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Abstract. We prove that the order complex of a geometric lattice has a convex ear de-
composition. As a consequence, if �(L) is the order complex of a rank (r + 1) geometric
lattice L , then for all i ≤ r/2 the h-vector of �(L) satisfies hi−1 ≤ hi and hi ≤ hr−i .

We also obtain several inequalities for the flag h-vector of�(L) by analyzing the weak
Bruhat order of the symmetric group. As an application, we obtain a zonotopal cd-analogue
of the Dowling–Wilson characterization of geometric lattices which minimize Whitney
numbers of the second kind. In addition, we are able to give a combinatorial flag h-vector
proof of hi−1 ≤ hi when i ≤ 2

7 (r + 5
2 ).

1. Introduction

The order complex of a geometric lattice is one of many simplicial complexes associated
to matroids. For a geometric lattice L , the order complex of L ,�(L), is the simplicial
complex whose simplices consist of all chains in L , 0̂ �= x1 < x2 < · · · < xk �= 1̂. The
number of flats in each rank, also known as the Whitney numbers of the second kind,
can be viewed as special cases of the flag f -vector of�(L). The Euler characteristic of
�(L) is the Möbius invariant of L [Fo]. Surveys of these topics are [Ai], [Bj4], and [Za].

Other enumerative invariants of �(L) have not received as much attention. The ex-
plicit relationship between the flag h-vector of �(L) and the cd-index of oriented ma-
troids and zonotopes discovered in [BER] suggests that it may be time to study the
h-vector and flag h-vector of �(L).

∗ The first author was partly supported by an NSF-VIGRE postdoctoral fellowship. The second author was
partly supported by NSF Grant DMS-0245623.
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We begin with a review of the basic notions associated to geometric lattices, graded
posets, h-vectors, and flag h-vectors. This is followed by an examination of the geometric
lattices which minimize and maximize the flag h-vector of their order complex. As a
consequence we find the zonotopes with a specified dimension and number of zones
which minimize or maximize the cd-index. Then we show that �(L) has a convex ear
decomposition. An immediate consequence of this decomposition is our main theorem
concerning the h-vectors of order complexes of geometric lattices.

Theorem 1.1. Let L be a rank (r+1) geometric lattice. Then, for i ≤ r/2, the h-vector
of �(L) satisfies

hi−1 ≤ hi , (1)

hi ≤ hr−i . (2)

As is frequently the case with theorems of this type, the proof is not combinatorial.
The remaining sections are devoted to understanding the flag h-vector of �(L) with an
eye toward providing a combinatorial proof of (1). This leads us to an examination of
the weak Bruhat order on the symmetric group.

2. Definitions

We take all posets in this work to be finite. A poset P is graded if all maximal chains have
the same length and we call this length the rank of P . A graded poset has an associated
rank function ρ which assigns to each element y of P a positive integer such that
ρ(y) = k, where k is the length of the longest chain of the form y0 < y1 < · · · < yk = y.

A lattice is a poset such that each pair of elements, x and y, has a least upper bound,
or join, denoted x∨ y, and a greatest lower bound, or meet, denoted x∧ y. Consequently,
a lattice has a unique minimal element 0̂ such that x ≥ 0̂ for all x ∈ L , and a unique
maximal element 1̂ with x ≤ 1̂ for all x ∈ L . An element of L which covers 0̂ is an
atom, and L is atomic if every element in L can be written as the join of atoms.

A geometric lattice is a graded atomic lattice whose rank function satisfies the semi-
modular condition that for any x , y ∈ L ,

ρ(x ∨ y)+ ρ(x ∧ y) ≤ ρ(x)+ ρ(y).
A broad class of geometric lattices arise from the affine dependencies of a finite set

of points X in Euclidean space. In this case the rank k elements of the lattice are subsets
of the form T ∩ X where T is a (k − 1)-dimensional subspace spanned by the elements
of X . These subsets are ordered by inclusion. Points are in general position if every
set of k + 1 points spans a k-dimensional subspace. One particularly useful geometric
lattice arises from the near pencil arrangement on n points in r -dimensional space which
consists of (n − r + 1) points on a line with the remaining (r − 1) points in general
position. For ease of reference we call this lattice the rank r + 1 near pencil on n atoms
(see Fig. 1).

A matroid M = (X, ) is a set X (for us X is always finite) with a closure operation
satisfying the exchange property (see Section 1.4 of [Ox] for more details). For A ⊆ X
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Fig. 1. An EL-labeling of the rank 3 near pencil on four atoms.

denote the closure of A by A. A simple matroid is a matroid such that ∅ = ∅ and a = a
for every element a ∈ X . The closed sets, or flats, of a matroid, when partially ordered by
inclusion form a geometric lattice. In fact a result of Birkhoff shows there is a bijection
between geometric lattices and simple matroids [Bi].

A set S ⊆ X is independent if x /∈ S − x for any x ∈ S. A basis of a matroid is a
maximal independent set and a circuit is a minimal dependent set. A loop in a matroid
M = (X, ) is an element e ∈ X that is contained in no basis, while a coloop is an
element which is contained in every basis of the matroid. Let B be a basis of a matroid
M . If e /∈ B, then B ∪ e contains a unique circuit, C(e, B). The element e is in C(e, B),
and we call C(e, B) the fundamental circuit of e with respect to B.

