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Abstract. Two new approaches are presented to establish the existence of polytopal
solutions to the discrete-data L p Minkowski problem for all p > 1.

Introduction

As observed by Schneider [23], the Brunn–Minkowski theory springs from joining the
notion of ordinary volume in Euclidean d-space, Rd , with that of Minkowski combi-
nations of convex bodies. One of the cornerstones of the Brunn–Minkowski theory is
the classical Minkowski problem. For polytopes the problem asks for the necessary and
sufficient conditions on a set of unit vectors u1, . . . , un ∈ Sd−1 and a set of real numbers
α1, . . . , αn > 0 that guarantee the existence of a polytope in Rd with n facets whose
outer unit normals are u1, . . . , un and such that the facet whose outer unit normal is ui

has area (i.e., (d − 1)-dimensional volume) αi . This problem was completely solved by
Minkowski himself (see [23] for reference): if the unit vectors do not lie on a closed
hemisphere of Sd−1, then a solution (i.e., polytope) exists if and only if

n∑
i=0

αi ui = 0.

In addition, the solution is unique up to a translation.
In the middle of the last century, Firey (see [23] for references) extended the notion

of a Minkowski combination of convex bodies and for each real p > 1 defined what
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are now called Firey–Minkowski L p combinations of convex bodies. A decade ago, in
[12], Firey–Minkowski L p combinations were combined with volume and the result was
an embryonic L p Brunn–Minkowski theory—often called the Brunn–Minkowski–Firey
theory. During the past decade various elements of the L p Brunn–Minkowski theory
have attracted increased attention (see, e.g., [3]–[5], [8]–[20], [22], and [24]–[29]).

A central problem within the L p Brunn–Minkowski theory is the L p Minkowski
problem. A solution to the L p Minkowski problem when the data is even was given in
[12]. This solution turned out to be a critical ingredient in the recently established L p

affine Sobolev inequality [18].
Suppose the real index p is fixed. The L p Minkowski problem for polytopes asks

for the necessary and sufficient conditions on a set of unit vectors u1, . . . , un ∈ Sd−1

and a set of real numbers α1, . . . , αn > 0 that guarantee the existence of a polytope
in Rd containing the origin in its interior with n facets whose outer unit normals are
u1, . . . , un ∈ Sd−1 and such that if the facet with outer unit normal ui has area ai and
distance from the origin hi , then for all i ,

h1−p
i ai = αi .

Obviously, the case p = 1 is the classical problem. For p > 1 uniqueness was established
in [12]. The L p Minkowski problem for polytopes is the discrete-data case of the general
L p Minkowski problem (described below).

In the discrete even-data case of the problem, outer unit normals u1, u−1, . . . , um, u−m

are given in antipodal pairs, where u−i = −ui , and α−i = αi . With the exception of
the case p = d , existence (and uniqueness) for the even problem was established in
[12] for all cases (where the unit vectors do not lie in a closed hemisphere of Sd−1).
A normalized version (discussed below) of the problem was proposed and completely
solved for p > 1 and even data in [19]. For d = 2, the important case p = 0 of the
discrete-data L p Minkowski problem was dealt with by Stancu [26], [27].

A solution to the L p Minkowski problem for p > d was given by Guan and Lin [8]
and independently by Chou and Wang [5]. The work of Chou and Wang [5] goes further
and solves the problem for polytopes for all p > 1.

The works of Guan and Lin [8] and Chou and Wang [5] focus on existence and
regularity for the L p Minkowski problem. Both works make use of the machinery of the
theory of PDEs. The classical Minkowski problem has proven to be of interest to those
working in both discrete and computational geometry. It is likely that the L p extension
of the problem will in time prove to be of interest to those working in these fields as well.
An approach accessible to researchers in convex, discrete, and computational geometry
appears to be desirable. This article presents two such approaches.

We begin by recalling the formulation of the L p Minkowski problem in full generality.
For a convex body K let hK = h(K , · ): Rd → R denote the support function of K ; i.e.,
for x ∈ Rd , let hK (x) = maxy∈K 〈x, y〉, where 〈x, y〉 is the standard inner product of x
and y in Rd . The induced norm is denoted by | · |. We write V (K ) for the d-dimensional
volume of the convex body K in Rd .

The surface area measure, S(K , · ), of the convex body K is a Borel measure on the
unit sphere, Sd−1 := {x ∈ Rd : |x | = 1}, such that

lim
ε→0+

V (K + εQ)− V (K )

ε
=

∫
Sd−1

hQ(u)S(K , du), (1)
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for each convex body Q. Here K + εQ is the Minkowski combination defined by

h(K + εQ, · ) = h(K , · )+ εh(Q, · ).
Existence of the surface area measure was shown by Aleksandrov and Fenchel and Jessen
(see [23]). The limit on the left-hand side of (1) is also equal to the special mixed volume
dV1(K , Q) := dV (K , . . . , K , Q), with d − 1 copies of K , and hence

V1(K , Q) = 1

d

∫
Sd−1

hQ(u)S(K , du); (2)

see a special case of Theorem 5.1.6 in [23].
The classical Minkowski problem asks for necessary and sufficient conditions for a

Borel measureµ on Sd−1 (called the data) to be the surface area measure of a convex body
K . The solution as obtained by Aleksandrov and independently by Fenchel and Jessen
(see [23]) is: Corresponding to each Borel measure µ on Sd−1 that is not concentrated
on a closed hemisphere of Sd−1, there is a convex body K such that

S(K , · ) = µ
if and only if ∫

Sd−1
uµ(du) = 0.

