = {x ∈ Rn : ∀λ > 0, λx ∈ X − X},
and put Cm = ∩a∈Ai (a + I ) (and Ci for i = 1, . . . ,m − 1 as in Theorem 1).

See Section 6 for Corollary 2, which may be considered as a generalized form of
Theorems 1 and 2 applied for polyhedral sets with “all facets at infinity”.

Theorem 2. Let X be a polyhedral set in Rn , and let {Fi }i∈Im
be its facets. Let A ⊂ X ,

l = |A|, and let {li }i∈Im be a set of positive integers such that
∑

i∈Im
li = l. Then there

exists a partition of A into Ai (i ∈ Im) satisfying the following conditions:

1. |Ai | = li for any i ∈ Im ;
2. let Ci = conv(Ai ∪ Fi ), then the sets {Ci }i∈Im do not intersect pairwise by interior

points, in other words, for all i �= j ∈ Im,

int Ci ∩ int Cj = ∅.

Theorem 3. Let X be a polyhedral set in Rn , and let {Fi }i∈Im
be its facets. Let A ⊂

R
n\X , l = |A|, and let {li }i∈Im be a set of positive integers such that

∑
i∈Im

li = l.
Suppose that |A∩⋃i∈I Hi | ≥

∑
i∈I li holds for all I ⊆ Im . Then there exists a partition

of A into Ai (i ∈ Im) satisfying the following conditions:

1. |Ai | = li for any i ∈ Im ;
2. let Ci = conv(Ai ∪ Fi ), then the sets {Ci }i∈Im do not intersect with X by interior

points and do not intersect by interior points pairwise. In other words, for any
i ∈ Im,

int Ci ∩ int X = ∅,
and for all i �= j ∈ Im,

int Ci ∩ int Cj = ∅.

Theorems 2–4 from [2] may be obtained from the above theorems if |A| = m and
li = 1 for all i ∈ Im .

The same method allows us to prove three other theorems. The following two theorems
can be considered as continuous cases of Theorem 2. Here we have a measure instead
of a finite point set.

Theorem 4. Let X be a polytope inRn , and let {Fi }i∈Im
be its facets. Letµ be a measure

on X , continuous with respect to the Hausdorff metric, and let µ(X) = 1. Then for any
set of positive numbers {µi }i∈Im (

∑
i∈Im

µi = 1) there exists a partition of X into convex
sets {Ai }i∈Im such that for all i ∈ Im,

Ai ∩ bd X = Fi , µ(Ai ) = µi .
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We formulate a slightly different theorem that generalizes Theorem 4 from [1] to the
case of Rn:

Theorem 5. Let X be a polytope inRn , and let {Fi }i∈Im
be its facets. Letµ be a measure

on X , continuous with respect to the Hausdorff metric, and let µ(X) = 1. Let {µi }i∈Im

be a set of real numbers such that
∑

i∈Im
µi = 1 and µi ≥ 0 for all i ∈ Im . Denote

I = {i ∈ Im : µi > 0}, then there exists a partition of X into convex sets {Ai }i∈I such
that for all i ∈ I,

Ai ⊇ Fi , µ(Ai ) = µi .

Theorem 6. Let X be a polytope in Rn , and let {Fi }i∈Im
be its facets. Let V ⊂ int X be

a finite set and let m ≥ |V | + 1. Then there is a partition of X into convex sets {Ai }i∈Im

such that for all i ∈ Im,

Ai ∩ bd X = Fi , V ∩ int Ai = ∅.

Remark. In fact, the partitions in these three theorems are affine partitions (see Sec-
tion 6).

Theorem 6 leads to the following corollary:

Corollary 1. Let W and V be disjoint finite sets inRn , and let their union be in general
position. Let V ⊂ conv W , let conv W have m facets, and let m ≥ |V | + 1. Then there
exists a possibly nonconvex polytope Y with vertices W such that V ⊂ Y .

Remark. In this theorem a nonconvex polytope is a bounded closed set Y ⊂ Rn such
that bd Y is a polyhedral complex, homeomorphic to (n − 1)-dimensional sphere.

2. Auxiliary Assertions

Here we give some definitions and lemmas. The lemmas are taken from [2], so we do
not give proofs here.

Definition. We say that the set V in a linear (affine) space L (A) is in general position
and write V ∈ LGP (V ∈ AGP) if

diml U = min{|U |, diml L} (dima U = min{|U | − 1, dima A})
for any finite U ⊆ V .

Definition. SupposeF is a family of maps from the same finite set I to L (A), then we
say that the map λ ∈ F is in general position and write λ ∈ LGP(F) (λ ∈ AGP(F)) if

dim λ(U ) = max
λ′∈F

dim λ′(U )

for all U ⊆ I .
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If the family F is an irreducible algebraic variety, considered as a subset of L I (AI ),
then LGP(F) (AGP(F)) is open and everywhere dense in F .

Definition. A polyhedral set S ⊂ R
n is called simple if either it is a simplex or

S =⋂i∈Im
H+( fi ), where { fi }i∈Im ∈ LGP and m ≤ n.

Let a �= b ∈ Rn , denote by [ab], (ab), 〈ab〉, and [ab〉 the segment between a and
b, its relative interior, the straight line passing through a and b, and the ray, emanating
from a, passing through b. Also put

〉ab〉 = [ab〉\{a}\(ab).

This is the ray in 〈ab〉, emanating from b and not containing a.

Definition. A set U ⊇ V is called V -starshaped if for any u ∈ U and v ∈ V we have
[uv] ⊆ U . Clearly, if

1. V �= ∅, then a V -starshaped set U is starshaped;
2. sets Ui , i ∈ I, are V -starshaped, then

⋃
i∈I Ui and

⋂
i∈I Ui are V -starshaped;

3. U is V -starshaped and W ⊆ V , then U is W -starshaped.

Lemma 1. Let X be a polyhedral set in an affine space L , and let {Fi }i∈Im be its facets.
Then there exists an affine embedding of L into an affine space L ′ of larger dimension
and a simple polyhedral set S in L ′ such that X = S ∩ L , int X = (int S) ∩ L , and for
any i ∈ Im, Fi = Gi ∩ L , where {Gi }i∈Im are the facets of S. Also, if X is a polytope,
then S is a simplex.