By a basis of a geometric lattice we mean a collection of atoms whose cardinality
is the rank of P and whose join is 1̂. Particular bases which will be useful to us are
the nbc-bases. In order to define an nbc-basis we first fix an arbitrary linear order ω
on the atoms of the geometric lattice L . A broken circuit of (L , ω) is a circuit with its
least element removed. The nbc-bases of (L , ω) are the bases of L that do not contain a
broken circuit. All such bases must contain the least atom. Indeed, if B is a basis of L
which does not contain the least element, then it will contain the broken circuit formed
by removing the least element from the fundamental circuit contained in the union of B
and the least element.

Example 2.1. Let L be the geometric lattice of the rank 3 matroid on {1, 2, 3, 4, 5}
(with the natural order) whose bases consist of all triples except {1, 2, 3} and {3, 4, 5}.
Then the nbc-bases of L are the triples {1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}. Notice that
{1, 4, 5} is not an nbc-basis because it contains the broken circuit {4, 5}.

Let � be a simplicial complex, i.e., � is a collection of subsets of a vertex set X
satisfying x ∈ � for any x ∈ X and if F ∈ � and G ⊆ F then G ∈ �. Maximal
faces of � are facets and � is pure if all its facets have the same dimension. A pure
d-dimensional simplicial complex is said to be shellable if there is an ordering of its
facets F1, F2, . . . , Ft such that Fj ∩

⋃ j−1
i=1 Fi is a pure (d − 1)-dimensional complex

for j = 2, . . . , t . Such an ordering is called a shelling. Equivalently, a linear ordering ψ
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on the facets of a complex is a shelling if and only if it satisfies the following criterion
(see, for instance, [Bj4]):

Property M: For all facets F and F ′ of � such that F ′ <ψ F there is a facet F ′′ with
F ′′ <ψ F such that F ′ ∩ F ⊆ F ′′ ∩ F and |F ′′ ∩ F | = |F | − 1.

Given a poset P with 0̂ and 1̂, the order complex�(P) of P is the simplicial complex
whose vertices are the elements of P − {0̂, 1̂} and whose simplices are the chains of
P − {0̂, 1̂}. Thus the facets correspond to maximal chains. P is shellable if there exists
a shelling of �(P).

A poset P admits an R-labeling if there is a map from the edges of P to the positive
integers (or more generally to some partially ordered set) such that in any interval
[x, y] = {z ∈ P : x ≤ z ≤ y}of P there is a unique saturated chain with increasing labels
(known as a rising chain). For y2 covering y1 in P , denote the label on edge (y1, y2) by
λ(y1, y2). Then a rising chain in [x, y] is a maximal chain x = y0 < y1 < · · · < yk = y
with λ(y0, y1) ≤ λ(y1, y2) ≤ · · · ≤ λ(yk−1, yk).

An EL-labeling [Bj1] of a poset is an R-labeling in which the unique rising chain
in an interval [x, y] comes first lexicographically among all of the chains in [x, y]. An
EL-labeling of a geometric lattice can be obtained by labeling the atoms {1, . . . , n} and
labeling the edge (x, y) with the minimal atom j such that x ∨ j = y (see Fig. 1). We
call this ordering the minimal labeling of the facets of �(L) and for a given facet F
we denote its minimal label λ(F). Notice with this labeling distinct chains have distinct
labeling sequences.

A result of Björner shows that ordering the maximal chains of an EL-labeled poset
lexicographically on the chain labels gives a shelling of the associated order complex
[Bj1, Theorem 2.3].

3. The Flag f -Vector and Flag h-Vectors of Geometric Lattices

For P a rank r + 1 poset, the number of simplices in �(P) of cardinality k is denoted
fk(�(P)), and f (�(P)) = ( f0, . . . , fr ) is known as the f -vector of the order complex.
The h-vector of �(P) is defined as h(�(P)) = (h0, . . . , hr ) where

r∑
i=0

fi (x − 1)r−i =
r∑

i=0

hi x
r−i .

Given a rank r + 1 poset P , and S ⊆ [r ] = {1, 2, . . . , r}, let PS be the rank selected
subposet of P defined by PS = {x ∈ P : ρ(x) ∈ S, x = 0̂, or x = 1̂}. The number of
maximal chains of PS is denoted fS(P); that is, fS(P) counts the number of chains in P
in which the ranks are the elements of S. The collection { fS}, S ⊆ [r ], is known as the
flag f -vector of the poset. The flag f -vector gives a natural refinement of the f -vector
of a poset’s associated order complex as fi (�(P)) =

∑
|S|=i fS(P).

Let Br+1,n denote the rank r + 1 truncated Boolean algebra on n atoms. Br+1,n is
isomorphic to the rank n Boolean algebra Bn for rank i , i ≤ r , and rank r +1 of Br+1,n

consists of the maximal element 1̂. Every (r + 1)-subset of [n] is a basis of Br+1,n and
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every i-subset i ≤ r+1 is independent. We shall see that the flag f -vector for rank r+1
geometric lattices on n atoms is maximized by Br+1,n .