The uniqueness of K (up to translation) is a direct consequence of the Minkowski mixed-
volume inequality (see (6.2.2) of [23]) which states that for convex bodies K , Q,

V1(K , Q) ≥ V (K )(d−1)/d V (Q)1/d , (3)

with equality if and only if K is a dilate of Q (after a suitable translation).
Suppose p > 1 is fixed and K is a convex body that contains the origin in its interior.

The L p surface area measure, Sp(K , · ), of K is a Borel measure on Sd−1 such that

lim
ε→0+

V (K +p ε ·Q)− V (K )

ε
= 1

p

∫
Sd−1

h p
Q(u)Sp(K , du),

for each convex body Q that contains the origin in its interior. Here K +p ε ·Q is the
Minkowski–Firey L p combination defined by

h(K +p ε ·Q, · )p = h(K , · )p + εh(Q, · )p.

Existence of the L p surface area measure was established in [12] where it was also shown
that

Sp(K , · ) = h1−p
K S(K , · ).

It is easily seen that the surface area measure of a convex body (and hence also all the
L p surface area measures) cannot be concentrated on a closed hemisphere of Sd−1.

It turns out that if P is a polytope with outer unit facet normals u1, . . . , un , then
{u1, . . . , un} is the support of the measure S(P, · ) and S(P, {ui }) = ai , where as before
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ai denotes the area of the facet of P whose outer unit normal is ui . Thus, if P contains
the origin in its interior, then

Sp(P, {ui }) = h1−p
i ai ,

where as before hi = h(P, ui ).
The L p Minkowski problem asks for necessary and sufficient conditions for a Borel

measure µ on Sd−1 (the data for the problem) to be the L p surface area measure of a
convex body K ; i.e., given a Borel measureµ on Sd−1 that is not concentrated on a closed
hemisphere of Sd−1, what are the necessary and sufficient conditions for the existence
of a convex body K that contains the origin in its interior such that

Sp(K , · ) = µ

or equivalently

h1−p
K S(K , · ) = µ?

The problem is of interest for all real p.
For p > 1, but p �= d, the uniqueness of K is a direct consequence of the L p

Minkowski mixed-volume inequality (established in [12]) which states that if p > 1,
then for convex bodies K , Q that contain the origin in their interior,

Vp(K , Q) ≥ V (K )(d−p)/d V (Q)p/d ,

with equality if and only if K is a dilate of Q, where

Vp(K , Q) := p

d
lim
ε→0+

V (K +p ε ·Q)− V (K )

ε
.

The existence of the limit is proved in [12].
In [12] it was shown that if µ is an even Borel measure (i.e., assumes the same values

on antipodal Borel sets) that is not concentrated on a closed hemisphere of Sd−1, then
for each p > 1, there exists a unique convex body Kp that is symmetric about the origin
such that

Sp(Kp, · ) = µ,
provided p �= d . The L p Minkowski problem as originally formulated cannot be
solved for all even measures when p = d. The following normalized version of the
L p Minkowski problem was formulated in [19]: What are the necessary and sufficient
conditions on a Borel measure µ to guarantee the existence of a convex body K ∗p con-
taining the origin in its interior, such that

1

V (K ∗p)
Sp(K

∗
p , · ) = µ?

For all real p �= d the two versions of the problems are equivalent in that

Kp = V (K ∗p)
1/(p−d)K ∗p
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or equivalently

K ∗p = V (Kp)
−1/p Kp.

It was shown in [19] that the normalized L p Minkowski problem has a solution for all
p > 1 if the data measure is even (again assuming the measure is not concentrated on a
subsphere of Sd−1).

It is the aim of this note to present two alternate approaches to the Minkowski problem
which show that when the data is a discrete measure, the normalized version of the L p

Minkowski problem always has a solution (assuming, as usual, that the measure is not
concentrated on a closed hemisphere of Sd−1). It is important to emphasize that all of our
results for p > d were first obtained by Guan and Lin [8] and independently by Chou
and Wang [5], and all of our results for p > 1 were first obtained by Chou and Wang
[5]. The sole aim of our work is to present polytopal approaches easily accessible to the
convex, discrete, and computational geometry community.

Since the classical case p = 1 has been completely solved, we restrict our attention
to p > 1. Thus, throughout we always assume that the index p > 1.

1. Main Results

Let Kd denote the space of compact convex subsets of Rd with nonempty interiors, and
let Pd denote the subset of convex polytopes. The members of Kd are called convex
bodies. We write Kd

0 for the set of convex bodies which contain the origin as an interior
point, and put Pd

0 := Pd ∩Kd
0 .

