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Abstract. This paper is concerned with the Steiner ratio. A number of properties about the
structure of the flat sausage andR-Sausage convex polytopes yielding the best Steiner ratio
in two- and three-dimensional Euclidean space, and the topology of the Steiner Minimal
Tree for the corresponding vertex sets, are presented.

1. Outline

The most recent survey of the Steiner problem has been conducted by Cieslik. In his
work The Steiner ratio he recounts the history of the problem [1]. Cieslik clarifies that the
problem is attributed to Steiner by Courant and Robbins: “A very simple but instructive
problem was treated by Jacob Steiner, the famous representative of geometry at the
University of Berlin in the early nineteenth century. Three villages A, B, C are to be
joined by a system of roads of minimum total length” [2]. The authentic attribution
is to Fermat who, in the early 17th century, stated the problem in the following form:
given three points, find a fourth point that minimizes the sum of the distances from
each of the three points to the fourth. We call this Fermat’s problem or the Steiner
problem, depending on whether the set consists of three points or more than three points,
respectively.

Definition 1. Consider a set of N vertices V = (v1, v2, . . . , vN ) with Cartesian coor-
dinates in Euclidean space Ed . The Steiner Minimal Tree (SMT) problem is to construct
a tree T spanning V with possible candidate vertices from another set S (distinct from
V ) so as to minimize the overall interconnecting length of T .
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To situate the Steiner problem in the literature related to sciences and engineering,
one must also take bearings with respect to the canonical works of Garey and Johnson,
and their definitions of computational and algorithmic complexity. The Euclidean SMT
(ESMT) problem is not in the class NP [9]. It has also been shown to be NP-hard in the
plane [8]. Unless P = NP, which seems an undecidable proposition, Garey and Johnson
also showed that no polynomial approximation scheme can exist for either the ESMT or
the Rectilinear SMT problem. This they did by creating a discrete version of the ESMT
problem which can then be shown to be NP-Complete, by reducing it in polynomial time
to the “exact cover by three sets” problem which is known to be NP-Complete. Thus
the ESMT problem is at least as hard as the discrete ESMT problem and is therefore as
hard to solve, if not harder, as any NP-Complete problem, e.g., the Traveling Salesman
Problem. One is therefore forced to consider algorithms that take exponential time or
use other constant time approximation schemes. An exact algorithm for optimizing d-
dimensional, full Steiner topologies was given by Smith [14]. Gilbert and Pollak showed
that optimizing a pre-specified Steiner topology is a strictly convex optimization problem
[10]. However, even when the topology is specified, numerical optimization techniques
encounter difficulties. Both data-set size and computational time have to be taken into
account as criteria in evaluating the efficiency of any algorithm.

Some background information on the Steiner ratio is provided in Section 2. The
progressive construction of the flat sausage is presented in Section 3. The path topology,
an important full Steiner tree topology, is defined. We also introduce a representation of
the Steiner trees for regular triangulated complexes as permutations in a finite alphabet.
Each of the letters is a characterization of a Steiner point in terms of its neighboring
points. In Section 4, structural properties of the flat sausage are proven after providing
substantial experimental evidence and formulating conjectures. Computational evidence
that the flat sausage has the path topology as the optimal SMT topology is presented.
This is followed by a non-inductive proof that this is so for a flat sausage: the minimizing
direction of the objective function, the length of the SMT is towards the centroid of the
triangle, in the case of an equilateral triangle. In the case when two flat sausage elements
are combined by conjoining their outermost edge, a similar, though not equilateral,
triangle is the focus of attention. After a split operation at this common vertex, the locus
of the resulting Steiner point is directly towards the axis of the composite flat sausage,
and does not disrupt the topology of the element at parts which are close to this triangle.
This process can therefore be repeated ad infinitum to generate the entire semi-group,
including the infinite flat sausage. Properties of the ribbon sausage or R-sausage are
proven in Section 5, after providing substantial experimental evidence and formulating
conjectures. The calculus of variations technique used to prove that the path topology
is optimal for flat sausages, is then shown to be valid for the R-sausage too. The last
section provides a summary and conclusion.

2. The Steiner Ratio

The optimal Steiner ratio is a measure of the improvement of one interconnecting network
over another interconnecting network:

ρd = infV∈Ed
Total length of ESMT (V )

Total length of EMST (V )
.
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In the above formula, ESMT is an acronym for Euclidean Steiner Minimal Tree, and
EMST stands for Euclidean Minimum Spanning Tree. Gilbert and Pollack conjectured
that this ratio was achieved by the regular simplex in each dimension.

2.1. The Steiner Ratio in Two and Higher Dimensions

It was shown by Du and Hwang, confirming the conjecture of Gilbert and Pollak, that
ρ2 =

√
3/2 ≈ 0.866 in two dimensions [5]. This is achieved when the vertices are the

extreme points of an equilateral triangle. Du and Smith were also able to prove that the
higher-order simplexes were not the optimal point configurations [6]. Although more
than one exact algorithm exists for computing Minimum Spanning Trees (MSTs), ge-
ometric algorithms for the SMT problem in dimensions greater than two have proven
extremely difficult. In three dimensions the equilateral tetrahedron is optimal among all
possible four point configurations. While the singleton simplex failed to realize the op-
timal configuration for E3, it eventually leads to the search for the optimal configuration
by looking at two tetrahedra as well as by gluing various types and combinations of
Platonic solids (cubes, tetrahedra, octahedra, etc.) together. Surprisingly, a breakthrough
came when three tetrahedra were configured, where ρ3 dramatically dropped and con-
tinued to drop for increasing numbers of tetrahedra. Thus, the Steiner ratio turns out to
be asymptotically achieved for an infinite object rather than for a fixed symmetric and
geometric polyhedron as was expected [13].

