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Abstract. We study realizations of periodic graphs in Euclidean spaces with each vertex
in the center of gravity of its neighbors. As a first application, we show that every planar,
3-connected, 2-periodic graph can be drawn into the plane with convex faces such that the
drawing realizes every combinatorial automorphism of the graph as an isometric symmetry.
This extends results by Thomassen and by Mani-Levitska, Guigas, and Klee.

1. Introduction

Graph embeddings into the ordinary plane have been studied in some detail. Tutte [Tu1],
[Tu2] gave criteria for the existence of a convex embedding with a prescribed outer
polygon. In particular, every finite 3-connected planar graph has a convex representation.
This follows already from Steinitz’ theorem [St] asserting that every such graph is the
1-skeleton of some convex three-dimensional polyhedron.

Tutte’s proof, apart from being slightly more general, uses a particularly elegant
construction in which every inner vertex is placed at the center of gravity of its neighbors.
It can be shown that for every placement of the outer vertices, the resulting system
of linear equations has a unique solution. Consequently, every symmetry of the outer
polygon which is compatible with some automorphism of the graph induces a symmetry
of the whole embedding.

Tutte’s construction can be interpreted as the equilibrium state of a dynamical system
where pairs of adjacent vertices are attracted to each other by forces proportional to the
respective edge lengths. Such equilibrium placements have, in turn, been used to prove
Steinitz’ theorem [RG].

In [Th1] Thomassen presents generalizations of many standard planarity results to
infinite graphs. In particular, he shows that for every 3-connected graph which has a
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planar representation without vertex accumulation points, this representation is essen-
tially unique and can be chosen to be convex. Mani-Levitska et al. [MLGK] provide a
related result, showing that every planar, 3-connected, 2-periodic map has a convex, 2-
periodic realization. Thomassen later presents a simpler proof [Th2], using his own result
on criteria for admissible outer polygons in convex representations of 2-connected, finite
graphs (also from [Th1]), an extension of Tutte’s theorem. Thomassen’s technique can be
generalized to obtain convex realizations which exhibit more than just the translational
symmetries of a given periodic graph [De]. Yet there seems to be no easy way to extend
it to the case where some facial cycles are left fixed by automorphisms of the graph.

By generalizing Tutte’s technique of barycentric placement, we show here that ev-
ery planar, 3-connected, 2-periodic graph has an embedding with convex faces such
that every automorphism of the graph is induced by an isometric symmetry of the em-
bedding. As a corollary, we establish that every planar, cellular map with a 2-periodic,
2-connected underlying graph has a realization with star-shaped faces such that every
map automorphism is induced by an isometric symmetry of that realization.

2. Periodic Graphs

Some terminology is given below. Otherwise, we essentially follow Diestel [Di].
We consider simple undirected graphs with positive, real edge weights. For our pur-

poses, a graph is a triplet (V, E, ω), where V is a non-empty countable set of vertices,
E is a set of two-element subsets of V , called edges, and ω: E → R is a function, called
a stress, with ω(e) > 0 for all e ∈ E . We denote the stress of a graph G by ωG . The
ω-image of an edge vw, also called the stress on vw, will be written ωvw.

For v ∈ V , the set of vertices adjacent to v is called the neighborhood of v in G and
denoted N (v). The valency of a vertex is the size of its neighborhood. A graph is locally
finite if all its vertices have finite valency. In the following, all graphs are assumed to be
locally finite.

If U ⊆ V is a set of vertices, the induced subgraph with vertex set U is denoted
G[U ]. We write G − U := G[V \U ], and, for H ⊆ G, we write G[H ] := G[V (H)]
and G − H := G − V (H). When specifying subgraphs in the rest of this paper, we take
it that stresses are always inherited from the containing graph.

A path is a finite graph P of the form

V (P) = {v0, . . . , vk}, E(P) = {v0v1, v1v2, . . . , vk−1vk},
with the vi pairwise different. We say that P is a path from v0 to vk or between v0 and
vk and that v0, vk are linked by and the ends of P .

If H is a subgraph of G and A is a subgraph of G − H , then a vertex of attachment
of A in H is a vertex v ∈ H with N (v) ∩ V (A) 
= ∅. An H-component of G is either
an edge e ∈ E(G[H ])\E(H) (or, more precisely, the graph G[{v,w}], where e = vw)
or the graph induced by some component of G − H together with all its vertices of
attachment.

A cycle is a connected graph of size at least 3, all vertices of which have valency 2.
Where not stated otherwise, cycles are assumed to be finite. A connected graph with no
finite cycles is a tree. Every finite tree contains vertices of valency 1, its leafs.
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A (vertex) traversal of a graph is a finite or infinite alternating sequence

v0e1v1e2v2 · · ·

of vertices and edges where {v0, v1, . . .} = V (G), vi 
= vj if i 
= j and ei =
vki vi for certain ki < i . Every connected graph with countably many vertices has a
traversal.