Lemma 2. Let G be a finite graph on vertices V ⊂ Ln
1 in general position, let E =

{ei }i∈Il , l ≥ |V |, be its edges, and let F be the family of all maps g : Il → Ln
1 such that

if e ∈ E is the edge with endpoints f1 and f2, then H( f1) ∩ H( f2) ⊆ H(g(e)). Then
there exists a subset W ⊆ V (W �= ∅) such that for any map g ∈ LGP(F),

l⋂
i=1

H(g(ei )) ⊆
⋂
f ∈W

H( f ).

Lemma 3. Let {Vi }di=1 be a family of closed subsets of a simplex S in Rd−1 with facets
{Fi }di=1 such that:

1. Vi is Fi -starshaped for all i ∈ Id ;
2. S ⊆⋃d

i=1 Vi .

Then
⋂d

i=1 Vi �= ∅.

Lemma 4. Let {Ui }di=1 be a family of open subsets of simplex S in Rd−1 with facets
{Fi }di=1 such that:

1. Ui ∪ rint Fi is rint Fi -starshaped for all i ∈ Id ;
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2. int S ⊆⋃d
i=1 Ui ;

3. any point p ∈ bd S has a neighborhood N (p) such that N (p)∩int S ⊆⋃i, p∈Fi
Ui .

Then
⋂d

i=1 Ui �= ∅.

3. Reduction of Theorems 1–3 to Special Cases

We now show that it is sufficient to prove Theorems 1–3 in some special cases.

Lemma 5. It is sufficient to prove Theorems 1–3 for the case of a simple polyhedral
set (polytope) X .

Proof. By Lemma 1, X = S∩L , where S is simple polyhedral set, L is an n-dimensional
affine subspace in RN , and Fi = F S

i ∩ L , where {F S
i }i∈Im are the facets of S. Indeed,

Theorems 1–3 for S imply those for X , if we note that

conv({a} ∪ Fi ) = L ∩ conv({a} ∪ F S
i ),

int conv(Ai ∪ Fi ) = L ∩ int conv(Ai ∪ F S
i ),

int X = L ∩ int S.

We now consider a simple polyhedral set S, let its facets be {Fi }i∈Im .
DenoteA1 = RNl , the affine space of all possible sets A in Theorem 1. In Theorems 2

and 3 the spaces of all possible sets A will be some A2,A3 ⊂ A1.

Lemma 6. It is sufficient to prove Theorems 1–3 for any everywhere dense subset
B ⊆ Ai (i = 1, 2, 3).

Proof. In fact, let A ∈ Ai , let the elements of A be numbered a1 to al .
Take one of Theorems 1–3. Suppose that the sequence {Ak} ⊆ B is such that

Ak = {ak
i }i∈Il , ∀i lim

k
ak

i = ai .

Since {Ak} ⊆ B, the theorem holds for Ak . Thus for any k we have a partition of Ak

into Ak
i .

Obviously, there exists an infinite set N of positive integers such that the partitions
of the indices Il corresponding to the partitions of Ak (k ∈ N ) coincide. Then

conv(Ai ∪ Fi ) = lim
k

conv(Ak
i ∪ Fi )

and ⋂
a∈Ai

conv(a ∪ Fi ) = lim
k

⋂
a∈Ak

i

conv(a ∪ Fi ).

Since the sets conv(a ∪ Fi ) are closed, then if

x /∈
⋃
i∈Im

⋂
a∈Ai

conv(a ∪ Fi ),
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then if k is large enough

x /∈
⋃
i∈Im

⋂
a∈Ak

i

conv(a ∪ Fi ).

So the case of Theorem 1 is considered.
In case of Theorems 2 and 3 if

x ∈ int conv(Ai ∪ Fi ) ∩ int conv(Aj ∪ Fj ), i �= j,

then if k is large enough

x ∈ int conv(Ak
i ∪ Fi ) ∩ int conv(Ak

j ∪ Fj ), i �= j.

In case of Theorem 3, if for some i,

int conv(Ai ∪ Fi ) ∩ int S �= ∅,

then for large enough k,

int conv(Ak
i ∪ Fi ) ∩ int S �= ∅.

Lemma 7. It is sufficient to prove Theorem 1 for the case A ⊂ int S.

Proof. Remember that in this theorem S is a simplex. We construct a mapπ(x) : Rn →
S such that for every x ∈ Rn and any facet Fi of S the following condition holds:

conv({x} ∪ Fi ) ⊇ conv({π(x)} ∪ Fi ).

For any x ∈ S put π(x) = x . Otherwise, put

I = {i ∈ Im : fi (x) ≥ 0}, I ′ = Im\I,

in other words, {aff Fi }i∈I ′ are the hyperplanes that separate x from S. Both sets I and
I ′ are not empty. Denote M =⋂i∈I Fi and N =⋂i∈I ′ Fi .

It is clear that x �∈ aff M and x �∈ aff N . Moreover, it can be easily checked that there
exists only one pair ρ(x) ∈ aff M, π(x) ∈ aff N such that the points {ρ(x), π(x), x} lie
on the same line in that order.

Note that for every i ∈ I, ρ(x) ∈ Fi and for every i ∈ I ′, π(x) ∈ Fi , hence for every
i ∈ Im we have conv({x} ∪ Fi ) ⊇ conv({π(x)} ∪ Fi ).

Now Theorem 1 for A and S follows from Theorem 1 for π(A) and S.
By Lemma 6, if we have to consider the case A ⊂ S, it is sufficient to prove Theorem 1

for the case A ⊂ int S.

By Lemma 6 we may also consider sets A such that A ∈ AGP and a �∈ aff Fi for all
a ∈ A, j ∈ Im . The family of sets A such that A ∈ AGP and A ∩ aff Fi = ∅ for all i is
open and everywhere dense in A ∈ A1.