Dowling and Wilson [DW1] proved that for rank r+1 geometric lattices with n atoms
the singleton flags f{i}, 1 ≤ i ≤ r, are minimized by the near pencil lattice. In her Ph.D.
thesis [Ny], the first author gave an explicit formula for fS of the near pencil lattice and
proved that this minimizes fS , S ⊆ [r ], for all geometric lattices of rank r + 1 with n
atoms. In this section we prove the stronger result that hS is minimized by the near pencil
for all S ⊆ [r ].

Define the flag h-vector {hS(P)}, for S ⊆ [r ], by

hS(P) =
∑
T⊆S

(−1)|S|−|T | fT (P). (3)

Again, the flag h-vector refines the h-vector since hi (�(P)) =
∑
|S|=i hS(P). An ex-

tremely useful combinatorial interpretation of the flag h-vector is that it counts the
number of chains with a specified descent set in an R-labeled poset. We describe this
interpretation below.

For a maximal chain m: 0̂ = x0 < x1 < · · · < xr+1 = 1̂, the descent set of m is
D(m) = {i : λ(xi−1, xi ) > λ(xi , xi+1)}. The following proposition can be found in [Bj1,
Theorem 2.7] and [St2, Theorem 3.13.2].

Proposition 3.1 [Bj1], [St2]. For P a graded poset that admits an R-labeling, hS(P)
is the number of maximal chains of P with labels having descent set S.

Since (3) can be inverted to give fS(P) =
∑

T⊆S hT (P) we see that fS(P) counts
the number of maximal chains in an R-labeled poset P with descent set contained in S.

The positions of descents in maximal chains of a rank r + 1 poset P can be encoded
using the ab-index
(P) of the poset which we describe presently. Assign to each chain
in P a word in the noncommuting variables “a” and “b” by assigning an a if consecutive
edge labels in the chain increase and b if the labels decrease. Summing over all the chains
in P gives the ab-index


(P) =
∑
S⊆[r ]

hS(P)uS,

where the word uS = u1u2 · · · ur is given by ui = a if i /∈ S and ui = b if i ∈ S.
Through the course of this paper we use the descent set of a chain and its corresponding

ab-monomial interchangeably where we take a to mean an ascent and b to indicate a
descent in the chain label. D(S) indicates the set of all permutations with descent set S
and m(S) refers to the ab-monomial with descent set S.

Next we consider the lattices which minimize and maximize the flag h-vector.

Proposition 3.2. Let L be a rank r + 1 geometric lattice with n atoms. Then for all
S ⊆ [r ] we have hS(L) ≤ hS(Br+1,n).

Proof. Place a linear ordering on the atoms of L and Br+1,n.We construct an injection
from the minimal labelings of L to the minimal labelings of Br+1,n which preserves
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descent sets. This will prove the proposition since hS is the number of minimal labelings
with descent set S.

Let λ(F) = (λ1, . . . , λr+1) be a minimal label of a facet F in�(L). The uniqueness
of rising chains in any interval implies that λ(F) is completely determined by the initial
segment (λ1, . . . , λi ), where λi is the label preceding the last descent of λ(F). For
instance, if λ(F) = (3, 6, 9, 2, 7, 12), then (3, 6, 9), plus the knowledge that 9 precedes
the last descent of the label, determines λ(F). Since every subset of cardinality i is
a flat of Br+1,n and λi+1 < λi , there is a unique facet F ′ of �(Br+1,n) such that
λ(F ′) = (λ1, . . . , λi , . . .) and whose final descent is immediately after λi . The function
which takes λ(F) to λ(F ′) is the required map.

Since fS(P) =
∑

T⊆S hT (P) we immediately have the following result.

Corollary 3.3. Among rank r + 1 geometric lattices with n atoms, Br+1,n maximizes
fS(P) for all S ⊆ [r ].

We look again to the near pencil when considering the lattice which minimize the
flag h-vector.

Lemma 3.4. Let S ⊆ [r ]. Fix i < r + 1. The number of orderings of 1, . . . , r + 1 such
that r + 1 comes before i and has descent set S is independent of i.

Proof. Suppose r + 1 is the kth element of the permutation. There are
(r−1

r−k

)
ways

to choose the elements (including i) which appear after r + 1. Since r + 1 effectively
splits the permutation into two smaller permutations we can consider the elements to
the right of r + 1 as 1′, 2′, . . . , (r + 1 − k)′. Let Dr be the number of ways to arrange
1′, . . . , (r + 1 − k)′ consistent with descent set S and let Dl be the number of ways to
arrange the elements to the left of r + 1 consistent with descent set S. Then

r+1∑
k=1

(
r − 1

r − k

)
Dr × Dl

is the number of permutations of [r + 1] such that r + 1 appears before i . This number
is independent of i .

Theorem 3.5. Let L be a rank r + 1 geometric lattice with n atoms and let P be the
rank r + 1 near pencil on n atoms. Then

hS(L) ≥ hS(P).

Proof. Let {e1, . . . , en} and { f1, . . . , fn} be the atoms of P and L , respectively, and let
�(P) and �(L) be the corresponding order complexes. Order the atoms of P so that
e1, . . . , er−1 are the coloops of P.What are the nbc-bases of P? Any basis must contain
the coloops and er , the least atom in the nontrivial line. On the other hand, any basis of
the form {e1, . . . , er , ei }, i ≥ r+1, is an nbc-basis of P.Recall that hS(P) is the number
of orderings of the nbc-bases of P for which the ordering is a minimal labeling of the
corresponding maximal chain of flats in �(P) and the descent set is S. For i = r + 1
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this is all orderings. For i > r + 1 an ordering is a minimal labeling if and only if ei

comes before er .