Graph isomorphisms in our setting are understood to respect stresses. An automor-
phism, as usual, is a self-isomorphism of a graph. The group of all automorphisms of
a graph G is denoted Aut(G). For ϕ ∈ Aut(G), � ⊆ Aut(G) and H ⊆ G, we write
ϕH := (ϕ(V (H)), ϕ(E(H))) and

�H :=
⋃
ϕ∈�

ϕH :=
(⋃
ϕ∈�

ϕ(V (H)),
⋃
ϕ∈�

ϕ(E(H))

)
.

We define a periodic graph as a pair (G, T ), where G is an infinite graph and T
is a free Abelian subgroup of Aut(G) which acts on G freely and such that its set
V/T := {T v | v ∈ V } of vertex orbits is finite. The group T is called a translation
group for G and its rank is called the dimension of (G, T ). The pair (G, T ) is also called
a periodic structure on G. A periodic graph of dimension d is called d-periodic. The
translation group T and the periodic graph (G, T ) are both called maximal if no periodic
structure (G, T ′) exists with T � T ′. Note that a graph can have more than one, in fact
even uncountably many, maximal periodic structures.

An isomorphism between periodic graphs (G, T ) and (G ′, T ′), also called a periodic
isomorphism and denoted ϕ: (G, T )→ (G ′, T ′), is an isomorphism ϕ: G → G ′ satisfy-
ing ϕTϕ−1 = T ′. A periodic isomorphism ϕ is uniquely determined up to translations by
its action on the vertex and edge orbits. This can be seen easily by defining ϕ inductively
on a traversal of G. As usual, a periodic automorphism is a periodic isomorphism from
a periodic graph to itself and the group of all automorphisms of (G, T ) is denoted by
Aut(G,T).

We note the following fact on periodic graphs for later reference:

Lemma 1. Let (G, T ) be a connected, d-periodic graph, d ≥ 2, with a finite separating
set U . Then of the components of G −U , exactly one is infinite.

Proof. Let (G, T ), G = (V, E) be a counterexample with the minimal number n
of vertex orbits. Assume n > 1. Because G is connected, some edge e = uv ∈ E
must have u and v in different orbits. We consider the graph G ′ = (V ′, E ′) obtained
from G by contracting all the edges in the T -orbit of e. Assume V ′ := V \T v. Then,
by construction, the restriction of every τ ∈ T to V ′ is an automorphism of G ′. We
write τ ′ := τ |V ′ and T ′ := {τ ′ | τ ∈ T }. There are exactly n − 1 orbits of T ′ on
V ′. If P is a path in G between vertices a, b ∈ V ′, then there is a similar path in G ′

obtained by replacing every occurrence of τv for some τ ∈ T by τu. Consequently, G ′ is
connected.

Conversely, if P ′ is a path between a and b in G ′, it is easy to see that there is such
a path in G as well. Thus, if U separates G, then either U ′ := U ∩ V ′ separates G ′,
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or every component of G − U except one contains only vertices in T v. However, if C
is an infinite component with, say V (C) = Sv for some S ⊆ T , then U must contain
the infinite vertex set Su, a contradiction. Furthermore, if C is an infinite component of
G −U with X := V (C)\T v finite, we can replace U by U ∪ X and arrive at the same
contradiction. Consequently, for every infinite component of G −U there is an infinite
component of G ′ −U ′ and G ′ is a “smaller” counterexample.

For n = 1, because G is connected, it must contain a subgraph H isomorphic to the
d-dimensional lattice. Obviously, the lemma holds for H . If H does not span G, some
collection of finitely many translates of H does. Any shortest path between two such
translates, say H and τH , has infinitely many translates which still connect H and τH .
Thus, no pair of translates of H can be separated by a finite set of vertices.

We find it convenient to distinguish between point vectors and distance vectors (which
may also be interpreted as translation vectors), where, as usual, the affine space of point
vectors is denoted Ed while the linear space of distance vectors is written Rd . Thus, the
difference of two point vectors is a distance vector and so on. In particular, an affine
map on Ed induces a linear map on Rd . The group of all affine maps on Ed is denoted
aff(Ed).

A placement of a graph G is a function p: V (G)→ Ed for some d ∈ N. For an edge
e = vw ∈ E(G), we write p(v,w) = p(w)− p(v). Please note that, unlike before, this
notation depends on the order of v and w, thus in particular p(w, v) = −p(v,w) and
we cannot just write p(e).