For K ∈ Kd , let F(K , u) denote the support set of K with exterior unit normal vector
u, i.e., F(K , u) = {x ∈ K : 〈x, u〉 = h(K , u)}. The (d − 1)-dimensional support sets of
a polytope P ∈ Pd are called the facets of P . If P ∈ Pd has facets F(P, ui ) with areas
ai , i = 1, . . . , n, then S(P, ·) is the discrete measure

S(P, ·) =
n∑

i=1

aiδui

with (finite) support {u1, . . . , un} and S(P, {ui }) = ai , for each i = 1, . . . , n, and where
δui denotes the probability measure with unit point mass at ui .

Just as the L p surface area measure of a convex body K ∈ Kd
0 satisfies

Sp(K , ·) = h(K , ·)1−p S(K , ·),

the normalized L p surface area measure of K is defined by

S∗p(K , ·) := h(K , ·)1−p

V (K )
S(K , ·).

A convex body K is uniquely determined by its L p surface area measure if p > 1
and p �= d (for p = d one has uniqueness up to a dilation), uniqueness holds for the
normalized L p surface area measure and all p > 1.
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Again for a polytope P ∈ Pd
0 with outer unit facet normals u1, . . . , un and facet areas

a1, . . . , an > 0, i = 1, . . . , n, the discrete measures Sp(P, ·) and S∗p(P, ·) are given by

Sp(P, ·) =
n∑

i=1

h(P, ui )
1−paiδui

and

S∗p(P, ·) =
n∑

i=1

h(P, ui )
1−p

V (P)
aiδui .

In the case of a discrete measure µ = ∑n
j=1 αjδuj with unit vectors u1, . . . , un not

contained in a closed hemisphere and α1, . . . , αn > 0, any solution of the L p Minkowski
problem for the data µ is necessarily a polytope with facet normals u1, . . . , un (see
Theorem 4.6.4 of [23]). The main step in our approach to the L p Minkowski problem for
general measures and general convex bodies is to solve first the L p Minkowski problem
for discrete measures and polytopes.

Theorem 1.1. Suppose u1, . . . , un ∈ Sd−1 are not contained in a closed hemisphere
and α1, . . . , αn are positive real numbers. Then, for each p > 1, there exists a unique
polytope P ∈ Pd

0 such that

n∑
j=1

αjδuj =
h(P, ·)1−p

V (P)
S(P, ·).

From Theorem 1.1, we deduce the corresponding result for the L p Minkowski problem
involving discrete measures and polytopes.

Theorem 1.2. Suppose u1, . . . , un ∈ Sd−1 are not contained in a closed hemisphere
and α1, . . . , αn are positive real numbers. Then, for each p > 1, with p �= d, there exists
a unique polytope P ∈ Pd

0 such that

n∑
j=1

αjδuj = h(P, ·)1−p S(P, ·).

The extension of Theorem 1.1 to general measures can be obtained by approximating
with discrete measures. For each approximating discrete measure, we get a polytope as
the solution of the discrete L p Minkowski problem. We then show that a subsequence of
these polytopes must converge. Unfortunately, the limit body may well have the origin
on its boundary. For p ≥ d , we employ an additional argument to see that this does not
occur.

Theorem 1.3. Let µ be a Borel measure on Sd−1 whose support is not contained in a
closed hemisphere of Sd−1. Then, for p > 1, there exists a unique convex body K ∈ Kd

with 0 ∈ K such that

V (K )h(K , ·)p−1µ = S(K , ·);
moreover, K ∈ Kd

0 if p ≥ d .
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In Section 4 we show that for each p ∈ (1, d) there is a Borel measure µp on Sd−1

whose support is not contained in a closed hemisphere of Sd−1 for which the convex
body Kp ∈ Kd with the property that

V (Kp)h(Kp, ·)p−1µp = S(Kp, ·) (4)

is such that 0 is a boundary point of Kp.
The equivalence of the L p Minkowski problem and its normalized version lets us

deduce from Theorem 1.3 the following:

Theorem 1.4. Let µ be a Borel measure on Sd−1 whose support is not contained in a
closed hemisphere of Sd−1. Then, for p > 1 with p �= d, there exists a unique convex
body K ∈ Kd with 0 ∈ K such that

h(K , ·)p−1µ = S(K , ·);

moreover, K ∈ Kd
0 if p > d .

Theorem 1.4 solves the L p Minkowski problem for p > d. It would be interesting to
find necessary and sufficient conditions for 1 < p < d which guarantee a solution to
the L p Minkowski problem.

2. Volume and Diameter Bounds

The following three lemmas will be applied in two different ways. On the one hand, we
need them for our first treatment of the L p Minkowski problem for discrete measures and
polytopes which is based on Aleksandrov’s mapping lemma (see [1]). Here the lemmas
are applied in the very special situation where all convex bodies are polytopes containing
the origin in their interiors and with the same set of outer unit facet normals and where
all measures are discrete with common finite support. Except for Lemma 2.1, the proofs
of the lemmas in this special case are not simpler than the ones in the general case.
Therefore we present them in the general framework. Then again Lemmas 2.1–2.3 will
be required for the solution of the L p Minkowski problem in the case of general convex
bodies via an approximation argument.

The next lemma provides a uniqueness result which is used to establish the injectivity
of an auxiliary map (see Lemma 3.1) in our first proof of Theorem 1.1. It also yields the
uniqueness assertions of Theorems 1.1 and 1.3. Moreover, an estimate established in the
course of the proof of Lemma 2.1 is employed in the proof of Lemma 2.2.