Now order the atoms of L so that f1, . . . , fr+1 is a basis of L . Clearly B = { f1, . . . ,

fr+1} is an nbc-basis of L , any ordering of B is a minimal labeling of the corresponding
maximal chain, and the contribution of these orderings to hS(L) is the same as the
contribution of all the orderings of e1, . . . , er+1 to hS(P).

For each i > r + 1 we form a basis Bi of L as follows. Let Ci be the fundamental
circuit of fi with respect to B. Let Bi = B ∪ { fi } − { f j }, where f j is the second highest
element of Ci . For instance, if B = { f1, f2, f3, f4, f5} and the fundamental circuit of f8

is C8 = { f1, f3, f4, f8}, then B8 = { f1, f2, f3, f5, f8}. Now one can check that each Bi

is an nbc-basis of L and that any ordering of Bi where fi comes before the least element
of Ci is a minimal labeling of the corresponding maximal chain. In combination with
Lemma 3.4 this shows that there are at least as many minimal labelings with descent set
S for �(L) as there are for �(P).

When the number of atoms of a rank r + 1 geometric lattice is not specified the
standard Boolean algebra Br+1 minimizes the flag h-vector [BER, Proposition 7.4].

Proposition 3.6 [BER]. Let L be a geometric lattice of rank r+1. Then for all S ⊆ [r ]
we have hS(L) ≥ hS(Br+1). Hence the ab-index 
(L) is coefficientwise greater than
or equal to the ab-index of the Boolean algebra Br+1.

Oriented matroids are signed versions of standard matroids. We refer the reader to
[BLS+] for more details. The elements of the oriented matroid, when partially ordered,
form an Eulerian poset (see [St2]) which is known as the lattice of regions. A poset is
Eulerian if every interval [x, y], where x �= y, has the same number of elements of
odd rank as even rank. Of interest to our work is the fact that underlying each oriented
matroid is a standard matroid along with its associated geometric lattice of flats.

A collection of hyperplanes H = {He}e∈E is essential if
⋂

e∈E He = {0}. A spe-
cial class of oriented matroids, called realizable matroids, have an associated essential
hyperplane arrangement. The lattice of regions of the realizable oriented matroid is iso-
morphic to the face lattice of the corresponding hyperplane arrangement. Every essential
hyperplane arrangement has an associated zonotope, which is the polytope formed by
taking the Minkowski sum of the normals to the hyperplanes (see [BLS+]).

It was noted by Fine and proved by Bayer and Klapper [BK] that when P is an Eulerian
poset the ab-index of P ,
(P), can be written in terms of c = a+ b and d = a ·b+b ·a.
When 
(P) is expressed in terms of c and d it is referred to as the cd-index. The face
lattice of an r -dimensional convex polytope is an Eulerian poset and the cd-index of the
polytope is defined to be the cd-index of its corresponding face lattice.

When P is the lattice of regions of an oriented matroid every occurrence of d in the
cd-index appears as 2d and so it is referred to as the c-2d-index [BER]. The lattice of flats
of the underlying matroid contains all of the information necessary to determine the c-2d-
index of the lattice of regions of an oriented matroid [BS, Theorem 3.4]. This connection
is made explicit in [BER]. The following proposition indicates how to construct the
c-2d-index of a zonotope given the geometric lattice underlying the associated hyperplane
arrangement [BER, Corollary 3.2].
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Proposition 3.7 [BER]. Let L and Z be the underlying geometric lattice and zonotope
associated to an essential hyperplane arrangement, respectively. Then the c-2d-index of
the zonotope Z is given by


(Z) = ω(a ·
(L)),
where ω is a linear function which takes ab words to cd words by replacing each
occurrence of ab with 2d, then replacing the remaining letters with c’s.

The hyperplane arrangement {x ∈ Rr+1 : xi = 0} for i = {1, . . . , r + 1} has the
Boolean algebra Br+1 as its underlying lattice of flats. The zonotope corresponding
to this arrangement is the (r + 1)-dimensional cube. Propositions 3.6 and 3.7 together
imply the following [BER, Corollary 7.6]:

Corollary 3.8 [BER]. Among all zonotopes of dimension r+1, the (r+1)-dimensional
cube has the smallest c-2d-index.

Consider the rank r + 1 near pencil on n atoms and the truncated Boolean algebra,
Br+1,n . As seen in Section 2 the near pencil is associated with the arrangement of
(n−r+1) points on a line with the remaining r−1 points in general position. Similarly,
Br+1,n can be associated to the arrangement of n points in general position in Rr+1.
In both of these point arrangements we can consider the set of rays from the origin
to each point. Taking the hyperplanes normal to these rays gives an essential hyper-
plane arrangement whose underlying geometric lattice is the near pencil and Br+1,n ,
respectively. Combining Proposition 3.7 with Theorem 3.5 and Proposition 3.2 gives the
following analogous result for (r + 1)-dimensional zonotopes with n zones.