2.2. Definition of the R-Sausage

The d-dimensional point set which Smith and MacGregor Smith call the R-sausage may
be generated in the following way [13]:

Definition 2. Start with a unit diameter ball in d-space. Successively add unit balls so
that the N th ball added is always touching the min(d, N − 1)most recently added balls.

This procedure uniquely defines an infinite sequence of interior-disjoint numbered
d-balls. The centers of these balls form a countably infinite discrete point set, which
is called the R-sausage. A point set consisting of N points of the d-sausage is called
the N point R-sausage. The 1-sausage is simply the integers on the real axis. The 2-
sausage is an infinite version of a lattice of equilateral triangles which we refer to as
the “flat sausage” for convenience. The Steiner ratio of this 2-sausage converges to the
optimal Steiner ratio in the two dimensions, the same as the simplex. This evidence,
albeit computational, gives credence to the supposition that the higher-dimensional R-
sausages yield the optimal Steiner ratios in their respective dimensions. A path of tree
topologies has been suggested, which may top the R-sausage with respect to the Steiner
ratio in dimensions greater than or equal to 80. Coxeter, in 1961, in his textbook on
geometry, showed that 28 tetrahedra conjoined, as an R-sausage was aperiodic, about an
axis through the centroids of the tetrahedra. However, he makes no reference to Steiner
trees in his book [3]. Smith and MacGregor Smith performed an extensive study of the
Steiner ratio [13]. Du and Smith computed upper bounds g(d) on ρd for d-sausages.
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d-Sausages are the d-dimensional counterparts of the flat sausage and the R-sausage
[6]. The best rigorous lower bound on ρ3 is ≈ 0.6158277481 by Du [4]. Smith and
MacGregor Smith have shown that the R-sausage has produced the best known upper
bound on the Steiner ratio in three dimensions [13].

Conjecture 1. The set of n-point R-sausages constitute the point configurations that
in the limit, as n approaches infinity, minimize the Steiner ratio for different dimensions.

Lemma 1. The infinite three-dimensional R-sausage contains within it a triple helix
which passes through the fixed vertices that define the R-sausage. These points of the
R-sausage are given by a recursive expression in the equation for some â, b̂, ĉ, d̂ ∈ �.
These coefficients are ( 2

3 ,
2
3 ,

2
3 ,−1).

Vn = âVn−1 + b̂Vn−2 + ĉVn−3 + d̂Vn−4. (1)

Proof. The R-sausage is generated by repeatedly reflecting a tetrahedral point in the
facet opposite to it. The reflected point is chosen with respect to the Bucky-ball1 rule
which is presented as Definition 2. The coordinates of the centroid C of the triangle
Vn−1, Vn−2, Vn−3 is given by 1/3(Vn−1 + Vn−2 + Vn−3). This expression can be derived
by solving two pairs of simultaneous equations obtained from any two out of the three
medians of the triangle intersecting at the point C . Let r1 and s1 be constants such
that r1 + s1 = 1 and C = r1Vn−1 + s1Vn−2. Let r2 and s2 be constants such that
r2 + s2 = 1 and C = r2Vn−2 + s2Vn−3. Equating these two expressions for C one gets
r1Vn−1 + s1(

1
2 )(Vn−2 + Vn−3) = C = r2Vn−3 + s2(

1
2 )(Vn−1 + Vn−2) or 2r1V1 + s1V2 +

s1V3 = 2r2V3 + s2V1 + s2V2. Comparing the coefficients of the vertices, we obtain
s1 = 2r2, s2 = 2r1 and s1 = s2 or s1 = s2 = 2

3 and r1 = r2 = 1
3 . The position vector of

C is therefore r1Vn−1 + s1(
1
2 )(Vn−2 + Vn−3) = 1/3(Vn−1 + 2/3( 1

2 )(Vn−2 + Vn−3). That
is C = 1/3(Vn−1 + Vn−2 + Vn−3). This is also the mid-point of the line joining the new
vertex with the reflected point. Therefore 1/2(Vn + Vn−4) = C and Vn = 2C − Vn−4.
That is, Vn = 2/3(Vn−1 + Vn−2 + Vn−3)− Vn−4.

Identification of the optimal five, six, seven and larger point configurations which
optimize the Steiner ratio in three dimensions for a point set of that size is formalized as
Conjecture 2. A calculus of variations approach for analyzing a finite number of points
in two dimensions was conducted by Rubinstein and Thomas [11]. The optimal four
point configuration in three dimensions, with the optimal Steiner ratio, is the regular
tetrahedron [13].

Conjecture 2. The set of n-point R-sausages constitute the configurations in three
dimensions which achieve the optimal Steiner ratio, for a set of n points in three
dimensions.