Besides, we may impose another condition. We need some notation to formulate it.
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Let S be a simple polyhedral set, let {Fi }i∈Im be its facets, and let A be A = {ai }i∈Il .
Put by definition

I = {(i, j, k) ∈ Il × Im × Im : j > k},
denote by F(S, A) the family of all maps g : I → L N

1 such that

H(g(i, j, k)) = H(gi jk) ⊇ aff(ai , Fj ∩ Fk),

denote by G(S) the family of all maps γ : I → L N
1 such that

H(γi jk) ⊇ Fj ∩ Fk,
⋂
j>k

H(γi jk) �= ∅.

Clearly, F(S, A) ⊆ G(S) and for any g ∈ G(S) there exists A such that g ∈ F(S, A).
Thus the family of all sets A such that F(S, A)∩ LGP(G(S)) �= ∅ is everywhere

dense in the variety of all sets A.
Thus we will prove Theorems 1–3 with the following assumptions:

(1) S is a simple polyhedral set with facets {Fi }i∈Im .
(2) A ∈ AGP and a �∈ aff Fi for all a ∈ A, i ∈ Im .
(3) F(S, A) contains some g ∈ LGP(G(S)).
(4) In Theorem 1, A ⊂ int S.

For a given g ∈ LGP(G(S)) we write gajk instead of gi jk , if the number of elements
a ∈ A equals i . Note that under the above conditions

H(gajk) = aff(a, Fj ∩ Fk),

since

aff(a, Fj ∩ Fk) ⊆ H(gajk) and dima H(gajk) = dima aff(a, Fj ∩ Fk).

4. Proof of Theorems 1–3

Now we are ready to prove Theorems 1–3.

Proof of Theorem 1. In this theorem S is a simplex. It was noted in the previous section
that we only have to consider the case A ⊂ int S.

We use induction on dima S. In the case dima S = 1 the theorem is obvious.
Denote for all a ∈ A and i ∈ Im,

Vai = conv({a} ∪ rint Fi )\{a}
and for all i ∈ Im,

Ui =
⋃

A′⊆A, |A′|>=li

⋂
a∈A′

Vai .

It is obvious that the sets Ui are open and x ∈ int S ∩ Ui iff there are at least li

points a ∈ A such that x ∈ Vai , in other words, for at least li points a ∈ A there exists
y ∈ rint Fi such that x ∈ (ay). We show that {Ui }i∈Im satisfy the conditions of Lemma 4.
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Condition 1 holds. Indeed, let x ∈ Ui and for some y ∈ rint Fi , x ′ ∈ (xy). Let
x ∈ Vai , then there exists z ∈ rint Fi such that x ∈ (az). Then

〈
ax ′
〉∩ [zy] = z′ ∈ rint Fi

and x ′ ∈ (az′
)
.

Thus x ′ ∈ Vai . Considering all a ∈ A′ we obtain x ′ ∈ Ui .
We now show that condition 3 holds. Let p ∈ bd S, I = {i : p ∈ Fi } and I ′ = Im\I .

Condition 3 holds iff for any x ∈ int S ∩ N (p) there exists i ∈ I such that for at least li

points a ∈ A we have 〉ax〉 ∩ rint Fi �= ∅.
For any a ∈ A the point ya(x) = 〉ax〉∩bd S is a continuous function of x ∈ S. Since

ya(p) = p, a ∈ A, there exists a neighborhood N (p) of p such that for any x ∈ N (p),
a ∈ A, and i �∈ I we have ya(x) �∈ Fi .

We show that

N (p) ∩ int S ⊆
⋃
i∈I

Ui .

To prove it we should show that if x ∈ N (p)∩ int S, then for some i ∈ I we have at least
li points a ∈ A such that ya(x) ∈ rint Fi . In this case for such a we have x ∈ (aya(x))
and therefore x ∈ Ui .

Assume the contrary that for all i ∈ I,

|{ya(x)}a∈A ∩ rint Fi | < li ,

or, equivalently,

|{ya(x)}a∈A ∩ rint Fi | ≤ li − 1.

Then for at least |I | points a ∈ A (denote them by A′) we have

ya(x) ∈ Fs(a) ∩ Ft (a), s(a), t (a) ∈ I.

Hence

x ∈
⋂
a∈A′

aff(a, Fs(a) ∩ Ft (a)),

and therefore

aff(a, Fs(a) ∩ Ft (a)) = H(gas(a)t (a)),

where gast is defined above, and

{aff Fs(a), aff Ft (a)}a∈A′ ⊆ {H( fi )}i∈I .

Denote the family of maps

G ′ = {γ : A′ → L N
1 : H(γ (a)) ⊇ Fs(a) ∩ Ft (a)}.

Since the map of restriction G(S)→ G ′ is surjective, the restriction g′ : a �→ gas(a)t (a)

of g ∈ LGP (G(S)) must be in LGP (G ′).
We apply Lemma 2 to the graph with vertices { fi }i∈I , edges ( fs(a), ft (a)), a ∈ A′,

and the map g′. The conditions of the lemma hold since |A′| ≥ |I |. By Lemma 2 for
some i we have ⋂

a∈A′
H(g′a) ⊆ H( fi ) = aff Fi
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and

x ∈
⋂
a∈A′

H(g′a) ⊆ aff Fi , x ∈ int S.

This is a contradiction, hence condition 3 holds.
Consider condition 2.
As above if for some x ∈ int S, ya(x) �∈ rint Fi for all i ∈ Im, a ∈ A, then

x ∈
⋂
a∈A

aff(a, aff Fs(a) ∩ aff Ft (a)).

Applying Lemma 2 to the graph with vertices { fi }i∈Im and edges ( fs(a), ft (a)) (a ∈ A)
we obtain that x ∈ aff Fi ∩ int S for some i . This is a contradiction.