Corollary 3.9. Let HP and HBr+1,n denote essential hyperplane arrangements whose
underlying geometric lattice is the rank r + 1 near pencil and truncated Boolean al-
gebra on n atoms, respectively. Among all zonotopes of dimension r + 1 with n zones,
the zonotope corresponding to HBr+1,n has the largest c-2d-index, and the zonotope
corresponding to HP has the smallest c-2d-index.

4. Convex Ear Decompositions

Convex ear decompositions were introduced by Chari [Ch]. Our convex ear decompo-
sition is motivated by a basis for H�(�(L),Z) constructed by Björner [Bj2]. A convex
ear decomposition of a pure (r − 1)-dimensional simplicial complex � is an ordered
sequence �1,�2, . . . , �m of pure (r − 1)-dimensional subcomplexes of � such that:

1. �1 is the boundary complex of a simplicial r -polytope, while for each j =
2, . . . ,m,�j is an (r − 1)-ball which is a proper subcomplex of the boundary
of a simplicial r -polytope.

2. For j ≥ 2,�j ∩ (
⋃ j−1

k=1 �k) = ∂�j .

3.
⋃m

k=1�k = �.
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Theorem 4.1 [Ch]. If� has a convex ear decomposition, then for i ≤ r/2 the h-vector
of � satisfies

hi−1 ≤ hi ,

hi ≤ hr−i .

For the rest of this section (b1, . . . , br+1) is an ordered basis of atoms in L with
corresponding chain of flats 0̂ < x1 < · · · < xr < 1̂, xi = b1 ∨ · · · ∨ bi .

Lemma 4.2. Let (b1, . . . , br+1) be a minimal labeling of a facet of �(L). Then B =
{b1, . . . , br+1} is an nbc-basis of L .

Proof. Suppose B contains a broken circuit. If xi is the lowest ranked flat which contains
a broken circuit, then bi �= λ(xi−1, xi ).

Lemma 4.3 (Switching Lemma). Let (b1, . . . , bi , bi+1, . . . , br+1) be a minimal label-
ing of a facet of �(L). If bi < bi+1, then (b1, . . . , bi+1, bi , . . . , br+1) is also a minimal
labeling of a facet of �(L).

Proof. For two flats y < x in L let {x − y} = {atoms e : y ∨ e = x}. Suppose
(b1, . . . , bi+1, bi , . . . , br+1) is not a minimal labeling. Then there exists an atom e such
that either e ∈ {(xi−1 ∨ bi+1) − xi−1} and e < bi+1, or e ∈ {xi+1 − (xi−1 ∨ bi+1)} and
e < bi . In the first case, e ∈ {xi+1 − xi }. However, this implies that bi+1 is not the least
atom in xi+1 − xi . In the second case, either e ∈ xi − xi−1, which implies that bi is not
the minimal atom in xi − xi−1, or e ∈ xi+1 − xi . However, this last is impossible since
e < bi < bi+1 and bi+1 is the least atom in xi+1 − xi .

Let B be a basis of L . Associated to any ordering (b1, . . . , br+1) of B is the facet
F = b1 < b1 ∨ b2 < · · · < b1 ∨ · · · ∨ br of�(L). The basis labeling of F (with respect
to B) is (b1, . . . , br+1). This may or may not be the same as λ(F).

Let B1, . . . , Bm be the nbc-bases of L in lexicographic order. For each j, 1 ≤ j ≤ m,
let �j be the union of all the facets of �(L) associated to all possible orderings of Bj .

Each �j is isomorphic to the order complex of the rank r + 1 Boolean algebra and as a
simplicial complex is the boundary of the first barycentric subdivision of the r -simplex.
Now define�j to be the pure subcomplex of�j whose facets are the facets of�j whose
minimal labeling and basis labeling coincide. Except for �1 = �1, each �j is a proper
subcomplex of �j [Bj4, Lemma 7.6.2].

Proposition 4.4. If 2 ≤ j ≤ m, then �j is a closed (r − 1)-ball.

Proof. It is sufficient to show that �j is nonempty and shellable. To see that �j is
nonempty, we note that for any basis B of L the minimal ordering and the basis ordering
are the same for the maximal chain corresponding to ordering B in reverse if and only
if B is an nbc-basis.

Order the facets of�j in reverse lexicographic order with respect to the basis labeling
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of the corresponding maximal chains. We show that this ordering satisfies property M.
Suppose F ′ and F are facets of �j and λ(F ′) < λ(F). Let c = (0̂ = x0 < x1 < · · · <
xk < xk+1 = 1̂) be the chain which represents their intersection. We must find F ′′, a
facet of �j , lexicographically after F such that c ⊆ (F ∩ F ′′) and |F ∩ F ′′| = r − 1.
Let m be the least index such that the length of [xm, xm+1] is greater than 1. Since λ(F)
is lexicographically before λ(F ′), there are basis atoms b < b̂ in Bj such that the chain
corresponding to F contains as a short saturated chain y < (y ∨ b) < (y ∨ b ∨ b̂) with
xm ≤ y and (y ∨ b ∨ b̂) ≤ xm+1. Let F ′′ be the facet corresponding to interchanging b
and b̂ in λ(F). Then |F ∩ F ′′| = r − 1 and λ(F ′′) < λ(F). By the switching lemma, F ′′

is a facet of �j .