1 R. Buckminster Fuller developed the architectural construction known as the geodesic dome. This com-
prises a spidery network of interconnected tetrahedra (four-sided pyramids of equilateral triangles) forming a
three-way, hemispherical grid that distributes stress evenly to all members of the entire structure and hence
exhibits a high strength-to-weight ratio.
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Gilbert and Pollak also experimented with a network with movable Steiner vertices
that are linked by unbending, untwisting rods to the fixed ends. Each rod will have a tensile
force and they sought the network which would hold these tensile forces in equilibrium.
Let F1, F2, F3, . . . , FN be unit forces acting at fixed vertices V1, V2, V3, . . . , VN , respec-
tively. They have proved the following theorem, which is critical to our argument [10]:

Theorem 3. If we draw unit vectors from a Steiner tree in the direction of each of the
lines incident to V1, V2, . . . , VN and let Fi denote the sum of the unit vectors at Vi , then,
in mechanical terms, Fi is the external force needed at Vi to hold the tree in equilibrium.
The length of the tree T has the simple dot product formula:

T = V · F.

3. Flat Sausage Development

The flat sausage may be constructed by packing unit circles according to the Bucky-ball
principle: start with a unit circle; add a circle next to the min(2, N − 1) most recently
added circle, and consider the centers of these circles as the point set.

Definition 3. The path topology for an N point flat sausage is a full Steiner tree
topology, with a total of N − 2 Steiner points. Steiner point i is connected to i + 1
for i = 1, . . . , N − 3. Sausage point i is also attached to Steiner point i − 1 for
i = 2, . . . , N − 1, and sausage point 1 is also attached to Steiner point 1 and sausage
point N is attached to Steiner point N − 2.

Figure 1 shows six planar triangulations with the optimal topology. Counterclockwise
from the top right-hand corner are featured tilings developing from a simple equilateral
triangle to an eight point flat sausage with six Steiner points.

4. Properties of the Flat Sausage

One can draw a distinction between four rudimentary categories of Steiner topologies,
on the basis of the type of the three adjacent vertices, that a Steiner vertex links to. This
constitutes a finite alphabet, where each of the letters is a characterization of a Steiner
point in terms of its neighboring vertices. In Fig. 2(a) we can see a type S0 Steiner vertex.
Figure 2(b)–(d) shows type S1, S2 and S3 type Steiner vertices.

Lemma 2. The set of all Steiner vertices can be divided into four characteristic sets:

1. S0: Set of all Steiner vertices connected to three fixed vertices. This type of Steiner
vertex arises in isolated triangles and at the beginning of the tree construction in
other instances.

2. S1: Set of all Steiner vertices connected to two fixed vertices and one Steiner vertex.
3. S2: Set of all Steiner vertices connected to one fixed vertex and two Steiner vertices.
4. S3: Set of all Steiner vertices connected to three other Steiner vertices.
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Fig. 1. Flat Sausage development.

V

VV

S

S

S
S

S

V

S
S

S

S

V

V

S

(a) (b)

(d)(c)

Fig. 2. The different types of Steiner vertices.
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Table 1. Steiner ratios for flat sausages with an even number of
vertices.

N MST length SMT length ρ value Time (s)

4 5.999868 5.291419 0.881923 0
6 9.999780 8.717697 0.871789 0
8 13.999692 12.165373 0.868974 1

10 17.999604 15.620297 0.867813 0.0
20 37.999164 32.923699 0.866432 0.0
30 57.999590 50.239722 0.866208 0.0
40 77.999150 67.557447 0.866131 0.0
50 97.998710 84.876243 0.866096 0.0
60 117.998270 102.195598 0.866077 0.0
70 137.998696 119.516308 0.866068 0.0
80 157.998256 136.836279 0.866062 0.0
90 177.997816 154.156476 0.866058 0.0

100 197.997376 171.476915 0.866057 0.1

The path topology is equivalent to the Steiner set {. . . , S2, S2, S2, . . . , } in this
convention.

Proof. This is straightforward. A Steiner point can have none, one, two or three Steiner
point neighbors. This simple lemma is powerful because it enables one to make a complex
taxonomical classification of any Steiner topology, as a permutation of these rudimentary
topologies, for a specific traversal order.

Lemma 3. The Steiner ratio for the n point flat sausage is ρ2 =
√

3/2 as n goes to
infinity.

Proof. Table 1 presents the quantitative results from these experiments with the Branch
and Bound algorithm, tailored specifically for the flat sausage. Figure 3 and Table 1
clearly reveal the convergence of ρ2 =

√
3/2 ≈ 0.866, as the number of vertices in-

creases past 100. The number theoretic argument for an odd number of vertices proceeds
as follows: the size of the point set n can be represented as 2k + 1 for some positive
integer k. Each of the triangles with indices 2k − 1, 2k, 2k + 1 are equilateral and have
an SMT consisting of three edges meeting at the centroid. Each of these triangles are
conjoined at the (2k + 1)st vertex. The (2k + 1)st vertex for any value of k is such that
the internal angle subtended by the edges of the SMT is 2π/3. The SMT for the flat
sausage is equivalent to a k-fold version of the SMT for an equilateral triangle. The total
SMT length is therefore k

√
3. The total MST length is n − 1 or 2k + 1 − 1 = 2k. The

ρ is therefore the ratio of these two quantities, and equal to
√

3/2. This is illustrated in
Figs. 4 and 5 for nine and eleven vertices. k ranges from 1, . . . , 4, and from 1, . . . , 5,
respectively.