A graph automorphism ϕ and a homeomorphism α:Ed → Ed are associated with
respect to a placement p if p ◦ ϕ = α ◦ p.

If (G, T ) is a d-periodic graph, a placement of G is called periodic with respect to
T if every τ ∈ T is associated to some affine translation τ ∗ = τ ∗p ∈ Rd and the set
T ∗ := {τ ∗ | τ ∈ T } spans Rd in the sense that the set of corresponding translation
vectors contains a basis for Rd . Clearly, then, τ ∗ must be unique for any given τ and the
map τ �→ τ ∗ must be a group isomorphism.

Lemma 2. If (G, T ) and (G ′, T ′) are d-periodic graphs, ϕ: (G, T ) → (G ′, T ′) is a
periodic isomorphism and p is a periodic placement of (G ′, T ′), then q := p ◦ ϕ is a
periodic placement of (G, T ).

Proof. Consider some arbitrary τ ∈ T and let τϕ := ϕτϕ−1. By assumption, τϕ ∈ T ′,
so (τ ϕ)∗p is defined. It follows that

q(τv) = p(ϕτv) = p(τ ϕϕv) = (τ ϕ)∗p(p(ϕv)) = (τ ϕ)∗p(q(v))

holds for every v ∈ V (G), thus τ is associated to (τ ϕ)∗p with respect to q and we may
write τ ∗q := (τ ϕ)∗p. Because the map τ �→ τϕ is an isomorphism from T to T ′, we must
have

T ∗q = {(τ ϕ)∗q | τ ∈ T } = {τ ′∗p | τ ′ ∈ T ′} = T ′∗p.

Consequently, q is periodic.
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3. Equilibrium Placements

A placement p is called in equilibrium or an equilibrium placement if for every vertex
v ∈ V (G) we have ∑

w∈N (v)

ωvw · p(v,w) = 0.

Proposition 3. Let G and G ′ be graphs with equilibrium placements p and p′. Let α
be an affine transformation such that α ◦ p is defined and let ϕ: V (G)→ V (G ′) be an
isomorphism from G to G ′. Then α ◦ p and p ◦ ϕ are in equilibrium, as well.

Proof. As noted before, the affine transformation α induces a linear transformation,
also denoted α, on the set of distance vectors. Thus,∑

w∈N (v)

ωvw · (α(p(w))− α(p(v))) =
∑

w∈N (v)

ωvw · α(p(v,w))

= α

( ∑
w∈N (v)

ωvw · p(v,w)

)
= α(0) = 0

for all v ∈ V .
Regarding the isomorphism ϕ, we obtain∑

w∈N (v)

ωvw · (p(ϕw)− p(ϕv)) =
∑

w∈N (v)

ωϕ(v)ϕ(w)(p(ϕw)− p(ϕv))

=
∑

w′∈N (ϕv)

ωϕ(v)w′(p(w
′)− p(ϕv)) = 0

for all v ∈ V .

The proof of the following theorem, establishing existence and uniqueness of equi-
librium placements, is an adaption of a similar result from [RG].

Theorem 4. Let (G, T ) be a connected, d-periodic graph with T = 〈τ1, . . . , τd〉 and
let t1, . . . , td be a basis ofRd . Then there is a periodic equilibrium placement p of (G, T )
with (τi )

∗
p = ti for i = 1, . . . , d . Moreover, p is unique up to translations.

Proof. Let G = (V, E, ω). We construct a minimal, connected, finite subgraph G0 =
(V0, E0) of G which contains exactly one vertex from each T -orbit. This can be done
inductively using the connectedness of G. Clearly, E0 contains at most one edge from
each T -orbit on E .

We may ignore edges of the form {v, τv} ∈ E with τ ∈ T because ωv,τv = ωv,τ−1v

and thus, using the notation v′ := τ−1v,

ωv,τv p(v, τv)+ ωv,τ−1v p(v, τ−1v) = ωv,τv(p(v, τv)− p(v′, τv′)) = 0. (∗)
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Let E ′ := {vw ∈ E | T v 
= Tw}. By construction, E0 is a subset of E ′. Extend G0

to a connected graph (V1, E1)which contains exactly one edge from each T -orbit on E ′.
Let V0 = {v0, . . . , vk} and V1 = {v0, . . . , vm}, where m ≥ k > 0. A periodic placement
with prescribed translation vectors is completely determined by its values on V0.

For i ∈ {0, . . . ,m} define r(i) ∈ {0, . . . , k} such that vi = τvr(i) for some τ ∈ T . The
vertex vr(i) and the automorphism τ are both uniquely determined by i . For an arbitrary
vector z = (x0,1, . . . , x0,d , . . . , xk,1, . . . , xk,d), define p = pz as the placement induced
by p(vi ) = (xi,1, . . . , xi,d) for i = 0, . . . , k and let

W (z) := 1

2

∑
vw∈E1

ωvw · ||p(v,w)||2.