Lemma 2.1. Suppose p > 1, and K , K ′ ∈ Kd are convex bodies with 0 ∈ K , K ′.
If µ is a Borel measure on Sd−1 such that V (K )h(K , ·)p−1µ = S(K , ·) and
V (K ′)h(K ′, ·)p−1µ= S(K ′, ·), then K =K ′.

Proof. Let Q ∈ Kd with 0 ∈ Q. Define � := {u ∈ Sd−1: h(K , u) > 0} and �c :=
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Sd−1\�. First note that

1

d

∫
�

h(K , u)S(K , du) = 1

d

∫
Sd−1

h(K , u)S(K , du) = V1(K , K ) = V (K ),

and hence h(K , ·)/(dV (K ))S(K , ·) is a probability measure on �. Next note that

S(K , �c) = V (K )
∫
�c

h(K , u)p−1µ(du) = 0,

and therefore

V1(K , Q) = 1

d

∫
�

h(Q, u)S(K , du);
see (2). These two facts, together with Hölder’s inequality, and the assumption p > 1
give (

1

d

∫
Sd−1

h(Q, u)pµ(du)

)1/p

≥
(∫

�

(
h(Q, u)

h(K , u)

)p h(K , u)S(K , du)

dV (K )

)1/p

≥
∫
�

h(Q, u)

h(K , u)

h(K , u)S(K , du)

dV (K )

= V1(K , Q)

V (K )
. (5)

For Q = K or Q = K ′ the left-hand side of (5) is equal to 1. Hence (5) and
Minkowski’s mixed-volume inequality (3) imply that

1 ≥ V1(K , K ′)
V (K )

≥
(

V (K ′)
V (K )

)1/d

,

and therefore V (K ) ≥ V (K ′). By symmetry, we get V (K ) = V (K ′), and thus by the
equality conditions of the Minkowski mixed-volume inequality K = K ′ + t for some
t ∈ Rd . The assumption and the translation invariance of the surface area measure now
yield that ∫

U
[h(K ′ + t, u)p−1 − h(K ′, u)p−1]µ(du) = 0

for all Borel sets U ⊂ Sd−1. In particular, we may choose Ut := {u ∈ Sd−1: 〈t, u〉 > 0}.
If t �= 0, then Ut is an open hemisphere. Since the support of µ is not contained in
Sd−1\Ut , we see that for t �= 0,∫

Ut

[(h(K ′, u)+ 〈t, u〉)p−1 − h(K ′, u)p−1]µ(du) > 0.

This shows that necessarily t = 0.

In the following two lemmas we provide a priori bounds for the volume and the
diameter of solutions of the L p Minkowski problem. The constant κd denotes the volume
of the unit ball Bd .
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Lemma 2.2. Supposeµ is a Borel measure on Sd−1, and the body K ∈ Kd is such that
0 ∈ K and V (K )h(K , ·)p−1µ = S(K , ·). Then

V (K ) ≥ κd

(
d

µ(Sd−1)

)d/p

.

Proof. Apply (5) with Q = Bd and use Minkowski’s inequality (3) (i.e., the isoperi-
metric inequality in this case) to get

(
1

d
µ(Sd−1)

)1/p

≥
(

κd

V (K )

)1/d

,

which is equivalent to the assertion of the lemma.

Subsequently, we set α+ := max{0, α} for α ∈ R. Further, we write Bd(0, r) for the
Euclidean ball with center 0 and radius r ≥ 0.

Lemma 2.3. Supposeµ is a Borel measure on Sd−1, and the body K ∈ Kd is such that
0 ∈ K and V (K )h(K , ·)p−1µ = S(K , ·). Assume that for some constant c0 > 0,∫

Sd−1
〈u, v〉p+ µ(du) ≥ d

cp
0

for all v ∈ Sd−1.

Then K ⊂ Bd(0, c0).

Proof. Define R := max{h(K , v): v ∈ Sd−1} and choose v0 ∈ Sd−1 so that R =
h(K , v0). Then R[0, v0] ⊂ K , and thus R〈u, v0〉+ ≤ h(K , u) for u ∈ Sd−1. Hence

R p

cp
0

≤ R p 1

d

∫
Sd−1
〈u, v0〉p+ µ(du) ≤ 1

d

∫
Sd−1

h(K , u)pµ(du)

= 1

d

∫
Sd−1

h(K , u)h(K , u)p−1µ(du)

= 1

dV (K )

∫
Sd−1

h(K , u)S(K , du) = 1,

which gives R ≤ c0.

3. The Lp Minkowski Problem for Polytopes

In this section we describe two different approaches to Theorem 1.1. The first proof
is based on the following auxiliary result, which is a minor modification of Aleksan-
drov’s mapping lemma. We include the proof for the sake of completeness. Note that
Aleksandrov used his mapping lemma to solve the classical Minkowski problem for
polytopes.
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Lemma 3.1. Let A, B ⊂ R
n be nonempty open sets, let B be connected, and let

ϕ: A→ B be an injective, continuous map. Assume that any sequence (xi )i∈N in A with
ϕ(xi )→ b ∈ B as i →∞ has a subsequence convergent in A. Then ϕ is surjective.