For flat sausages with an even number of vertices, we do not as yet have a simple
number theoretic proof, and need to refer to work on Z(Pn, α) by Du et al. and inde-
pendently by Smith [7], [12]. Z(Pn, α) is a zig-zag line where Pn = {p1, p2, . . . , pn}
denote the set of points, and α < 180◦ is the constant angle. The length of the SMT for



594 B. Toppur and J. MacGregor Smith

20 40 60 80 100
N

0.866

0.867

0.868

0.869

0.871

0.872

0.873

Steiner Ratio

Fig. 3. Convergent Steiner ratio in two dimensions.

α = 60◦ is
√

3k if n is odd, and
√

[3(k2 + k)+ 1] if n is even. Again, on taking the limit
as k approaches infinity, we obtain a Steiner ratio of

√
3/2.

Figures 6–10 on the other hand display four, six, eight and ten vertex flat sausages.
Notice that the SMTs in these figures no longer have n-fold symmetry, and there are
no degenerate Steiner points. They exhibit more clearly what we have defined as the
path topology, although an analytic proof of this has been difficult. Lemma 4 shows how
one may algebraically, construct the same flat sausage given an equilateral base triangle.
Lemma 5 shows how one may derive the coordinates of all the Steiner vertices for a
flat sausage, given the base triangle of Steiner vertices. These lemmas though consistent
with a path topology are not a sufficient condition to conclude that the path topology is
optimal for the flat sausage.

Lemma 4. The fixed vertices of the flat sausage are given by the recursive expression
in (2) for some â, b̂, ĉ ∈ �. These coefficients are (1, 1,−1).

Vn = âVn−1 + b̂Vn−2 + ĉVn−3. (2)

Fig. 4. SMT for the nine vertex flat sausage.
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Fig. 5. SMT for the eleven vertex flat sausage.
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Fig. 8. Eight vertex flat sausage.

Fig. 9. Another view of the eight vertex flat sausage.

Fig. 10. A view of the ten vertex flat sausage.

Proof. From the parallelogram law of forces, Vn + Vn−3 = Vn−1 + Vn−2. Rewriting
this as Vn = Vn−1 + Vn−2 − Vn−3 allows one to generate the successive vertices of the
flat sausage. The vertices Vn−3, Vn−1 and Vn−2 have to be chosen so that the vertex Vn is
along the flat sausage. The first few vertices are generated as follows. V0 is the reflected
vertex and V1–V2 is the line of reflection. In the second iteration V1 is the reflected
vertex and V3–V2 the line of reflection. In the third iteration V2 is the reflected vertex
and V3–V4 is the line of reflection. In the (N − 1)st iteration Vn is the reflected vertex
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and Vn+1–Vn+2 or Vn+2–Vn+1 is the line of reflection depending on whether N is even
or odd, respectively. Therefore â = b̂ = 1 and ĉ = −1.

Lemma 5. The Steiner vertices for the SMT of a two-dimensional flat sausage are
given by the recursive expression in (3) for some ā, b̄, c̄ ∈ �. These coefficients are
(1, 1,−1).

Sn = āSn−1 + b̄Sn−2 + c̄Sn−3. (3)

Proof. The resultant of forces at each Steiner vertex is identical in an infinite flat sausage
at equilibrium. The inter-site distances are therefore equal. That is,

−−−→
Si Si+1 = ‖Si − Si+1‖ = k1, ∀i,

and
−−−→
Si Si+2 = ‖Si − Si+2‖ = k2, ∀i.

Therefore as a sufficient condition of the parallelogram law of forces, Si+3 + Si+2 =
Si + Si+1 or Si+3 = Si + Si+1 − Si+2.

4.1. Flat Sausages Have the Path Topology

Though we have developed a formula for enumerating the successive Steiner points for
the flat sausage, we have not yet proved that the flat sausage has the path topology. The
proof proceeds in the following way: The minimizing direction of the objective function,
the length of the SMT, is shown to be the negative gradient of the objective function, which
is towards the centroid of the triangle. Next two flat sausage elements are combined by
conjoining their outermost edges. The triangle formed by this common vertex and the two
associated Steiner points is much like the case of the equilateral triangle. The corner of
the triangle common to both edges is a point of non-differentiability. The left- and right-
hand gradient∇L(X, Y )δh→0+ = [∂L/∂Xδh→0+, ∂L/∂Yδh→0+] and∇L(X, Y )δh→0− =
[∂L/∂Xδh→0−, ∂L/∂Yδh→0−] do exist at this point [11]. After a split operation at this
vertex, the locus of the resulting Steiner point is in the opposite direction of the derivative,
towards the axis of the composite flat sausage instead of the centroid of a lone triangle.
There are two minimizing directions, and both vectors can be resolved parallel and
perpendicular to the edge across this vertex. The resultant of the forces parallel to the
edge cancel each other out. The forces perpendicular to the edge reinforce each other
and are towards the centroid of the triangle.

This split operation, and consequent optimization, does not disrupt the path topology
in the neighborhood of the triangle, as the negative gradient vector(s) do not cross any
other edge during this operation. Therefore this process can be repeated ad infinitum to
generate the entire semi-group and the path topology for the infinite flat sausage.

Lemma 6. If the orientation of the elements (terminals) follows the path topology,
then the binary composition, consisting of a vertex split, and the subsequent relaxed
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iteration as applied to flat sausages is well defined and causes the inclusion of exactly
one additional Steiner vertex into the path topology.