Consider a critical point z of W . The partial derivative

d||pz(vi )− pz(vj )||2
dxν,µ

is non-zero if and only if either r(i) = ν or r( j) = ν. Write Eν := {viw ∈ E1 | r(i) = ν}
and p(w) = (w1, . . . , wd) for w ∈ V .

Consequently,

dW

dxν,µ
=

∑
viw∈Eν

ωviw · (wµ − xi,µ)

=
∑
vνw∈E ′

ωvνw · (wµ − xν,µ) =
∑

w∈N (vν )

ωvνw · (wµ − xν,µ).

The second equality follows because the edges in E ′ which are incident to vν are in
one-to-one correspondence to and translates of those edges in E1 which are incident to
some v ∈ V1 in the orbit of vν . Moreover, by construction, we have p(w) − p(v) =
p(τw)− p(τv) for τ ∈ T . The third equality follows from (∗).

Thus, there is a one-to-one correspondence between critical points of W and equilib-
rium placements of G with the prescribed translation vectors t1, . . . , td . Because W is
invariant with respect to translation, we may assume p(v0) = 0 and have to show that
the restricted function W0 := W |x0,1=...=x0,d=0 has exactly one critical point.

If ||z|| = ||(x1,1, . . . , x1,d , . . . , xk,1, . . . , xk,d)|| > a for some positive a ∈ R, then

there is at least one i ∈ {1, . . . , k} and one j ∈ {1, . . . , d} with |xi, j | > a/
√

kd. There
is a path in G0 of length at most k from v0 to vi . Thus there is at least one edge vlvr in
that path for which

|xl, j − xr, j | ≥
|xi, j |

k
>

a√
k3d

.

This implies

W0(z) >
min(ω)a2

2k3d
.

Thus, whenever

||z|| >
√

W0(0) · 2k3d

min(ω)
,

we have W0(z) > W0(0).
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This implies that the quadratic function W0 is non-degenerate and thus has a unique
critical point, which in this case is a minimum.

In the rest of this section we show that, for an appropriate choice of metric, every
automorphism of a graph in equilibrium placement is associated to an isometry. Unless
stated otherwise, let (G, T ) be a connected, d-periodic graph with G = (V, E, ω) and
T = 〈τ1, . . . , τd〉. Let p be a periodic equilibrium placement of G. For i = 1, . . . , d,
write ti := (τi )

∗
p and set T ∗ = T ∗p := {τ ∗ | τ ∈ T } = 〈t1, . . . , td〉. Let � := Aut(G,T).

Lemma 5. Let (G, T ) and (G ′, T ′) be d-periodic graphs with periodic placements p
and p′, respectively, and let ϕ: (G, T ) → (G ′, T ′) be a periodic isomorphism. Then
there is a unique affine map ϕ∗:Ed → Ed with p′ ◦ ϕ = ϕ∗ ◦ p.

Proof. For τ ∈ T , set τϕ := ϕτϕ−1 and ϕ∗(τ ∗p ) := (τ ϕ)∗p′ . By assumption, the mapping
τ �→ τϕ defines a bijection between T and T ′. It follows that ϕ∗ maps T ∗p bijectively
onto T ′∗p′ . Consequently, ϕ∗ extends to a unique, well-defined, linear isomorphism ofRd .
By setting ϕ∗(p(v0)) := p′(ϕv0), we obtain a unique, non-singular affine map. Because
for every τ ∈ T , we have

p′(ϕτv0) = p′(τ ϕϕv0) = p′(ϕv0)+ (τ ϕ)∗p′
= ϕ∗(p(v0))+ ϕ∗(τ ∗p ) = ϕ∗(p(v0)+ τ ∗p ) = ϕ∗(p(τv0)),

the periodic equilibrium placements p′ ◦ ϕ and ϕ∗ ◦ p agree on T v0, so by Theorem 4,
they must be identical.

Lemma 6. There is unique group homomorphism

∗:� → aff(Ed)

γ �→ γ ∗

such that γ is associated to γ ∗ for every γ ∈ �.

Proof. By Lemma 5, the map ∗ exists and is uniquely determined. It remains to show
that it is a group homomorphism: by definition, ∗ must map the identity in � to the
identity in aff(Ed). For arbitrary β, γ ∈ � and arbitrary v ∈ V , we have

(βγ )∗(p(v)) = p(βγ v) = β∗(p(γ v)) = β∗(γ ∗(p(v))) = (β∗γ ∗)p(v).