Proof. Since ϕ(A) ⊂ B is nonempty, it is sufficient to show that ϕ(A) is open and
closed in B.

Let bi ∈ ϕ(A), i ∈ N, with bi → b ∈ B as i →∞ be given. Then there are xi ∈ A
such that ϕ(xi ) = bi for i ∈ N. By assumption, there is a subsequence (xij )j∈N with
xij → x ∈ A as j →∞. Since ϕ is continuous, ϕ(xij )→ ϕ(x) and therefore b = ϕ(x).
Hence ϕ(A) is closed in B.

Since A is open in Rn and ϕ is continuous and injective, ϕ(A) is open in B by
the theorem of the invariance of domain (see Theorem 36.5 of [21] or Theorem 4.3
of [6]).

In the following we write H−u,t := {y ∈ Rd : 〈y, u〉 ≤ t} for the halfspace with
(exterior) normal vector u ∈ Sd−1 and distance t ≥ 0 from the origin.

For our first proof of Theorem 1.1, we can assume that the given vectors u1, . . . , un

are pairwise distinct and not contained in a closed hemisphere. Let Rn
+ be the set of all

x = (x1, . . . , xn) ∈ Rn with positive components. For x ∈ Rn
+, we define the (compact,

convex) polytope

P(x) :=
n⋂

j=1

H−uj ,xj
.

The compactness of P(x) is implied by the assumption that u1, . . . , un are not contained
in a closed hemisphere. Since x ∈ Rn

+, 0 is an interior point of P(x). Further, we remark
that x �→ P(x), x ∈ Rn

+, is continuous with respect to the Hausdorff metric (see p. 57
of [23]). We put B := Rn

+ and define

A := {x ∈ Rn
+: S(P(x), {uj }) > 0 for j = 1, . . . , n}.

Note that if x ∈ A, then xj = h(P(x), uj ) for j = 1, . . . , n. Clearly, A, B are nonempty
open subsets of Rn and B is connected. Next we define the map ϕ: A→ B by ϕ(x) :=
b = (b1, . . . , bn) with

bj := h(P(x), uj )
1−p

V (P(x))
S(P(x), {uj }) = S∗p(P(x), {uj }), j = 1, . . . , n.

We will show that ϕ satisfies the assumptions of Lemma 3.1 to conclude that ϕ is
surjective. The map ϕ is well-defined and continuous. The continuity of ϕ follows from
the continuity of the volume and the support function and from the weak continuity of
the surface area measure, since x �→ P(x) is continuous as well. Next we check that
ϕ is injective. Let x, y ∈ A be such that ϕ(x) = ϕ(y). Then Lemma 2.1 yields that
P(x) = P(y). Hence, by the definition of A, xj = h(P(x), uj ) = h(P(y), uj ) = yj for
j = 1, . . . , n, and thus x = y.
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Now let xi ∈ A, i ∈ N, be given. Assume that bi := ϕ(xi )→ b ∈ B as i →∞ and
put µi := S∗p(P(x

i ), ·) for i ∈ N. Since

µi (S
d−1) =

n∑
j=1

µi ({uj }) =
n∑

j=1

bi
j →

n∑
j=1

bj

as i →∞, we obtain µi (Sd−1) ≤ c1 <∞ for all i ∈ N. Hence, by Lemma 2.2 there is
a constant c2 > 0 such that, for i ∈ N,

V (P(xi )) ≥ c2 > 0. (6)

For the discrete measure µ := ∑n
j=1 bjδuj we have µi → µ weakly as i → ∞. The

functions fi , f defined by

fi (v) :=
∫

Sd−1
〈u, v〉p+µi (dv), f (v) :=

∫
Sd−1
〈u, v〉p+µ(dv),

v ∈ Sd−1, are continuous and positive since the support of µi , µ is not contained in
a closed hemisphere. Since fi converges uniformly to f as i → ∞ and the sphere is
compact, there is a constant c3 > 0 such that fi (v) ≥ c3 for all v ∈ Sd−1 and i ∈ N.
Lemma 2.3 now implies that there is a constant c4 such that, for i ∈ N,

P(xi ) ⊂ Bd(0, c4). (7)

By (7) there exists a convergent subsequence of P(xi ), i ∈ N. To simplify the
notation, we assume that P(xi ) → P ∈ Pd as i → ∞. Note that by (6) P has
indeed nonempty interior. Clearly, 0 ∈ P and the facets of P are among the support
sets F(P, u1), . . . , F(P, un) of P with normal vectors u1, . . . , un . We next show that
0 ∈ int(P). For this, assume that 0 is a boundary point of P . Then there is a facet
F(P, uj ) of P with 0 ∈ F(P, uj ) and S(P, {uj }) > 0, and therefore h(P, uj ) = 0.
Consequently, we get h(P(xi ), uj ) → 0 and S(P(xi ), {uj }) �→ 0, as i → ∞. In view
of (7) this implies that

bi
j = V (P(xi ))−1 S(P(xi ), {uj })

h(P(xi ), uj )p−1
→∞

as i →∞, a contradiction.
Since 0 ∈ int(P), we conclude that h(P(xi ), uj ) �→ 0 as i →∞, for j = 1, . . . , n,

and therefore also S(P(xi ), {uj }) �→ 0; here we use (6) and bi
j → bj �= 0 as i → ∞.