Finally we apply Lemma 4 and obtain x ∈⋂i∈Im
Ui . Then for any i ∈ Im there are at

least li points a ∈ A such that x ∈ Vai .
For any a ∈ A there exists at most one i such that x ∈ Vai , then for any i ∈ Im there

exists a set Ai ⊆ A with li such that for all a ∈ Ai , x ∈ Vai . The sets Ai are obviously
disjoint.

Thus we have

x ∈ conv({a} ∪ rint Fi ) for all i ∈ Im, a ∈ Ai .

For all i ∈ Im and a ∈ Ai ,

S ⊆
⋃
i∈Im

conv({x} ∪ Fi ) and conv({a} ∪ Fi ) ⊇ conv({x} ∪ Fi ),

then S ⊆⋃i∈Im

⋂
a∈Ai

conv({a} ∪ Fi ) and the theorem is proved.

Proof of Theorem 2. First consider the case when S is a simplex. Denote

Vi = {x ∈ S : | int conv({x} ∪ Fi ) ∩ A| < li }.
Obviously, the sets {Vi }i∈Im are closed. Also, if x ∈ Vi , y ∈ Fi , and x ′ ∈ [xy], then
int conv({x ′} ∪ Fi ) ⊆ int conv({x} ∪ Fi ). Hence Vi are Fi -starshaped.

Consider two cases:

Case 1: S ⊆⋃i∈Im
Vi . By Lemma 3 there exists x ∈⋂i∈Im

Vi . It means that there are
at least m points a ∈ A such that a �∈ int conv({x} ∪ Fi ) for all i , denote the set of such
points a by A′. Then for all a ∈ A′,

a ∈ conv({x} ∪ (aff Fs(a) ∩ aff Ft (a))).

Let I = {i : x �∈ Fi }, then s(a), t (a) ∈ I for all a ∈ A′, otherwise we would have
a ∈ Fi , which is not true by assumption (2). In other words,

x ∈
⋂
a∈A′

aff(a, aff Fs(a) ∩ aff Ft (a)).

As in the proof of Theorem 1 we apply Lemma 2 taking { fi }i∈I as vertices, ( fs(a), ft (a)),

a ∈ A′, as edges, and the restriction g′(a) = gas(a)t (a) of the map g. By this lemma we
have x ∈ aff Fi , i ∈ I , this is a contradiction with the definition of I .

Thus case 1 is impossible.
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Case 2: S �⊆⋃i∈Im
Vi . Let x ∈ S\⋃i∈Im

Vi . Then for any i ∈ Im there exist at least li

points a ∈ A such that a ∈ int conv({x} ∪ Fi ).
The sets int conv({x} ∪ Fi ) (i ∈ Im) do not intersect, hence each of them contains

exactly li points of A, so we denote

Ai = A ∩ int conv({x} ∪ Fi ).

Then for any i ∈ Im,

conv(Ai ∪ Fi ) ⊆ conv({x} ∪ Fi ),

hence for all i �= j ∈ Im,

int conv(Ai ∪ Fi ) ∩ int conv(Aj ∪ Fj ) = ∅.
Thus the proof is complete if S is a simplex.

Now suppose S is not a simplex, then
⋂

i∈Im
Fi �= ∅. Consider two cases.

Case 1:
⋂

i∈Im
Fi = {v}. Obviously, there exists a hyperplane H such that S′ = S ∩ H

is a simplex with facets F ′i = Fi ∩ H, i ∈ Im .
Let the central projection from v to H take a ∈ A to p(a). The theorem is already

proved for A′ = p(A) and simplex S′, thus there is a partition A = ⋃i∈Im
Ai such that

|Ai | = li and for all i �= j ∈ Im,

int conv(p(Ai ) ∪ F ′i ) ∩ int conv(p(Aj ) ∪ F ′j ) = ∅.
Take the cone Ci = int conv(Fi∪

⋃
a∈Ai

[va〉) formed by the rays from v that intersect
int conv(p(Ai ) ∪ F ′i ) without the point v. Obviously, we have for all i �= j ∈ Im,

Ci ∩ Cj = ∅
and for all i ∈ Im,

int conv(Ai ∪ Fi ) ⊆ int conv

(
Fi ∪

⋃
a∈Ai

[va〉
)
= Ci .

Then for all i �= j ∈ Im,

int conv(Ai ∪ Fi ) ∩ int conv(Aj ∪ Fj ) = ∅.
In this case the proof is complete.

Case 2: dima L > 0, where L =⋂i Fi . Let p be a projection along L . Then p(L) is a
point. The previous case gives a partition A =⋃i∈Im

Ai such that for all i �= j ∈ Im,

int conv(p(Ai ) ∪ p(Fi )) ∩ int conv(p(Aj ) ∪ p(Fj )) = ∅.
Then it is clear that

int conv(Ai ∪ Fi ) ∩ int conv(Aj ∪ Fj ) = ∅
and the theorem is proved.
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Proof of Theorem 3. For any i ∈ Im put

Ui = {x ∈ int S : [xa] ∩ rint Fi �= ∅ for at least li points a ∈ A}.
The sets Ui are open.

We show that {Ui }i∈Im satisfy the conditions of Lemma 4.
Condition 1 holds. Let for some a ∈ A, x ∈ Ui , y ∈ rint Fi , x ′ ∈ [xy], and

z = [xa] ∩ rint Fi . The points x ′ and a are in different halfspaces with respect to the
hyperplane aff Fi , hence there exists z′ = [x ′a] ∩ aff Fi , z′ ∈ [zy], and z′ ∈ rint Fi .

Consider condition (3). Let

p ∈ bd S, I = {i : p ∈ Fi }.
We prove that there is a neighborhood N (p) of p such that

N (p) ∩ int S ⊆
⋃
i∈I

Ui ,

or, equivalently, for any x ∈ int S∩ N (p) for some i ∈ I at least li of the segments [xj x]
intersect rint Fi .