Proposition 4.5. If j ≥ 2, then �j ∩ (
⋃ j−1

k=1 �k) = ∂�j .

Proof. Let G be a face in�j ∩ (
⋃ j−1

k=1 �k). By definition G is not a facet. The boundary
of �j is equal to the boundary of �j −�j (topological closure). So it is sufficient to
show that G is contained in a facet of �j −�j .

Write G = x1 < · · · < xk .By assumption G ⊂ F, F is a facet of�j , and G ⊂ F ′, F ′

is a facet whose corresponding minimal labeling basis B ′ is lexicographically before Bj .

Therefore, there is some pair xm, xm+1 such that B ′ ∩ {xm+1 − xm} is lexicographically
before Bj ∩{xm+1−xm}.Hence, the unique increasing minimally labeled saturated chain
of [xm, xm+1] is not contained in Bj .Now let F̂ be a facet of�j obtained as follows. First
saturate the interval [xm, xm+1] by adding in the atoms of Bj ∩{xm+1− xm} in increasing
order. Then extend this to a saturation of the chain corresponding to G in any way which
results in a facet of�j . Such an F ′′ contains G and must be in�j −�j since its minimal
label and its basis label are not equal.

The two previous propositions show that �(L) has a convex ear decomposition. An
immediate consequence is Theorem 1.1. Since h0 ≤ h1 ≤ · · · ≤ h�r/2�, a natural question
is whether or not the g-vector of�(L) is an M-vector. The g-vector is (g0, g1, . . . , g�r/2�),
where gi = hi − hi−1. A sequence of nonnegative integers is an M-vector if it is the
Hilbert function of a quotient of a polynomial ring. See, for instance, Theorem 2.2 on
p. 56 of [St1] for an equivalent numerical definition of M-vector.

Problem 4.6. Is the g-vector of the order complex of a geometric lattice an M-vector?

Note: After this paper was written the second author discovered a proof that the g-vector
of any space with a convex ear decomposition is an M-vector.

5. The Weak Bruhat Order

Let (b1, . . . , br+1) be an nbc-basis of L ordered so that b1 < · · · < br+1. Then we can
identify all the orderings of the basis with Sr+1, the symmetric group on r+1 letters. For
π ∈ Sr+1 we write π = a1a2 · · · ar+1, where ai = π(i). The switching lemma tells us
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that if π corresponds to a minimal labeling and π ′ is obtained from π by interchanging
ai with ai+1 when ai < ai+1, then π ′ also corresponds to a minimal labeling.

Definition 5.1. Let π, π ′ ∈ Sr+1. Then π ≤w π
′ if and only if π ′ can be obtained from

π by repeated application of the above switching procedure.

Evidently ≤w is a partial order. It is, in fact, the weak Bruhat order on Sr+1. An
equivalent definition of ≤w is the following. Define the inversion set of π to be I (π) =
{(ai , aj ) : ai > aj and i < j}. Then π ≤w π

′ if and only if I (π) ⊆ I (π ′). See [Bj3] for
more information on the weak order in general Coxeter groups.

Let T, S ⊆ [r ].We say S dominates T if there exists an injection ϕ : D(T )→ D(S)
such that π ≤w ϕ(π) for all permutations π ∈ D(T ).

Proposition 5.2. If S dominates T, then hT ≤ hS for all geometric lattices of rank
r + 1 or greater.

Proof. The switching lemma and Proposition 3.1 imply that there are at least as many
facets which contribute to hS as hT at each step in the convex ear decomposition.

How do we find pairs T, S such that S dominates T ? First some elementary facts.

Proposition 5.3. Suppose S dominates T . Let u, v be ab-monomials, possibly equal
to ∅. Then

(1) m(S) · a · v dominates m(T ) · a · v,
(2) u · a · m(S) dominates u · a · m(T ),
(3) u · a · m(S) · a · v dominates u · a · m(T ) · a · v.

Proof. We prove (3) since the other proofs are virtually identical. By definition, if
π ≤w π

′ ∈ Sr+1, then π(1) ≤ π ′(1) and π(r) ≥ π ′(r). Let ϕ : D(T ) → D(S) be an
injection which preserves the weak Bruhat order. Let

π = s1 · · · sma1a2 · · · ar+2ar+3t1 · · · tk
be a permutation such that the ab-monomial of the s1 · · · sma1 is u, the ab-monomial of
a1 · · · ar+3 is a ·m(T ) ·a, and the ab-monomial of ar+3 · t1 · · · tk is v. Identify the ordered
set [r + 1] with the ordered set [r + 3]− {a1, ar+3} in the canonical way. Define ψ(π)
to be the permutation obtained by applying ϕ to a2 · · · ar+2 using this identification.
Clearly, ψ is an injection and π ≤w ψ(π). Since a1 < a2 and ar+2 < ar+3, the descent
monomial of ψ(π) is u · a · m(S) · a · v.

Proposition 5.4. If S dominates T, then T ⊆ S.