This finally shows that S(P, {uj }) > 0 for j = 1, . . . , n.
Thus we get P = P(x) for x := (h(P, u1), . . . , h(P, un)) ∈ A and xi → x as

i →∞.
Now Lemma 3.1 shows that ϕ is surjective, which implies the existence assertion of

the theorem. Uniqueness has already been established in Lemma 2.1.

We now give a second, variational proof of Theorem 1.1. An obvious advantage of this
approach is that it may be turned into a nonlinear reconstruction algorithm for retrieving
a convex polytope from its L p surface area measure. The main difficulty consists in
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showing that the solution of an auxiliary optimization problem is a convex polytope
which contains the origin in its interior.

The following lemma will be used to verify that a convex polytope which is defined as
the solution of an auxiliary optimization problem is indeed the solution of the normalized
L p Minkowski problem stated in Theorem 1.1. Lemma 3.2 can be found on p. 280 of [1].

Lemma 3.2. Let u1, . . . , un ∈ Sd−1 be pairwise distinct vectors which are not con-
tained in a closed hemisphere. For x ∈ Rn

+, let P(x) := ⋂n
i=1 H−ui ,xi

and Ṽ (x) :=
V (P(x)). Then Ṽ is of class C1 and ∂i Ṽ (x) = S(P(x), {ui }) for i = 1, . . . , n.

Proof. The second assertion can be checked by a direct argument. Alternatively, it can
be obtained as a very special case of Theorem 6.5.3 in [23]. Here one has to choose
� = {u1, . . . , un}, a positive, continuous function f : Sd−1 → R with f (uj ) = xj , and
a continuous function gi : Sd−1 → R with gi (uj ) = δi j , for j = 1, . . . , n. The first
assertion then follows, since x �→ S(P(x), {ui }) is continuous onRn

+ (see the first proof
of Theorem 1.1).

We start with the second proof of Theorem 1.1. Again we can assume that u1, . . . , un

are pairwise distinct unit vectors not contained in a closed hemisphere. Let α1, . . . , αn >

0 be fixed. We denote by Rn
� the set of all x = (x1, . . . , xn) ∈ Rn with nonnegative

components. Then we define the compact set

M := {x ∈ Rn
� : φ(x) = 1},

where

φ(x) := 1

d

n∑
i=1

αi x
p
i .

For x ∈ M , we again write P(x) for the convex polytope defined by

P(x) :=
n⋂

i=1

H−ui ,xi
.

Clearly, for any x ∈ M , 0 ∈ P(x) and P(x) has at most n facets whose outer unit
normals are from the set {u1, . . . , un}. Moreover, h(P(x), ui ) ≤ xi with equality if
S(P(x), {ui }) > 0, for i = 1, . . . , n. Since M is compact and the function x �→
V (P(x)) =: Ṽ (x), x ∈ M , is continuous, there is a point z ∈ M such that Ṽ (x) ≤ Ṽ (z)
for all x ∈ M . We will prove that P(z) is the required polytope.

First, we show that

0 ∈ int(P(z)). (8)

This will be proved by contradiction. Let hi := h(P(z), ui ) for i = 1, . . . , n. Without
loss of generality, assume that h1 = . . . = hm = 0 and hm+1, . . . , hn > 0 for some
1 ≤ m < n. Note that m < n is implied by Ṽ (z) > 0. We will show that under
this assumption there is some zt ∈ M such that Ṽ (zt ) > Ṽ (z), which contradicts the
definition of z. Pick a small t > 0 and consider

zt :=
((

z p
1 + t p

)1/p
, . . . ,

(
z p

m + t p
)1/p

,
(
z p

m+1 − αt p
)1/p

, . . . ,
(
z p

n − αt p
)1/p

)
,



On the L p Minkowski Problem for Polytopes 711

where

α :=
∑m

i=1 αi∑n
i=m+1 αi

.

Since 0 < hi ≤ zi for m + 1 ≤ i ≤ n, we have zt ∈ M if t > 0 is sufficiently small.
Define

Pt :=
m⋂

i=1

H−ui ,t ∩
n⋂

i=m+1

H−
ui ,(h

p
i −αt p)1/p ,

hence P0 = P(z), Pt ⊂ P(zt ) and 0 ∈ int(Pt ), if t > 0 is sufficiently small. We put

fi := S(P(z), {ui }) and �i (t) := S(Pt , {ui })− fi ,

and thus

dV (Pt ) = t
m∑

i=1

( fi +�i (t))+
n∑

i=m+1

(
h p

i − αt p
)1/p

( fi +�i (t))

and

dV1(Pt , P(z)) = 0
m∑

i=1

( fi +�i (t))+
n∑

i=m+1

hi ( fi +�i (t)),

where (2) is used.
Since an interior point of P(z) is also an interior point of Pt , if t > 0 is sufficiently

small, it follows that Pt → P(z) as t → 0+ (see p. 57 of [23]), and therefore�i (t)→ 0
as t → 0+. From this and since at least one facet is supposed to contain the origin, we
deduce that

lim
t→0+

V (Pt )− V1(Pt , P(z))

t

= 1

d
lim

t→0+

(
m∑

i=1

t − 0

t
( fi+�i (t))+

n∑
i=m+1

(
h p

i − αt p
)1/p − hi

t
( fi+�i (t))

)

= 1

d

m∑
i=1

fi > 0.