Let A′ = {a ∈ A : a ∈ ⋃i∈I Hi }, in this theorem |A| ≥ |I | and [ap] ∩ bd S = {p}
for all a ∈ A′. Take any a ∈ A′ and x ∈ S and let ya(x) be the farthest point from x in
[ax] ∩ bd S.

Obviously, ya(x) is a continuous function of x ∈ S. Since ya(p) = p for all a ∈ A′,
then there exists a neighborhood N (p) of p such that for all x ∈ N (p), a ∈ A′, and
i �∈ I we have ya(x) �∈ Fi .

We shall show that for any x ∈ N (p) ∩ int S there exists i ∈ I such that x ∈ Ui .
Equivalently, at least li of the points ya(x) (a ∈ A′) are in rint Fi for some i ∈ I .

Assume the contrary. Then we have at least |I | points a ∈ A′ such that ya(x) ∈
Fs(a) ∩ Ft (a) for some x ∈ N (p) ∩ int S. Denote the set of these a by A′′. Then

x ∈
⋂

a∈A′′
aff(a, aff Fs(a) ∩ aff Ft (a)), s(a), t (a) ∈ I.

As in the proof of Theorem 1 by Lemma 2 we get a contradiction, since |A′′| ≥ |I |.
We now show that condition 2 holds. We show that int S ⊆ ⋃

i∈Im
Ui . Assume the

contrary: there exists x such that for any i ∈ Im at least li of the points ya(x) are in rint Fi .
Denote the set of these points a by A′′. As above we have x ∈ ⋂a∈A′′ aff(a, aff Fs(a) ∩
aff Ft (a)). That is a contradiction, since |A′′| ≥ m + 1.

If S is a simplex, then
⋂

i∈Im
Ui �= ∅ by Lemma 4.

If
⋂

i∈Im
Fi = {v}, then as above we take a hyperplane H such that S′ = S ∩ H

is a simplex with facets F ′i = Fi ∩ H, i ∈ Im . Applying Lemma 4 to S′ and the sets
U ′i = Ui ∩ H we obtain ⋂

i∈Im

U ′i �= ∅ and
⋂
i∈Im

Ui �= ∅.

Take some x ∈⋂i∈Im
Ui and put

Ai = {a ∈ A : ya(x) ∈ rint Fi }.
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Then by the definition of Ui we have |Ai | ≥ li . Also,
∑

i∈Im
li = |A| and the sets Ai do

not intersect pairwise, then |Ai | = li for all i ∈ Im and the sets Ai form some partition
of A.

Let Ri be a cone of rays [xy〉, where y ∈ rint Fi without the point x . Rk ∩ Rl = ∅ for
all k �= l ∈ Im and since for all a ∈ Ai we have rint Fi � ya(x) ∈ [ax], then Ai ⊂ Ri .
Hence int conv(Ai ∪ Fi ) ⊆ Ri and

int conv(Ak ∪ Fk) ∩ int conv(Al ∪ Fl) = ∅, k �= l ∈ Im .

Since Ai and S are on different halfspaces with respect to aff Fi , then for any i ∈ Im,

int conv(Ai ∪ Fi ) ∩ int S = ∅.

The last case is when dima
⋂

i∈Im
Fi > 0, let L =⋂i∈Im

Fi . As in the previous proof
take a projection p along L . By the same argument we can deduce the theorem for this
case from this theorem for the projection p(S), which is already proved.

5. Proof of Theorems 4–6 and Corollary 1

As above we apply Lemma 1 to X . Thus we have a simplex S in Rm−1 and an n-
dimensional affine subspace L ⊆ Rm−1 such that X = L ∩ S, Fi = L ∩ Gi , int X =
L ∩ int S, and int Fi = L ∩ int Gi .

For any point s ∈ S and i ∈ Im put Bi (s) = conv(Gi ∪{s}). Note that for any s ∈ int S
the sets Bi (s) give a partition of S. To prove Theorems 4 and 6 we consider partitions of
X into sets Ai = Bi (s) ∩ L for some s ∈ int S. Obviously, Ai (s) ∩ bd X = Fi for any
s ∈ int S.

We need a lemma:

Lemma 8. Under the above notation Ai (s) are continuous functions of s ∈ S in the
Hausdorff metric, and for any i ∈ Im and s ∈ S, s �∈ Gi we have int Bi (s) ∩ L �= ∅.

Proof. Consider the second statement of the lemma. Assume the contrary:

int Bi (s) ∩ L = ∅,

then L ∩ int Gi �= ∅ implies that L ⊆ aff Gi . However, L ∩ Gj �= ∅ for some j �= i and
int Gj ∩ aff Gi = ∅, that is a contradiction.

Since int Bi (s)∩ L �= ∅ and Bi (s) is a continuous function of s, the first statement of
the lemma is true for points s �∈ Gi .

For points s ∈ Gi we may prove the continuity by definition: let sl → s, then,
obviously,

∀l, Ai (sl) ⊇ Fi , lim
l

Ai (sl) = Fi = Ai (s).

Now we are ready to prove the theorems.
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Proof of Theorems 4 and 5. Put

Ui = {s ∈ S : µ(Ai (s)) ≤ µi }.
We show that Lemma 3 can be applied to S and sets Ui .

The functions Ai (s) and µ(A) are continuous, then the sets Ui are closed.
If f ∈ Fi , s ′ ∈ [ f s], then Ai (s ′) ⊆ Ai (s), and therefore s ′ ∈ Ui . It means that the set

Ui is Fi -starshaped.
The sets Ui cover S; otherwise we could find a point s ∈ S such that for any i ∈ Im,

µ(Ai (s)) > µi , the sets Ai (s) form a partition of X , so summing up the inequalities we
obtain µ(X) > 1, this is a contradiction.

Thus Lemma 3 gives a point s∗ ∈⋂i∈Im
Ui . For the partition we have

µ(Ai (s
∗) ≤ µi ,

after summation over i ∈ Im we have 1 on both sides, hence in fact,

µ(Ai (s
∗)) = µi .