We note some special cases which indicate that, in general, ∗ is not injective.

Corollary 7. If γ is an automorphism of (G, T ) with γ τv0 = τv0 for some v0 ∈ V
and all τ ∈ T , then p(γ v) = p(v) for all v ∈ V .

Proof. In this case, γ ∗ must fix every point of the lattice p(T v0), so it must be the
identity.
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Fig. 1. In an equilibrium placement, vertices marked • and their neighbors marked ◦ must receive identical
coordinates.

Example 8. Let G be the 2-periodic graph depicted in Fig. 1 and let γ be the automor-
phism which exchanges every vertex marked • with its neighbor marked ◦ and leaves
the unmarked vertices unchanged.

Corollary 9. If γ is an automorphism of (G, T ) which commutes with every τ ∈ T ,
then γ ∗ is a translation. If, moreover, γ has finite order, then γ ∗ is the identity.

Proof. Because of γ τ = τγ , we have

γ ∗(τ ∗p (p(v))) = p(γ τv) = p(τγ v) = τ ∗p (γ ∗(p(v)))
for every τ , so γ ∗ is a translation. The second claim follows immediately.

Example 10. The 2-periodic graph depicted in Fig. 2 can be interpreted as two square
lattices stacked on top of each other and connected by vertical bars (here represented as
diagonals). The automorphism which flips the two lattices fulfills the condition of the
corollary, so both lattices will be represented by identical points.

Theorem 11. Let (G, T ), G = (V, E, ω) be a connected, d-periodic graph and let
� ≤ Aut(G,T) be a group of automorphisms. Then there is a periodic equilibrium
placement p: V → Ed such that for every γ ∈ � an isometry γ ∗:Ed → Ed associated

Fig. 2. Another graph in which vertices marked • and their neighbors marked ◦ receive identical coordinates.
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to γ with respect to p exists. Moreover, p is unique up to affine conjugation and the map
γ → γ ∗ is a group homomorphism.

Proof. The existence and uniqueness up to affine conjugation of a periodic equilibrium
placement p is established by Theorem 4. A unique group homomorphism ∗:� →
aff(Ed) such that for every γ ∈ �, the map γ ∗ is associated to γ , exists by Lemma 6.
It remains to show that there is indeed a choice of T ∗ which turns all these affine maps
into isometries.

Consider P := ρ({γ ∗ | γ ∈ �}), where ρ is the group homomorphism that maps an
affine transformation to its linear constituent. As noted above, every automorphism of
(G, T ) is, up to translations, uniquely determined by its action on the finitely many vertex
and edge orbits. Consequently, P is finite and by the usual trick, we find a metric on Ed

with respect to which P acts isometrically, namely by defining a new scalar product s
as s(v,w) :=∑α∈P 〈αv, αw〉.

An orthonormal basis with respect to s can then be found by Gram–Schmidt orthonor-
malization. Thus, after fixing an origin, p can be expressed, if required, in terms of the
usual basis and metric for Rd .

Apart from the application given below, Theorem 11 is also the key to identifying ideal
symmetries in higher-dimensional periodic graphs, which, as the method of equilibrium
placement itself, has important applications in crystallography (see [DFO]).

4. Convex Embeddings of Planar Graphs

A planar graph is one that can be drawn into the plane without intersections. More
generally, we define a drawing of a graph as a collection of points and arcs where each
vertex is represented by a single point and each edge by a single arc connecting the
points which represent its ends. A drawing is an embedding if the vertex placement
is injective and no edge arc crosses any other edge arc or passes through any vertex
position. To avoid technical complications, we assume all drawings to be piecewise
linear.

A straight line drawing is one in which all edges are represented by straight lines.
Clearly, every placement p: V (G) → Ed induces a unique straight line drawing of G
in Ed .

A graph is planar if it has an embedding into the Euclidean plane. The faces of that
embedding are then the pathwise connected components of its complement.

The aim of this section is to show that the straight line drawing induced by an equi-
librium placement of a 2-periodic, 3-connected planar graph is always an embedding.
We start by showing that planar 2-periodic graphs have “nice” embeddings in the plane.

It is well known that for finite 2-connected graphs, each face of a plane embedding
is bounded by the representation of some cycle, which is then called a facial cycle. If G
is 3-connected, then a theorem by Whitney [Wh] states that the set of facial cycles does
not depend on the particular embedding. For infinite planar graphs, the situation can be
more complicated. We will, however, establish a close analogue to Whitney’s theorem
for planar, 2-periodic graphs.
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Following [Th1], we define a vertex accumulation point (abbreviated VAP) in a graph
drawing as some point p such that in every open ε-ball around p there are infinitely many
realizations of vertices. An edge accumulation point or EAP is defined analogously. The
key result for us is the following easy corollary to Theorem 7.4 of [Th1].