Here the assumption p > 1 enters in a crucial way. By Minkowski’s inequality (3)
and since Pt → P(z) as t → 0+, we get

0 < lim
t→0+

V (Pt )− V1(Pt , P(z))

t
≤ lim inf

t→0+

V (Pt )− V (Pt )
1−1/d V (P(z))1/d

t

= V (P(z))1−1/d lim inf
t→0+

V (Pt )
1/d − V (P(z))1/d

t
.

This shows that V (Pt ) > V (P(z)) if t > 0 is sufficiently small. Since Pt ⊂ P(zt ), the
required contradiction follows.

From (8) it follows that

z ∈ M+ := {x ∈ Rn
+: φ(x) = 1},
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and Ṽ (x) ≤ Ṽ (z) for all x ∈ M+. Hence, by the Lagrange multiplier rule there is some
λ ∈ R such that

∇ Ṽ (z) = λ∇φ(z).
The required differentiability of Ṽ is ensured by Lemma 3.2, and ∇φ(z) �= 0 since
z ∈ Rn

+ and α1, . . . , αn > 0; moreover,

fi = λ 1

d
αi pz p−1

i , i = 1, . . . , n,

and thus λ > 0, since fi > 0 for some i ∈ {1, . . . , n}. We deduce that fi > 0 and
therefore h(P(z), ui ) = zi for all i = 1, . . . , n. Since φ(z) = 1, we obtain

dV (P(z)) =
n∑

i=1

fi zi = λp
1

d

n∑
i=1

αi z
p
i = λp.

This shows that, for i = 1, . . . , n,

S(P(z), {ui }) = fi = d

p
V (P(z))

p

d
αi z

p−1
i = V (P(z))h(P(z), ui )

p−1αi > 0,

which completes our second proof of Theorem 1.1.

4. The General Case

We now provide a proof of Theorem 1.3. Theorem 1.4 is an immediate consequence by
the equivalence between the Minkowski problem and its normalized version, as outlined
in the Introduction. Let µ be a Borel measure on Sd−1 whose support is not contained in
a closed hemisphere. As on pp. 392–393 of [23], one can construct a sequence of discrete
measures µi , i ∈ N, such that the support of µi is not contained in a closed hemisphere
and µi → µ weakly as i →∞. By Theorem 1.1, for each i ∈ N there exists a polytope
Pi ∈ Pd

0 with

µi = h(Pi , ·)1−p

V (Pi )
S(Pi , ·).

As in the proof of (7), we see that the sequence Pi , i ∈ N, is uniformly bounded.
Hence we can assume that Pi → K ∈ Kd as i → ∞ and 0 ∈ K . In fact, since
µi (Sd−1)→ µ(Sd−1) as i →∞, we get as in the proof of (6) that V (K ) > 0, and thus
K ∈ Kd .

For a continuous function f ∈ C(Sd−1) and i ∈ N we have∫
Sd−1

f (u)V (Pi )h(Pi , u)p−1µi (du) =
∫

Sd−1
f (u)S(Pi , du). (9)

Since V (Pi )h(Pi , ·)p−1 → V (K )h(K , ·)p−1 uniformly on Sd−1 (note that p − 1 > 0),
and since µi → µ and S(Pi , ·)→ S(K , ·) weakly, as i →∞, we obtain from (9) that∫

Sd−1
f (u)V (K )h(K , u)p−1µ(du) =

∫
Sd−1

f (u)S(K , du). (10)

The existence assertion now follows, since (10) holds for any f ∈ C(Sd−1).
Uniqueness had been proved in Lemma 2.1.
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Now we consider the case p ≥ d. Assume that K ∈ Kd with 0 ∈ K satisfies
V (K )h(K , ·)p−1µ = S(K , ·), but 0 ∈ ∂K . We derive a contradiction by adapting an
argument from [5].

Let e ∈ Sd−1 be such that ∂K can locally be represented as the graph of a convex
function over (a neighborhood of) Br := He,0 ∩ Bd(0, r), r > 0, and K ⊂ H−−e,0 (see
Theorem 1.12 of [2]), where He,0 := {x ∈ Rd : 〈x, e〉 = 0}. Let µi and Pi ∈ Pd

0 be
constructed for µ as in the first part of the proof. In particular, µi (Sd−1) ≤ c5 <∞ and
0 ∈ int(Pi ), for all i ∈ N, and Pi → K as i →∞ with respect to the Hausdorff metric.
Then, for i ≥ i0, ∂Pi can locally be represented as the graph of a convex function gi

over Br , and the Lipschitz constants of these functions are uniformly bounded by some
constant L . We define Gi (y) := y + gi (y)e for y ∈ Br , put α := p − 1 and write c6, c7

for constants independent of i and r . Then, for i ≥ i0,

c5 ≥ µi (S
d−1) = 1

V (Pi )

∫
Sd−1

h(Pi , u)−αS(Pi , du)

≥ c6

∫
Gi (Br )