Now the proof becomes different for Theorems 4 and 5.
Case of Theorem 5: Obviously, Ai (s∗) ⊇ Fi for all i ∈ Im and if i �∈ I (µi = 0), then

Ai (s∗) = Fi . Hence X is covered by {Ai (s∗)}i∈I .
Case of Theorem 4:µ(Ai (s∗)) > 0 for all i ∈ Im , then s∗ ∈ int S and Ai (s∗)∩bd X =

Fi for all i ∈ Im .

Proof of Theorem 6. Put

Ui = {s ∈ S : int Ai (s)) ∩ V = ∅}.
We show that Lemma 3 can be applied to S and the sets Ui .

If s �∈ Ui , then for some v ∈ V we have int Ai (s) � v, and for any s ′ in some
neighborhood of s we still have int Ai (s) � v. Thus the complement of Ui is open and
Ui is closed.

If f ∈ Fi and s ′ ∈ [ f s], then Ai (s ′) ⊆ Ai (s), and hence s ′ ∈ Ui . Thus the set Ui is
Fi -starshaped,

The sets Ui cover S; otherwise we would have a point s ∈ S such that for any i ∈ Im,

|int Ai (s) ∩ V | ≥ 1. The sets Ai (s) give a partition of X , then |V | ≥ m, which is a
contradiction.

Thus Lemma 3 gives s∗ ∈⋂i∈Im
Ui .

We show that we may assume s∗ ∈ int S. Note that every set Ui contains a neighbor-
hood of Gi . Now let M be a face of S with maximum dim M and M � s∗, let M ′ be the
face spanned by the vertices of S not contained in M . Let m ′ ∈ rint M ′, then the points
s ′ ∈ (s∗m ′) close enough to s∗ will be contained in those of the sets Ui that contain M
(and therefore a neighborhood of M). Those sets Ui that do not contain M , contain M ′, in
this case m ′ ∈ Gi and s ′ ∈ Ui due to starshapedness. Thus we have s ′ ∈ int S∩⋂i∈Im

Ui .
For the partition we have what we need:

∀i ∈ Im, int Ai (s
∗) ∩ V = ∅.
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We need another lemma to prove Corollary 1.

Lemma 9. Let W ⊂ Rn be a finite set in general position, let |W | ≥ n + 1, and let F
be a facet of conv W . Then there exists a possibly nonconvex polytope with vertices W ,
having F as a facet.

Proof. We use induction over |W |. The case |W | = n + 1 is obvious.
If int conv W ∩W = ∅, then conv W is the polytope we need.
Otherwise, let F ′ be another facet of conv W and

W ′ = (F ′ ∪ int conv W ) ∩W.

Clearly, W ′ ⊆ W and W ′ does not contain one of the vertices of F , otherwise F and F ′

would coincide. Besides, F ′ ∩W contains at least n points, and int conv W ∩W contains
at least one point, hence |W ′| ≥ n + 1.

We apply the inductive assumption to W ′ and F ′. We obtain a polytope Y ′with vertices
W ′. Put Y = conv W\(int Y ′ ∪ rint F ′), this is a polytope, with vertices W , having F as
a facet.

Proof of Corollary 1. Put X = conv W . Let {Fi }i∈Im be the set of facets of X . Applying
Theorem 6 to X and the set V , we obtain a partition of X into sets Ai such that Ai∩bd X =
Fi and V ∩ int Ai = ∅ for all i ∈ Im .

We partition W ∩ int X into sets Wi so that Wi ⊂ Ai for all i . Denote W ′i = W ∩ Fi .
Consider indices i ∈ Im such that Wi �= ∅. Then we apply Lemma 9 to the set Wi ∪W ′i

and the facet Fi , so we have a polytope Yi with vertices Wi . Note that Yi ⊆ Ai , therefore
int Yi ∩ V = ∅, and Yi ∩ V = ∅ due to general position.

Put Y = X\(⋃i∈Im ,Wi �=∅(int Yi ∪ rint Fi )). Then the set of vertices of Y is W , and
Y ⊃ V , since for all i ∈ Im , Wi �= ∅ we have Yi ∩ V = ∅.

6. Corollary for Partitions of Rn

We should define some properties for a family of closed convex sets {Vi }i∈Im , Vi ⊆ L ,
where L is a linear space. Some of these properties were already discussed in [2].

Property 1. For any set of m vectors vi ∈ L (i ∈ Im) there exists a permutation σ ∈ Sm

such that ⋃
i∈Im

(Vi + vσ(i)) = L .

Property 2. For any set of m vectors vi ∈ L (i ∈ Im) there exists a permutation σ ∈ Sm

such that the sets

V ′i = Vi + vσ(i)
do not intersect pairwise by interior points.



40 R. N. Karasev

We also need two definitions:

Definition. A partition of V ⊆ Rn into Vi (i ∈ Im) is called an affine partition if there
are affine functions λi ∈ Ln

1 (i ∈ Im) such that

Vi = {x ∈ V : ∀ j ∈ Im li (x) ≥ lj (x)}.

Definition. A partition of V ⊆ Rn into Vi (i ∈ Im) is called a hierarchically affine
partition if this is either an affine partition or the set Im can be partitioned into subsets
J1, J2, . . . , Jk (k ≥ 2) such that the sets V ′j =

⋃
i∈Jj

Vi ( j ∈ Ik) form an affine partition
of V , and for all j ∈ Ik the sets Vi (i ∈ Jj ) form a hierarchically affine partition of V ′j .

We define some stronger variants of Properties 1 and 2 that can be used in recursive
proofs for hierarchically affine partitions:

Property 3. For any set of positive integers li (i ∈ Im,
∑

i∈Im
li = l) and any set of

vectors A ⊂ L (|A| = l) there exists a partition of A into Ai (i ∈ Im), satisfying the
following conditions:

1. |Ai | = li for all i ∈ Im .

2. The sets Wi =
⋂

a∈Ai
(Vi + a) = Vi

∗− (−Ai ) (i ∈ Im) cover L , i.e.,⋃
i∈Im

Wi = L .