Lemma 12. Let G be a 3-connected, infinite graph which has a VAP-free embedding
into the plane. Then the set of facial cycles of any such embedding is unique. Moreover,
the embedding can be chosen to be EAP-free as well.

We call a 2-periodic graph (G, T ) a grid if it can be derived from either the underlying
graph of the regular square or the regular honeycomb tiling, each equipped with its
maximal translation group, by periodic subdivision.

Lemma 13. The set of facial cycles in any planar, VAP-free embedding of a grid is
unique.

Proof. This follows immediately from Lemma 12.

Lemma 14. Let (G, T ) be a connected, 2-periodic graph. Then there is a grid (H, T ′)
with H a subgraph of G and T ′ ≤ T .

Proof. Let r be a non-trivial path of minimal length between vertices v and τv, where
τ ∈ T . By construction, τ cannot have an interior vertex in common with any of its
translates. Consequently, the graph R := 〈τ 〉r is an infinite cycle.

Now let s be a non-trivial path of minimal length between R and σ R for some σ ∈ T ,
where τ and σ are linearly independent. Again, s cannot intersect any of its translates.

However, then, with T ′ := 〈σ, τ 〉, the graph (T ′r ∪ T ′s, T ′) is a grid.

Theorem 15. Every planar, 3-connected, 2-periodic graph (G, T ) has a planar draw-
ing which is VAP- and EAP-free. The set of facial cycles of any such drawing is unique.
Moreover, it can be chosen to be periodic with respect to some finite index subgroup T ′

of T .

Proof. Let (G, T ) be a planar, 3-connected, 2-periodic graph and let (H, T ′) be a grid
with H ⊆ G and T ′ ≤ T . Let A be any H -component in G. Then, obviously, A must
be a C-component for some facial cycle C of H . By Lemma 1, A must be finite, for G
already has an infinite C-component containing H .

Moreover, C ∪ A must have a planar drawing with C being one of its facial cycles and
we may draw A into the face f of the drawing which is bounded by C . Now consider
two C-components A and A′ that cannot be drawn into f simultaneously. This can only
happen if one of these, say A′, is also a C ′-component for C ′ some adjacent facial cycle
in H . Consequently, A′ must have all its vertices of attachment on the common path
which forms the intersection of C and C ′. However, because G is 3-connected, it is easy
to adjust H in such a way that no such component exists.
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We may thus take the standard drawing of H and extend it to a VAP- and EAP-
free drawing of G in a T ′-periodic way. The uniqueness of facial cycles follows from
Lemma 12 again.

We proceed to show the convexity result itself. Our proof is an adaption of Richter-
Gebert’s [RG] strategy for the finite case. It turns out useful to study a slightly more
general property: the relative interior of a set of points {s1, . . . , sk} is the set{

k∑
i=1

λi si

∣∣∣∣∣
k∑

i=1

λi = 1; λi > 0 for i = 1, . . . , k

}
.

A well-known result from the theory of convex sets implies that the relative interior thus
defined is precisely the interior of the convex hull of {s1, . . . , sk}with respect to its affine
hull.

A placement p is called good if, for every v ∈ V , p(v) is in the relative interior of
the set p(N (v)). A placement is non-degenerate if, for every v ∈ V , p(N (v)) affinely
spans E2.

We show a special case first:

Lemma 16. Let (G, T ) be a planar, 2-periodic, 3-connected graph, all facial cycles of
which are triangles. Let p: V → E2 be a non-degenerate, good, 2-periodic placement
which maps the vertices of each triangle to affinely independent points. Then the straight
line drawing induced by p is an embedding.

Proof. Let F be the set of facial cycles of G. To each face, assign an orientation, i.e., a
cyclic order on its vertices, in such a way that the orientations on an edge induced by its
two adjacent faces are always opposite. This is possible because the plane is oriented and
we already know that G has a planar embedding. If u, v, w are the vertices of some face
according to that order and u′, v′, w′ their respective p-images, we denote by a(u, v, w)
the signed angle �u′v′w′ at v′, which is understood to be a number between −π and π .
The angles a(u, v, w), a(v,w, u), and a(w, u, v) are either all positive or all negative
and their sum is either π or −π .

The orientation of triangles also induces a cyclic order on the neighborhood of each
vertex. For an arbitrary vertex v, let the ordered sequence of neighbors bew0, . . . , wk−1.
Define ai := a(wi , v, wi+1) for i = 0, . . . , k − 1, with indices to be read modulo k. Set

�(v) :=
k−1∑
i=0

ai and �(v) :=
k−1∑
i=0

|ai |.