Proof. Let V i
1 , V i

2 , . . . , V i
n1

denote the vertices of the flat sausage element ai . Let Si
1,

Si
2, . . . , Si

n1−2 denote the Steiner vertices of this element. Let V j
1 , V j

2 , . . . , V j
n2 denote

the vertices of the R-sausage aj . Let S j
1 , S j

2 , . . . , S j
n2−2 denote the Steiner vertices of

this element. The angle subtended by the last Steiner vertex Si
n1−2 in the element ai and

the leading Steiner vertex S j
1 of the element aj at the vertex Vn1 is less than 2π/3. The

negative derivative at this vertex is normal to the orientation of the composite element.
This centripetal force at the Steiner vertex, when transmitted to the Steiner vertices of the
two elements, remains perpendicular to the orientation of the elements. For this reason,
the drift towards the equilibrium position of the sum, which is guided by the relaxed
iteration will not lead to an alternate topology. The binary composition is therefore
well defined. Figure 11 illustrates this argument for three sausage elements, considered
individually at the top of the figure. The first element is the six point sausage, and the
second is a five point sausage. Two points with an edge between them are also included
in this set to simulate the situation of adding one additional point to an existing sausage
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Fig. 11. The binary composition for flat sausages.
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set. According to Du and Smith, the d-sausages may not support such operations in
dimensions higher than three [6].

Definition 4. A set of elements G, together with a binary composition +, is called an
Abelian group, denoted 〈G,+〉, if it satisfies the following group axioms:

1. ∀a, b ∈ G, a + b ∈ G.
2. ∀a, b ∈ G, a + b = b + a.
3. ∀a, b, c ∈ G, (a + b)+ c = a + (b + c).
4. There exists an element 0 ∈ G such that a + 0 = 0+ a = a,∀a ∈ G.
5. For every a ∈ G there exists a b ∈ G such that a + b = 0. This element is called

the inverse of element a and is denoted −a.

Remark 4. If all the above axioms are satisfied for a particular set and composition,
except for axiom 5, the pair 〈G,+〉 is called an Abelian semi-group. If axiom 2 also does
not hold, then the pair 〈G,+〉 is simply called a semi-group.

Lemma 7. The set of all flat sausages of finite length, in three dimensions, constitute
an infinite abelian semi-group that is closed under a binary composition. The topology
exhibited by a typical element of this semi-group is called the path topology.

Proof. We have shown that the binary composition defined in Lemma 6 is well defined
on the set of all flat sausages. Under this composition, they satisfy axioms 1–4 of Defini-
tion 4. It is however not a group as there is no inverse for a flat sausage. This semi-group
may also be denoted 〈an〉 or 〈an

1 〉 as every element except the identity element can be
generated from a1 by applying the binary composition, one or more times, to a unit
element:

a1 = a1 = a1
1,

a2 = a1 + a1 = a2
1,

a3 = a2
1 + a1 = a1 + a1 + a1 = a3

1,

a4 = a3
1 + a1 = a1 + a1 + a1 + a1 = a4

1,

an = an−1
1 + a1 = a1 + a1 + a1 · · · + a1︸ ︷︷ ︸

n−1 terms

+ a1 = an
1 .

Note that by an
1 one means a Maxwell sum of n terms rather than a product. Observe the

nice factorization of the Maxwell sums. Figure 12 illustrates the first few members of
this infinite semi-group.

Theorem 5. The infinite flat sausage in E2 has the path topology.

Proof. By applying the binary composition defined in Lemma 6 a countably infinite
number of times, the infinite flat sausage is also a member of the semi-group defined in
Lemma 7.
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Fig. 12. Members of the infinite semi-group.

5. Properties of theR-Sausage

There are many other interesting conjectures about the three-dimensional R-sausage.
These are primarily concerned with the structure of the R-sausage. In this section we
address some of these issues.

Figure 13 reveals the monotonic decrease in the Steiner ratio in three dimensions. A
modular study of the structure and evolving geometry of the R-sausage was conducted
to gather more evidence. Figure 14 illustrates the three-dimensional structure of the
R-sausage along with its convex hull [13].

The R-sausage was computationally rotated and translated by applying a transfor-
mation matrix, so that its axis, derived from the centroids of the constituent tetrahedra,
was approximately perpendicular to the plane. Given this best transformation matrix,
for anR-sausage of over 1000 tetrahedra, the 31st vertex was found offset from the first

5 10 15 20 25
N

0.785

0.79

0.795

0.805

0.81

0.815

Steiner Ratio

Fig. 13. Convergent Steiner ratio in three dimensions.
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Fig. 14. TheR-sausage and its convex hull.

vertex by approximately 5
360π . This confirmed Coxeter’s work with 28 tetrahedra. The

R-sausage does not have a fixed periodicity, even though it has a recursive structure.
This axial view phenomenon in its early stages is visible in Figure 15, which has been
obtained as the SMT for a very long, though finite,R-sausage vertex set.

Further computational assessment of the internal structure of a finite length three-
dimensional R-sausage with unit edge length was conducted. The fixed and Steiner
vertices were grouped into the following chains:

Chain A: (V1, V4, V7, V10, V13, V16, V19, V22, . . .),

Chain B: (V2, V5, V8, V11, V14, V17, V20, V23, . . .),

Chain C: (V3, V6, V9, V12, V15, V18, V21, V24, . . .),

Fig. 15. End view ofR-sausage.
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Fig. 16. Coordinates of Steiner vertex S0.