Property 4. For any set of positive integers li (i ∈ Im,
∑

i∈Im
li = l) and any set of

vectors A ⊂ L (|A| = l) there exists a partition of A into Ai (i ∈ Im), satisfying the
following conditions:

1. |Ai | = li for all i ∈ Im .
2. The sets Wi = conv

⋃
a∈Ai

(Vi + a) = Vi + conv Ai (i ∈ Im) do not intersect
pairwise by interior points, i.e., for all i �= j ∈ Im,

int Wi ∩ int Wj = ∅.

Note that Properties 1 and 2 are contained in Properties 3 and 4, respectively, if we
put li = 1 for all i ∈ Im .

We formulate a corollary of Theorems 1 and 2:

Corollary 2. Hierarchically affine partitions of Rn have Properties 3 and 4.

We need some lemmas to prove this corollary:

Lemma 10. If a family of closed convex sets Vi ⊆ L may be factored modulo some
linear subspace M ⊆ L , equivalently, Vi = Vi + M (i ∈ Im), then the family of sets
π(Vi ) has Property 1, 2, 3, or 4 in L/M , where π : L → L/M is a projection, iff the
family Vi ⊆ L has the same property.
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Lemma 11. If a family of closed convex sets Vi ⊆ L has one of Properties 1 and 3 in
L , and for a given subspace M ⊆ L and any i ∈ Im, Vi ∩M �= ∅, then the family of sets
Vi ∩ M has the same property in M .

Lemma 12. If a family of closed convex sets Vi ⊆ L has one of Properties 2 and 4
in L , and for a given subspace M ⊆ L and any i ∈ Im we have Vi ∩ M �= ∅ and
int(Vi ∩ M) = (int Vi ) ∩ M �= ∅, then the family of sets Vi ∩ M has the same property
in M .

The proof of these three lemmas is trivial.

Lemma 13. Suppose V n
i ⊆ L (i ∈ Im, n ∈ Z+) are closed convex sets. Let for each

i the sequence {V n
i }n∈Z+ converge to a closed convex set Vi ⊆ L . If for all n ∈ Z+ the

family {V n
i }i∈Im has one of Properties 1, 2, 3, and 4, then {Vi }i∈Im has the same property.

Remark. The limit in the above lemma is considered in the family of metrics

dist
R
(A, B) = dist

H
(A ∩ B0(R), B ∩ B0(R)),

where distH is the Hausdorff metric, and B0(R) is a ball with radius R and center in 0.

Proof. Consider some sets A and {li }i∈Im . In case of Properties 1 and 2 we simply put
l1 = l2 = · · · = lm = 1, so these properties are considered too.

We show that {Vi }i∈Im has Property 3 or 4.
Since each family {V n

i }i∈Im has the same property, we apply its definition to A and
{li }i∈Im .

So for any n we have a partition of A, taking some subsequence of families we may
assume that the partition of A is the same for all n.

Now Property 4 holds because

Vi + conv Ai = lim
n
(V n

i + conv Ai ).

In the case of Property 3 we may assume the contrary: let there exist a point x such

that for any i ∈ Im, x �∈ Vi
∗− (−Ai ). Then since the sets Vi are closed, we may find

ε > 0 such that dist(x, Vi + ai ) > ε for all i ∈ Im and some ai ∈ Ai . It means that for

large enough n we have dist(x, Vi + ai ) > ε/2, and therefore x �∈ V n
i

∗− (−Ai ) for any
i ∈ Im and large enough n. This contradicts the choice of partition {Ai }i∈Im in Property 3
for the family {V n

i }i∈Im .

Proof of Corollary 2. First we consider the following case: the partition of L into Vi

(i ∈ Im) is affine, m = dim L + 1, and the system of equations

λ1(x) = λ2(x) = · · · = λm(x)

has only one solution, without loss of generality the solution is the origin. In this case
λi is a linear function on L for all i ∈ Im .
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For any i ∈ Im the solution of the system of equations

∀k, l �= i, λk(x) = λl(x)

is a straight line. The subset of this line given by the inequality λi (x) < λk(x) for any
k �= i (it is the same for any k �= i) is not contained in Vi , so we choose some vector
si �= 0 from it.

Thus Vi is a simplicial cone spanned by the vectors s1, . . . , sm except si , while vectors
si form a simplex S with facets Fi and their respective opposite vertices {si }i∈Im . This
simplex contains the origin.

Consider a sequence of positive real numbers tn → ∞ such that for all n ∈ N the
homothetic image tn S ⊇ A.

So we can apply Theorem 1 or 2 to the set A, given numbers {li }i∈Im , and simplex
tn S. Taking some subsequence of {tn} if needed, we may assume that the partition of A
is the same for all n.

Note that for all a ∈ A, i ∈ Im,

Vi + a = lim
n

conv({a} ∪ tn Fi ).

By going to the limit as in the proof of Lemma 13 we show that Properties 3 and 4 hold
in this case.

Now we consider the case of an affine partition into sets Vi such that the homogeneous
components of degree 1 of the functions λk−λ1 (k = 2, . . . ,m) are linearly independent.

In this case m ≤ dim L + 1 and the system of equations

λ1(x) = λ2(x) = · · · = λm(x)

has an affine subspace M as a solution, applying some translation we may assume that
M is a linear subspace. Then {Vi }i∈Im may be factored modulo M , after the factorization
we have m = dim L ′ + 1 (L ′ = L/M) and this case is considered. By Lemma 10 the
proof of this case is complete.

Now we consider a more general case: let for all i ∈ Im, int Vi �= ∅.
If λk−λ1 (k = 2, . . . ,m) are linearly independent, we take some L ′ = L⊕Rm−1 and

let the coordinates in the right summand be x ′2, . . . , x ′m . Then put λ′1 = λ1, λ′2 = λ2+ x ′2,
. . . , λ′m = λm + x ′m . The homogeneous components of degree 1 of the functions λ′k − λ′1
(k > 1) are linearly independent. For the affine partition {V ′i }i∈Im given by the functions
{λ′i }i∈Im we have Vi = L ∩ V ′i and int Vi = (int V ′i ) ∩ L �= ∅. Applying Lemmas 11 and
12 we complete the proof in this case.