Moreover, let

�+(v) :=
∑
ai>0

ai and �−(v) :=
∑
ai<0

ai .

Then �(v) = �+(v) + �−(v) and �(v) = �+(v) − �−(v). In particular, we have
�(v) ≥ |�(v)| = 2nπ for some n ∈ N. The case n = 0 is special and implies
�+(v) = −�−(v) and �(v) = 2�+(v). If �+(v) ≤ π , there must be a straight
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line g through p(v) such that p(N (v)) is contained in one of the closed half-spaces
determined by g. However, this contradicts the assumption that p is a non-degenerate
good placement. Consequently,�(v) ≥ 2π and, in case of equality, all the ai must have
the same sign.

By Theorem 15, it follows that the translates of facial cycles are, again, facial cycles.
We conclude further that, without loss of generality, there exists a grid (H, T ) with
H ⊆ G. Each face f of the standard drawing of H contains exactly one face for each
T -orbit on the set of facial cycles of G. Identifying boundary points and arcs of f
which represent vertices or edges, respectively, in common T -orbits yields a cellular
subdivision (or tiling) of the torus with n = #(F/T ) faces, m = #(E/T ) edges, and
r = #(V/T ) vertices.

The Euler characteristic of the torus is 0, so we have n − m + r = 0. On the other
hand, the faces are still triangles, so 3n = 2m and consequently n = 2r . In each triangle,
the sum of absolute values of angles is π , so the sum of all these angles is 2rπ . On the
other hand, the absolute values of angles around each vertex sum up to some�(v) ≥ 2π
for each of the r vertices. Consequently, the sum of angles around any given vertex must
be either 2π or −2π and all these angles must have the same sign. Because the angles
in any given triangle have the same sign, we may assume without loss of generality that
all angles are positive.

Now consider a continuous map ϕ:E2 → E2 which maps each face of a given
embedding of G homeomorphically onto the corresponding triangle determined by p.
Obviously, ϕ can be defined separately for each face and adjusted in such a way that it is
well-defined on the arcs and points as well. Because the angles of these triangles are all
positive and sum up to 2π at every vertex, ϕ is a covering. Since E2 is simply connected,
it must then be a homeomorphism, which proves the lemma.

Lemma 17. Let (G, T ) be a planar, 2-periodic, 3-connected graph. Then every good,
periodic placement of (G, T ) is non-degenerate.

Proof. Assume G = (V, E, ω) and let p be a good 2-periodic placement of G. Suppose
that v ∈ V is a degenerate vertex, i.e., all neighbors of v are placed on a common straight
line L . Without loss of generality, we may assume L = {(x, 0) | x ∈ R}. We denote the
second coordinate of p(w) by h(w) and, by a slight abuse of language, call it the height
of w. Because p is good, p(v) ∈ L , or, equivalently, h(v) = 0.

The placement p is periodic, so there must be a vertex u with h(u) 
= 0. Because G
is 3-connected, by Menger’s theorem there are at least three paths in G from v to u with
pairwise disjoint interiors. Let a0, b0, and c0 be the respective first vertices on these paths
which have neighbors not placed on L . Obviously, p(a0), p(b0), and p(c0) are all still
on L .

Let a1 ∈ N (a0) be a vertex not placed on L . Without loss of generality, we may
assume h(a1) > 0. Because p is good and there is a vertex adjacent to a1, namely a0,
with h(a0) < h(a1), there must be another one, say a2, with h(a2) > h(a1). By induction,
there is an infinite, strictly ascending walk (ai )i∈N0 in G starting at a0.

Because V/T is finite, there are numbers m > k ≥ 0 and an automorphism ρ ∈ T
such that am = ρak . Because h(ρak) = h(am) > h(ak) and ρ is associated to a
translation, we have h(ρw) > h(w) for all w ∈ V . In particular, h(ρai ) > h(ai ) for
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i = 0, . . . , k − 1 and so the walk a0, . . . , am (= ρak), ρak−1, . . . , ρa0 from a0 to ρa0

is, except for a0, completely above L . Moreover, because there is a path, and therefore a
walk, placed on L from v to a0, the translated walk from ρv to ρa0 is above L , and we
can extend the above-mentioned walk from a0 to ρa0 to one from a0 to ρv, still above
L . Moreover, for every ρ ′ ∈ T with h(ρ ′a0) > h(a0) there is even a walk from ρ ′v to
ρρ ′v = ρ ′ρv placed completely above L .

Applying the same reasoning for b0 and c0, we find elements σ and τ in T such
that b0 is connected to σv and c0 to τv by walks placed above L except at p(b0) and
p(c0), respectively. For each ρ ′ as before, there are walks from ρ ′v to σρ ′v and τρ ′v,
respectively, all above L .