Chain a: (S0, S3, S6, S9, S12, S15, S18, S21, . . .),

Chain b: (S1, S4, S7, S10, S13, S16, S19, S22, . . .),

Chain c: (S2, S5, S8, S11, S14, S17, S20, S23, . . .).

Consider the first four Steiner vertices, S0–S3, corresponding to the optimal solution of
a finite length R-sausage. Plots such as those displayed in Figs. 16–19 showed that the
coordinates of the first few Steiner vertices begin to stabilize around particular values, as
the number of vertices in theR-sausage increases. Steiner vertices S0 and S3 are on chain
a, Steiner vertex S1 is on chain b, and Steiner vertex S2 is on chain c. This constituted
the initial evidence that the locus of the Steiner vertices converges over time and yields
recursive or iterative coefficients.

One may wish to express S4 as a convex combination of S0, S1, S2, S3. Numerical
analysis methods suggested solving a linear system of equations for the interpolating
variables X1, X2, X3 and X4. The coefficients of the following equations are the Euclidean
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Fig. 17. Coordinates of Steiner vertex S1.
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Fig. 18. Coordinates of Steiner vertex S2.

coordinates of the first four Steiner vertices which had been calculated by the Branch
and Bound algorithm:

−3.095960X1 − 3.498365X2 − 4.374615X3 − 5.320049X4 = −5.860865,

−1.448044X1 − 2.015002X2 − 2.160861X3 − 2.421030X4 = −3.274276,

−0.606943X1 − 0.424854X2 − .861840X3 − 0.211866X4 = −0.408658,

1.000000X1 + 1.000000X2 + 1.000000X3 + 1.000000X4 = 1.0000000.

That is,

X1S0 + X2S1 + X3S2 + X4S3 = S4,

where

X1 + X2 + X3 + X4 = 1.
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Fig. 19. Coordinates of Steiner vertex S3.
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Table 2. Cylindrical coordinates of the fixed vertices in three-dimensionalR-sausages.

Fixed vertices Twist angle (radians) Twist angle (degrees) Radius Z -axis

100 0.464538 26.616087 46.533745 −0.414621
200 0.464139 26.593238 91.245387 −0.403004
300 0.463952 26.582509 135.962945 −0.401460
400 0.463884 26.578648 180.682234 −0.403862
500 0.463836 26.575897 225.402276 −0.400075
600 0.463802 26.573911 270.122714 −0.402008
700 0.463783 26.572854 314.843390 −0.401359
800 0.463764 26.571739 359.564223 −0.400208
900 0.463752 26.571037 404.285162 −0.401782

1000 0.463742 26.570477 449.006179 −0.400220

This linear system can be represented compactly in matrix notation as P X = b
where P is a 4 × 4 matrix and X and b are 4 × 1 column vectors. The coefficients on
the left-hand side of the equations are the entries of matrix P , and the coefficients on the
right-hand side of the equations are the entries of the column vector b. The inverse of P
is P−1 and P−1b = X . The above linear system can be solved by reducing an identity
matrix if the determinant is non-singular. On doing so, one obtains the values of the
coefficients. Similar experiments were conducted with the other sets of Steiner vertices
along the R-sausage SMT. The coefficients converge to (−0.99, 0.67, 0.67, 0.67). The
inverse computations were performed correct to six decimal places and rounded off to
the second decimal place. Tables 2–5 display the cylindrical coordinates and the modular
difference among successive vertices of theR-sausage and its corresponding SMT. These
computed results re-affirmed the hypothesis that the locus of the Steiner vertices was
also a helix, and that the recursive coefficients â, b̂, ĉ and d̂ are (−1, 2

3 ,
2
3 ,

2
3 ). Lemma 8

consolidates all this evidence, with a vector algebraic proof.

Lemma 8. The coordinates of the Steiner vertices in the three-dimensionalR-sausage
are given by the recursive expression in (4) for some ā, b̄, c̄, d̄ ∈ �. These coefficients

Table 3. Gap between the cylindrical coordinates of the fixed vertices in three-dimensional
R-sausages.

Fixed vertices Twist angle (radians) Twist angle (degrees) Radius Z -axis

100 −0.003355 −0.192278 0.884360 0.005041
200 −0.001568 −0.089872 0.889379 0.005085
300 −0.001083 −0.062107 0.891047 0.008019
400 −0.000804 −0.046106 0.891888 −0.00505
500 −0.000639 −0.036614 0.892398 0.004687
600 −0.000540 −0.030984 0.892738 0.001851
700 −0.000456 −0.023079 0.892978 0.000607
800 −0.000402 −0.023079 0.893158 0.003365
900 −0.000358 −0.020535 0.893299 −0.000047

1000 −0.000320 −0.018347 0.893412 0.001816
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Table 4. Cylindrical coordinates of the Steiner vertices in three-dimensionalR-sausages.

Steiner vertices Twist angle (radians) Twist angle (degrees) Radius Z -axis

98 0.463761 26.571599 46.511136 −0.411359
198 0.463747 26.570761 91.232133 −0.402239
298 0.463700 26.568091 135.953344 −0.401027
398 0.463693 26.567689 180.674621 −0.402814
498 0.463685 26.567243 225.395927 −0.400061
598 0.463677 26.566742 270.117249 −0.401409
698 0.463675 26.566651 314.838581 −0.400994
798 0.463670 26.566352 359.559919 −0.401249
898 0.463669 26.566303 404.281261 −0.401249
998 0.463667 26.566208 449.002607 −0.400160

are precisely (−1, 2
3 ,

2
3 ,

2
3 ).