Now consider an affine partition such that int Vi = ∅ for some indices i ∈ Im . Let
{λi }i∈Im be its affine functions. We show that we can make all int Vi nonempty by small
changes of λi .

Take some positive integer n. Consider sets Vi such that their dim Vi is minimal, let
the set of their indices be I . If this dimension is less than dim L , then we can add some
number ε1 < 1/n to the functions {λi }i∈I so that the sets {Vi }i∈I get some nonempty
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interior, while neither of the dim Vi for i �∈ I decrease. The number ε1 can be chosen
small enough so that the new sets {Vi }i∈Im will be in less than 1/n from their respective
old sets in the Hausdorff metric.

We show that the number ε1 can be chosen in more detail. If we choose some points
vj ∈ rint Vj for all j �∈ I , we see that λi (vj ) < λj (vj ) for all i ∈ I, j �∈ I . Hence if ε1

is small enough λi (i ∈ I ) the new sets Vj still contain vj . If we consider some more
points vj ∈ Vj , we also show that for small enough ε1, dim Vj ( j �∈ I ) do not decrease.
The fact that the new sets {Vi }i∈I have nonempty interiors and for small enough ε1 the
Hausdorff distance between new sets {Vi }i∈Im and the respective old sets is less than 1/n
is obvious.

Applying the above process for no more than dim L times we may add to some of λi

some numbers εk < 1/n and finally have dim Vj = dim L , therefore int Vj �= ∅ for all
j ∈ Im . Denote the final partition by {V n

i }i∈Im .
Each of the partitions {V n

i }i∈Im for different n has Properties 3 and 4, so by Lemma 13
the partition {Vi }i∈Im has these properties too.

We have considered all cases for affine partitions.
Now we use induction over the number of the sets in a partition to prove the corollary

for any hierarchically affine partition.
Consider a set of vectors A and a set of numbers {li }i∈Im . Let Im be partitioned into

Jj ( j ∈ Ik) and let V ′j =
⋃

i∈Jj
Vi .

We apply the statement of this corollary to the affine partition {V ′j }j∈Ik , the set A, and
the numbers l ′j =

∑
i∈Jj

li . So the set A can be partitioned into A′j ( j ∈ Ik) such that in
case of Property 3 ⋃

j∈Ik

⋂
a∈A′j

(V ′j + a) = L ,

or in case of Property 4

int(V ′j1 + conv A′j1) ∩ int(V ′j2 + conv A′j2) = ∅, ∀ j1 �= j2 ∈ Ik .

Now the sets Vi (i ∈ Jj ) form a hierarchically affine partition of the set V ′j . Since the
partition is given by affine functions, we may consider these functions on the whole L
and take V ′′i (i ∈ Jj ) such that Vi = V ′′i ∩V ′j and the sets V ′′i (i ∈ Jj ) give a hierarchically
affine partition of L .

We apply the inductive assumption to every family V ′′i (i ∈ Jj ), its respective A′j ,
and the subset {li }i∈Jj . So we obtain partitions of every A′j into A′′i (i ∈ Jj ) such that
|A′′i | = li , and in the case of Property 3

⋃
i∈Jj

⋂
a∈A′′i

(V ′′i + a) = L ,

or in the case of Property 4

int(V ′′i1
+ conv A′′i1

) ∩ int(V ′′i2
+ conv A′′i2

) = ∅, ∀i1 �= i2 ∈ Jj .
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Thus in the case of Property 3
⋂

a∈A′′i

(Vi + a)


 ∩


⋂

a∈A′j

(V ′j + a)




=

⋂

a∈A′′i

((Vi + a) ∩ (V ′j + a))


 ∩


⋂

a∈A′j

(V ′j + a)




=

⋂

a∈A′′i

(V ′′i + a)


 ∩


⋂

a∈A′j

(V ′j + a)


 ,

and therefore ⋃
i∈Jj

⋂
a∈A′′i

(Vi + a) ⊇ V ′j

and ⋃
i∈Im

⋂
a∈A′′i

(Vi + a) = L .

It means that Property 3 holds.
For Property 4 for indices i1 �= i2 from the same Jj we have

int(Vi1 + conv A′′i1
) ∩ int(Vi2 + conv A′′i2

)

⊆ int(V ′′i1
+ conv A′′i1

) ∩ int(V ′′i2
+ conv A′′i2

) = ∅,
and for indices i1 �= i2 from Jj1 and Jj2 , respectively,

int(Vi1 + conv A′′i1
) ∩ int(Vi2 + conv A′′i2

)

⊆ int(V ′j1 + conv A′j1) ∩ int(V ′j2 + conv A′j2) = ∅.
In other words, for any i1 �= i2 ∈ Im,

int(Vi1 + conv A′′i1
) ∩ int(Vi2 + conv A′′i2

) = ∅.
Thus Property 4 holds.

In [2] a counterexample was given showing that even in the case of R3 there exist
partitions that do not have Properties 1 or 2.

Still it makes sense to search for some more partitions with Properties 1 or 2. We give
some variant of Conjectures 1 and 2 from [2], but before that we need a definition:

Definition. The partition of Rn into closed convex sets Vi (i ∈ Im) is called ordered
with respect to an ordered line l (denote by ≤1 the relation on l) if the family {Vi } can
be ordered by relation ≤2 so that for any translate l ′ of l with translated relation ≤1 we
have Vi ∩ l ′ ≤1 Vj ∩ l ′ for all Vi ≤2 Vj (i, j ∈ Im).
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Conjecture 1. Any partition of Rn ordered with respect to any ordered line, has Prop-
erties 1 and 2.

As was noted in [2] (Conjectures 3 and 4), the case of n = 2 of this conjecture is of
interest itself because any partition of R2 is ordered with respect to any ordered line.
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