Proof. Suppose i ∈ T . Let π be a permutation with descent set T such that {π(1), . . . ,
π(i)} = {r − i + 2, . . . , r + 1}. If π ≤w π ′, then {π ′(1), . . . , π ′(i)} must also equal
{r − i + 2, . . . , r + 1}. Hence π ′ also has a descent at i.
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Another place to look for T ⊆ S with S dominating T is through the symmetries of
the flag h-vector of the Boolean algebra. Since hT ≤ hS for all geometric lattices of rank
at least r + 1, we can begin our search by examining Br+1. This lattice has Z2 ⊕ Z2

symmetry. Let β ∈ Sr+1 be the permutation which reverses order, i.e., β(i) = r − i + 2.
We omit the elementary proof of the following:

Proposition 5.5. Let T be the descent set of π ∈ Sr+1.

(1) The descent set of β ◦ π is [r ]− T .
(2) The descent set of π ◦ β is T ◦ β, where T ◦ β = {i ∈ [r ] : r − i + 1 /∈ T }.
(3) The descent set of β ◦ π ◦ β is r − [T ], where r − [T ] = {i : r − i + 1 ∈ T }.

Combined with Proposition 3.1, the above proposition shows that in Br+1, hT = hr−T =
h[r ]−T = hT ◦β. Proposition 5.4 rules out the possibility of T being dominated by r − T
or [r ]−T except when they are equal. However, if for each i at most one of i and r−i+1
is in T, then T ⊆ T ◦ β.

Example 5.6. Let T = {1} ⊆ [3]. Then T ⊂ T ◦ β = {1, 2}. As the map which sends
{2134} → {3214}, {3124} → {4312}, and {4123} → {4213} shows, T is dominated by
T ◦ β and hence hT ≤ hT ◦β for all geometric lattices of rank 4 (or more).

Conjecture 5.7. If T ⊆ T ◦ β, then T ◦ β dominates T .

We have verified this conjecture by computer for r ≤ 8. For convenience, Table 1
lists all the cases that we have used in Section 6. These computations were helped by
the observation that if T ⊆ T ◦ β and T ◦ β dominates T, then r − (T ◦ β) dominates
r − T . To see this, use the fact that if π ≤w π ′, then β ◦ π ◦ β ≤w β ◦ π ′ ◦ β. By
combining Proposition 5.3 with cases where Conjecture 5.7 is known to hold many pairs
T, S with S dominating T can be constructed. For instance, abbab dominates abaab, and
bbbaab dominates abbaaa are known cases of Conjecture 5.7. Hence, abbbaabaaabbab
dominates aabbaaaaaabaab.

Table 1. Several known examples of T ◦ β dominating T .

T → T ◦ β T → T ◦ β
r = 3

{1} → {1, 2} {3} → {2, 3}
r = 5

{1, 2} → {1, 2, 3} {4, 5} → {3, 4, 5}
{1, 4} → {1, 3, 4} {2, 5} → {2, 3, 5}

r = 7
{1, 2, 3} → {1, 2, 3, 4} {5, 6, 7} → {4, 5, 6, 7}
{1, 2, 5} → {1, 2, 4, 5} {3, 6, 7} → {3, 4, 6, 7}
{1, 3, 6} → {1, 3, 4, 6} {2, 5, 7} → {2, 4, 5, 7}
{1, 5, 6} → {1, 4, 5, 6} {2, 3, 7} → {2, 3, 4, 7}
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If true, Conjecture 5.7 would be surprising. We are required to find ϕ: D(T ) →
D(T ◦ β) such that I (π) ⊆ I (ϕ(π)). Yet, I (π) ∩ I (π ◦ β) = ∅ for all π.

6. From Flag h-Vectors to h-Vectors

Our goal is to give a combinatorial flag h-vector proof of (1). One way to do this would
be to construct a matching from (i − 1)-subsets of [r ] to i-subsets of r such that each
(i − 1)-subset is matched to an i-subset which dominates it. For example, here is such
a matching from 2-subsets of [6] to 3-subsets of [6]:

{1, 2} → {1, 2, 3} {2, 3} → {2, 3, 4} {3, 5} → {1, 3, 5}
{1, 3} → {1, 3, 6} {2, 4} → {2, 4, 6} {3, 6} → {2, 3, 6}
{1, 4} → {1, 3, 4} {2, 5} → {2, 3, 5} {4, 5} → {2, 4, 5}
{1, 5} → {1, 4, 5} {2, 6} → {2, 5, 6} {4, 6} → {1, 4, 6}
{1, 6} → {1, 5, 6} {3, 4} → {3, 4, 6} {5, 6} → {4, 5, 6}

This matching gives a combinatorial flag h-vector proof that h2 ≤ h3 for all geometric
lattices whose rank is greater than or equal to 7. Table 2 gives a matching for [3]-sets of
[8] to 4-sets of [8]. As we will see below, this is not possible for all r and i ≤ r/2, but
it can be done for somewhat smaller i.

Lemma 6.1. Let T be an i-subset of [r ]. Then there exists at least �r − 5
2 i� supersets

of T of cardinality i + 1 which dominate T .

Proof. The proof is by induction on r, the case of r = 1 being trivial. Consider the tree
in Fig. 2. Each ab-monomial stands for the initial descent pattern of a permutation. A

Table 2. An injection ϕ from 3-sets of [8] to 4-sets of [8] such that ϕ(T )
dominates T .