Sn = āSn−1 + b̄Sn−2 + c̄Sn−3 + d̄ Sn−4. (4)

Proof. To some extent this is similar to the case of the flat sausage. The inter-site
distances between the Steiner vertices are equal, because the resultant of all the forces
at a Steiner vertex in the infiniteR-sausage at equilibrium is the same. That is,

−−−→
Si Si+1 = ‖Si − Si+1‖ = k1, ∀i,

and
−−−→
Si Si+2 = ‖Si − Si+2‖ = k2, ∀i.

Furthermore,
−−−→
Si Si+3 = ‖Si − Si+3‖ = k3, ∀i.

Even though the base tetrahedron is no longer regular, the position vector argument, that
was employed in the proof of Lemma 5, continues to hold:

1
2 (Si−1 + Si ) = 1

3 (Si−4 + Si−3 + Si−2), ∀i.

Table 5. Gap between the cylindrical coordinates of Steiner vertices in three-dimensional R-
sausages.

Steiner vertices Twist angle (radians) Twist angle (degrees) Radius Z -axis

98 −0.000270 −0.015475 0.879492 −0.000188
198 0.001568 0.089872 0.889379 0.005085
298 0.000091 0.005269 0.889564 0.000621
398 0.000072 0.004139 0.890786 0.000178
498 0.000057 0.003287 0.891526 0.000851
598 0.000047 0.002730 0.892011 0.000006
698 0.000041 0.002382 0.892357 0.000409
798 0.000035 0.002038 0.892616 0.000351
898 0.000032 0.001872 0.892824 0.000007
988 0.000029 0.001680 0.892984 0.000425
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Rearranging terms:

Si = 2
3 (Si−4 + Si−3 + Si−2)− Si−1, ∀i.

The reflective symmetry that is exhibited there is inherited, in the limit, by this triangu-
lation of the optimal Steiner vertices.

Conjecture 6. Let the Vi ’s denote the coordinates of the fixed vertices. The Si ’s are
the coordinates of the movable Steiner vertices. The li ’s and the l ′i ’s are the absolute
values of the inter-site distances between the fixed vertices and the Steiner vertices. The
di ’s and the d ′i ’s are the inter-site distances between the Steiner vertices. One can now
formulate theR-sausage as a non-linear programming problem:

Vi = (ai , bi , ci ), ∀i = 2, . . . , n,
Si = (xi , yi , zi ), ∀i = 2, . . . ,m,
li = ‖Vi − Si−1‖, ∀i = 2, . . . , �m/2� + 1,
l ′i = ‖Vn+1−i − Vn−i‖, ∀i = 2, . . . , �m/2� + 1,
di = ‖Si − Si+1‖, ∀i = 1, . . . , �m/2� − 1,
d ′i = ‖Sm+1−i − Sm−i‖, ∀i = 1, . . . , �m/2� − 1,

l1 = ‖V1 − S1‖ and ‖l ′1 = ‖Vn − Sm‖.
Then

Minimize
m/2+1∑

i

li +
m/2−1∑

i

di

such that

li = l ′i , ∀i = 1, . . . , �m/2� + 1,

di = d ′i , ∀i = 1, . . . , �m/2� − 1.

These topologies are portrayed in Fig. 20. Table 6 presents the mean inter-site dis-
tances, and mean vertex to axis distance in Cartesian coordinates, with computed evi-
dence in support of this conjecture.

In general, if n is even, then there are n/2− 1 different SMT topologies. For an odd
number of vertices there are (n − 1)/2− 1 different topologies. For each topology, one
can also enumerate the Steiner base set. For the six vertex set in Fig. 21, one topology
has the Steiner base set {S1, S2, S2, S1} and the other topology has the Steiner base set
{S3, S1, S1, S1}. Though one has enumerated the SMT topologies, and the convex hulls
for a finite, regular point set, it is a complex task to find out which SMT is optimal
for a particular convex hull. Proving that the path topology corresponding to the set
{. . . , S2, S2, S2, . . .} is optimal for the R-sausage structure has proved a signifantly
complicated exercise. It is not yet clear how one can, if at all, put the remaining SMT
topologies into a one–one correspondence with the other convex hulls. An algebraic,
though non-linear, expression in terms of vector products has been obtained by resolving
all the forces exerted on a particular Steiner vertex in the optimal topology for the infinite
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Fig. 20. Even- and odd-numbered topologies.

R-sausage, and summing over all the Steiner vertices. At equilibrium, by Maxwell’s
theorem, the following vector sums should be zero:

∞∑
i=1

(2.
−−−→
Si Si+1 cosπ/3+−−−→Si Vi−1) = 0,

∞∑
i=1

(
−−−→
Si Si+1 +−−−→Si Vi−1) = 0.

We have found compact algebraic representations for them as infinite sums. The
solution of this objective function is feasible only for small vertex sets due to the extreme
non-linearity and non-differentiability of the objective function.

Table 6. Inter-site and radial distances within a three-
dimensionalR-sausage.