〈x, σ (Pi , x)〉−αHd−1(dx),

where Hd−1 denotes the (d − 1)-dimensional Hausdorff measure and σ(Pi , x) is an
exterior unit normal vector of Pi at x ∈ ∂Pi , which is uniquely determined for Hd−1-
almost all x ∈ ∂Pi . Since gi is Lipschitz on Br , the differential (dgi )y exists for Hd−1-
almost all y ∈ Br . Let (e1, . . . , ed−1, e) be an orthonormal basis of Rd . Then we put
∇gi (y) := ∑d−1

j=1 (dgi )y(ej )ej , whenever (dgi )y exists. Using the area formula and the
fact that

σ(Pi ,Gi (y)) =
(
1+ |∇gi (y)|2

)−1/2
(∇gi (y)− e) ,

forHd−1-almost all y ∈ Br , we obtain

c5 ≥ c6

∫
Br

〈Gi (y), σ (Pi ,Gi (y))〉−α
√

1+ |∇gi (y)|2Hd−1(dy)

= c6

∫
Br

(〈y,∇gi (y)〉 − gi (y))
−α √

1+ |∇gi (y)|2
1+α
Hd−1(dy)

≥ c6

∫
Br

(〈y,∇gi (y)〉 − gi (y))
−αHd−1(dy).

Since

0 < 〈y,∇gi (y)〉 − gi (y) ≤ 2 d L|y| + |gi (0)|,
we further deduce that

c5 ≥ c6

∫
Br

(2 d L|y| + |gi (0)|)−αHd−1(dy) = c7

∫ r

0
(2 d Lt + |gi (0)|)−α td−2 dt.

Since |gi (0)| → 0 as i →∞, we can extract a decreasing subsequence of (|gi (0)|)i∈N.
Hence the monotone convergence theorem yields that

c5 ≥ c7

∫ r

0
(2 d Lt)−αtd−2 dt,

which implies that α < d − 1; a contradiction.



714 D. Hug, E. Lutwak, D. Yang, and G. Zhang

The following example demonstrates that the assumption p ≥ d in the second part
of the assertion of Theorem 1.3 cannot be omitted.

Example 4.1. We now give an example of a Borel measureµ on Sd−1 whose support is
not contained in a hemisphere and such that 0 is a boundary point of the uniquely deter-
mined convex body K ∈ Kd for which V (K )h(K , ·)p−1µ = S(K , ·). Let (e1, . . . , ed)

denote an orthonormal basis of Rd such that span{e1, . . . , ed−1} = Rd−1 × {0}.
For q > 1 we define g(x) := |x |q for x ∈ Rd−1 and

K := {(x, t) ∈ Rd−1 × R: t ≥ g(x)} ∩ H−ed ,1
.

Clearly, K ∈ Kd , 0 ∈ ∂K , and ∂K is C2 in a neighborhood of 0 excluding 0. The given
convex body satisfies V (K )h(K , ·)p−1µ = S(K , ·) if

µ := h(K , ·)1−p

V (K )
S(K , ·)

defines a finite measure on Sd−1 and S(K , {−ed}) = 0. Since indeed S(K , {−ed}) = 0
and h(K , u) > 0 for u ∈ Sd−1\{−ed}, and since S(K , ·) is absolutely continuous with
respect to the spherical Lebesgue measure (with density function fK ) in a spherical
neighborhood of −ed , it remains to show that h(K , ·)1−p fK is integrable in a spherical
neighborhood of −ed . For r ∈ (0, 1) we put Br := Bd(0, r) ∩ Hed ,0. Then we define

a(x) := (1+ |∇g(x)|2)1/2, x ∈ Br\{0},
where ∇g(x) :=∑d−1

i=1 dgx (ei )ei = q|x |q−2x . For x ∈ Br\{0} and

u := σ(K , (x, g(x))) = a(x)−1(∇g(x)− ed),

we get

h(K , u) = 〈(x, g(x)), u〉 = a(x)−1(q − 1)|x |q ,
fK (u)

−1 = a(x)−(d+1) det
(
d2g(x)

)
,

and hence

h(K , u)1−p fK (u) = (q − 1)1−pa(x)d+p|x |q(1−p)
[
det

(
d2g(x)

)]−1
.

A direct computation shows that

det
(
d2g(x)

) = qd−1(q − 1)|x |(q−2)(d−1),

and therefore

h(K , u)1−p fK (u) = q1−d(q − 1)−p|x |−[(q−2)(d−1)+q(p−1)]a(x)d+p,

for x ∈ Br\{0} and u = σ(K , (x, g(x))). For a given p ∈ (1, d), we now choose

q := 2(d − 1)

d + p − 2
∈ (1, 2),

and hence, for x ∈ Br\{0} and u = σ(K , (x, g(x))),

h(K , u)1−p fK (u) = q1−d(q − 1)−pa(x)d+p.

Since x �→ a(x) is bounded on Br\{0} and K is strictly convex in a neighborhood of the
origin, the required integrability follows.
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24. C. Schütt and E. Werner, Polytopes with vertices chosen randomly from the boundary of a convex body,

Lecture Notes in Mathematics 1807, Springer-Verlag, New York, 2003, pp. 241–422.
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