Putting things together, we can connect a0, b0, and c0 to ρστv by walks which all
stay above L . In other words, there is a connected subgraph of G containing a0, b0, and
c0 with all other vertices placed above L . Let H+ be such a subgraph which has minimal
numbers of vertices and edges. It follows that H+ is a tree with leafs a0, b0, and c0 and
no other leafs. For the moment, such a tree is called a Y-graph.

An analogous construction yields a second Y-graph H− with leafs a0, b0, and c0

and all other vertices placed below L . Finally, there is a Y-graph H0 with the same
leafs placed completely on L , as established earlier. These three Y-graphs together form
a subgraph of G which is a subdivision of the complete bipartite graph K3,3. This
cannot happen if G is planar. It follows that our initial assumption was false and p is
non-degenerate.

Corollary 18. Let (G, T )be a planar, 2-periodic, 3-connected graph. Then the set of all
good, periodic placements inducing the same prescribed association map ∗: T → aff(E2)

is open.

Proof. If for some v ∈ V the set p(N (v)) affinely spans E2 and p(v) is in the relative
interior of p(N (v)), this remains true if any of these points is moved within some small
neighborhood. It follows that a small enough perturbation of a good placement is still
good.

Theorem 19. Let (G, T ), G = (V, E) be a planar, 2-periodic, 3-connected graph.
Then every good, periodic placement p of (G, T ) induces a straight-line embedding
with convex faces.

Proof. First construct a planar triangulation of G, i.e., a planar graph G ′ = (V ′, E ′)
with V ′ = V such that all faces of G ′ are triangles. This can be done, for example, by
choosing a vertex v in every face of G and connecting it with all vertices in the same
face except for v itself and its immediate neighbors. Picking these vertices consistently
with T ensures that G ′ is periodic. If p is a good placement for G, then it is also a good
placement for G ′.

Suppose there is some triangle t of G ′ with vertices a, b, and c all placed on a common
straight line. Because the argument does not depend on a particular choice of T , we may
assume that these vertices belong to pairwise different T -orbits. Replacing, if necessary,
p by some slightly perturbed, but still good and periodic placement p′, we may further



80 O. Delgado-Friedrichs

assume that no two vertices of t are mapped to the same point and that no triangle outside
the T -orbit of t is degenerate. Let s := [p′(a), p′(c)] and assume p′(b) ∈ s.

Because p′ is good, the vertex b has neighbors on both sides of s. By Corollary 18
again, there is a good, periodic placement p′′ with no degenerate triangles and p′′(b)
slightly off s such that for some neighbor d of b the straight-line segments between
[p′′(a), p′′(c)] and [p′′(b), p′′(d)] intersect. This is a contradiction to Lemma 16.

Consequently, there are no degenerate triangles for p and, again by Lemma 16, the
straight-line placement of G ′ induced by p is an embedding. Because G is just a subgraph
of G ′, p induces a straight-line embedding of G. The convexity of the faces then follows
immediately from the fact that p is good.

Theorem 20. Let (G, T ) be a 2-periodic, 3-connected planar graph. Then G has an
embedding into the plane with convex faces such that every automorphism of G is induced
by an isometric symmetry of the embedding.

Proof. By Theorem 15, the facial cycles of G do not depend on the embedding. Con-
sequently, every automorphism of G must map facial cycles onto facial cycles and,
furthermore, induce a topological automorphism of the tiling defined by the embedding.
Because of periodicity, there are only finitely many Aut(G)-orbits on the set of faces.
By a well-known result from tiling theory, a tiling with this property is topologically
equivalent to one in which every topological automorphism is realized as an isometry
(see [DH] and [Sc] ). Because of the structure of crystallographic groups, this implies that
there is a unique maximal translation group for G, which is normal in Aut(G). We may
therefore apply Theorem 11, which asserts the existence of an equilibrium placement
in which every automorphism of G is associated to an isometry. Finally, Theorem 19
shows that the induced straight-line embedding is convex.

Corollary 21. Let (G, T ) be a 2-periodic, 2-connected planar graph. Let η be an
embedding of G with a T -invariant set of facial cycles. Then G has a straight-line
embedding into the plane with star-shaped faces such that every automorphism of G
which maps facial cycles onto facial cycles is induced by an isometric symmetry of the
embedding.

Proof. Construct a triangulation G ′ by introducing a new vertex for each facial cycle
and connecting it to every vertex in the cycle by a single edge. Then G ′ is 3-connected and
every automorphism of G which respects the facial cycles can be extended uniquely to
an automorphism of G ′. Consequently, G ′ has a convex embedding with full symmetry,
which implies the desired embedding for G.
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