Type of vertex Type of vertex Inter-site distance

Fixed Fixed 1.000
Steiner Steiner 1.0690
Steiner Fixed 1.1490
Steiner Axis 0.320
Fixed Axis 1.469
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5.1. R-Sausages Have the Path Topology

It is our concern to show that, given the regular tetrahedra provision on the vertex sets
above, the infinite R-sausage in E3 also has the path topology. Different length three-
dimensional R-sausages have been shown to possess the path topology by complete
enumeration. Computational experiments show that ρ3 ≈ 0.784, the conjectured optimal
ρ3. This convergence of the ρ values of these finite length R-sausages is no guarantee
that the path topology is the optimal topology for the infinite R-sausage. Tables 7 and
8 provide computational evidence, from early attempts, to ascertain if a topology other
than the path topology could have a lower or equal ρ value for theR-sausage. The first
two columns of these two tables hold the values of i and j . The other columns provide the
SMT length and the ρ2 value. For a six vertex set, the path topology is the one pictured in
the middle, and the alternative topology is the one on the extreme right, in Fig. 21. The
moving indices i and j correspond to fixed vertices V1 and V2 in these two topologies. For
(i, j) = (1, 2), one obtains the path topology, with the lowest ρ3. Thus the path topology
is superior to the non-path topology for a six vertex three-dimensional vertex set. As

Table 7. SMT lengths and ρ values for path topology.

i j SMT length ρ i j SMT length ρ

1 2 11.4278 0.808065 2 6 12.3196 0.871127
1 3 11.5292 0.815235 3 4 11.8647 0.838960
1 4 11.5292 0.815235 3 5 12.0101 0.849245
1 5 12.0565 0.852520 3 6 11.9588 0.845611
1 6 12.3196 0.871127 4 5 12.0101 0.849245
2 3 11.5641 0.871127 4 6 11.9588 0.845611
2 4 11.5641 0.817704 5 6 11.8872 0.840555
2 5 11.8891 0.840690 * * * *
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Table 8. SMT lengths and ρ values for non-path topology.

i j SMT length ρ i j SMT length ρ

1 2 11.6040 0.820527 2 6 12.0950 0.855246
1 3 11.7371 0.829940 3 4 11.6040 0.820527
1 4 11.7371 0.829940 3 5 11.7371 0.829940
1 5 12.0950 0.855246 3 6 11.7371 0.829940
1 6 12.2931 0.869251 4 5 11.7371 0.829940
2 3 11.7371 0.829940 5 6 11.6040 0.820527
2 5 11.7830 0.833184 * * * *

one considers larger and larger vertex sets, one realizes that there is a methodological
infeasibility associated with the computational enumeration of all alternative topologies,
forR-sausages with more than six vertices. This enumerative procedure is an inductive
dead end. There is often more than one alternative to the path topology, and one may
not be able to rule out the emergence of one of these alternative topologies as optimal,
at the next step.

A symbolic factorization appears difficult here even though a symbolic representation
has not been difficult. A proof technique based on the “fold-up” of a semi-group property
from two dimensions to three dimensions seems appropriate. This may be considered
similar to the “inheritance of property” that is often encountered, in algebra, among
vector spaces, fields, rings and groups, when an operator is “induced” on a subspace or
subgroup. Given the non-scalar nature of the R-sausage object, it turns out to be the
fold-up of a semi-group property rather than a group property. This is understandable
because the existence of an inverse element, which is a group axiom, is, for such a set
element, meaningless.

Lemma 9. The binary composition defined in Lemma 6 for flat sausages, remains well
defined on the set of allR-sausages.

Proof. Though the R-sausages are three dimensional, the Maxwell operation, alter-
nately called a binary composition in the text, consisting of a split and optimization
remains along the plane of the triangle. The steepest descent is along the negative of the
left-hand gradient and a right-hand gradient:

∇L(X, Y, Z)δh→0+ = [∂L/∂Xδh→0+, ∂L/∂Yδh→0+, ∂L/∂Zδh→0+]

and

∇L(X, Y, Z)δh→0− = [∂L/∂Xδh→0−, ∂L/∂Yδh→0−, ∂L/∂Zδh→0−].

The gradients now have an additional ∂L/∂Z component. The number of minimizing
directions also jumps up to three, but, just like in the case of flat sausages, the component
of the gradient parallel to the axis of the composite R-sausage sum to zero, and one of
the components of the gradient is towards the axis of the composite element. The sum of
the third components provide a turning force on the entire element, and does not affect
the topology.
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Lemma 10. The set of all R-sausages of finite length, in three dimensions, constitute
an infinite abelian semi-group that is closed under the binary composition in Lemma 9.
The topology exhibited by a typical element of this semi-group is called the path topology.

The set satisfies axioms 1–4 of Definition 4, under the binary composition in
Lemma 9.

Theorem 7. The infiniteR-sausage in E3 has the path topology.

Proof. By applying the binary composition defined in Lemma 9 a countably infinite
number of times, the infiniteR-sausage is also a member of the semi-group ofR-sausages
with the path topology.

6. Summary

In this article we have taken a close look at the flat sausage and the R-sausage in two
and three dimensions, respectively. The path topology, a full Steiner tree topology, was
defined, and shown to be optimal for the flat sausage. An alphabet, where each of the
letters is a characterization of a Steiner point in terms of its neighboring vertices, was
presented. The path topology was shown to be equivalent to a converged sequence in
this finite alphabet. This allows a classification of more complex Steiner topologies, as
permutations and combinations of the path topology, for a specific traversal order. The
path topology was then shown to be optimal also for the R-sausage. This tightens our
set of conjectures that the flat sausage and the R-sausage have the best Steiner ratio in
the plane and in three dimensional Euclidean space.
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