T ϕ(T ) T ϕ(T ) T ϕ(T )

{1,2,3} {1,2,3,4} {1,2,5} {1,2,4,5} {1,2,6} {1,2,4,6}
{1,2,8} {1,2,3,8} {1,3,4} {1,3,4,8} {1,3,6} {1,3,6,8}
{1,3,7} {1,3,6,7} {1,3,8} {1,3,5,8} {1,4,5} {1,4,5,8}
{1,4,6} {1,4,6,8} {1,4,7} {1,4,5,7} {1,4,8} {1,4,7,8}
{1,5,6} {1,2,5,6} {1,5,7} {1,2,5,7} {1,5,8} {1,2,5,8}
{1,6,7} {1,2,6,7} {1,6,8} {1,2,6,8} {1,7,8} {1,6,7,8}
{2,3,4} {2,3,4,5} {2,3,5} {2,3,5,6} {2,3,6} {2,3,6,8}
{2,3,7} {2,3,4,7} {2,3,8} {2,3,4,8} {2,4,5} {2,4,5,6}
{2,4,6} {2,4,6,7} {2,4,7} {2,4,5,7} {2,4,8} {2,4,7,8}
{2,5,6} {2,5,6,8} {2,5,7} {2,3,5,7} {2,5,8} {2,4,5,8}
{2,6,7} {2,3,6,7} {2,6,8} {2,4,6,8} {2,7,8} {2,6,7,8}
{3,4,5} {1,3,4,5} {3,4,6} {1,3,4,6} {3,4,7} {1,3,4,7}
{3,4,8} {3,4,7,8} {3,5,6} {1,3,5,6} {3,5,7} {1,3,5,7}
{3,5,8} {2,3,5,8} {3,6,7} {3,4,6,7} {3,6,8} {3,5,6,8}
{3,7,8} {2,3,7,8} {4,5,6} {1,4,5,6} {4,5,7} {3,4,5,7}
{4,5,8} {3,4,5,8} {4,6,7} {1,4,6,7} {4,6,8} {3,4,6,8}
{4,7,8} {4,5,7,8} {5,6,7} {4,5,6,7} {5,6,8} {4,5,6,8}
{5,7,8} {1,5,7,8} {6,7,8} {5,6,7,8}
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∅


b|
a


ȧ|a
ab


abb|
aba


abab|
abaa


abȧȧ|a
abaab


abaabb|
abȧaba|

Fig. 2. Initial descent patterns.

dot above an ascent at position k means that if T has the given initial descent pattern,
then T is dominated by T ∪ {k}. The bottom of each branch shows how the induction
hypothesis should be applied. If the monomial ends with an ascent, then the induction
hypothesis is applied to everything to the right of the bar. For instance, the entry abȧȧ|a
says to apply the induction hypothesis to the r −4 positions to the right of abȧȧ. Indeed,
this ensures �r − 4− 5

2 (i − 2)� + 2 ≥ �r − 5
2 i� supersets which dominate T .When the

monomial ends with ...b| the induction hypothesis is applied to the positions to the right
of the next ascent. For instance, the monomial ababbbbaabba is covered by the branch
endpoint abab|.

Let u = m(T ). Starting from the top of the tree we look for either an interior node
which matches u exactly or a branch endpoint which matches an initial segment of u.
All of the interior nodes satisfy the theorem and all of the branch endpoints demonstrate
how to use the induction hypothesis to prove the theorem for u.

Theorem 6.2. If i ≤ 2
7 (r + 5

2 ), then there exists a matching ϕ from (i − 1)-subsets of
[r ] to i-subsets of [r ] such that ϕ(T ) dominates T for each |T | = i − 1.

Proof. The condition on i ensures that r − 5
2 (i − 1) ≥ i. Hence, by the above lemma,

each (i − 1)-subset of [r ] has at least i supersets which dominate it. Obviously any
i-subset of [r ] has at most i subsets of cardinality i −1 which it dominates. The theorem
is now an elementary application of Hall’s marriage theorem.

Theorem 6.2 is not optimal. We have already seen that there are suitable matchings
for 2-sets to 3-sets in [6] and 3-sets to 4-sets in [8]. However, it is not always possible to
obtain suitable matchings for all i ≤ r/2.
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Example 6.3. Let T = {2, 5, 6, 9} ⊆ [10]. There are no 5-supersets of T in [10] which
dominate T . This can be seen by directly computing hT and hS in B11 where S runs
over all potential supersets. In each case hT > hS.

Problem 6.4. Asymptotically, Theorem 6.2 covers a little over 57% of the inequalities
in (1). How much can this be improved?

Instead of insisting on a one-to-one matching we can consider grouping subsets
together. Of course, this must be done in moderation. Indeed, hi−1 ≤ hi is just a reflection
of grouping all subsets of the same cardinality together.

Example 6.5. Let T = {3}, S = {2},U = {2, 3}, and V = {1, 3}. As the following
table shows, there is a bijection which respects the weak Bruhat order from the permu-
tations in S4 whose descent set is T or S to those whose descent set is U or V . Hence
hT + hS ≤ hU + hV in rank 4 (or more) geometric lattices.

1243 → 2143
1342 → 1432
2341 → 2431
1324 → 3142
1423 → 4132
2314 → 3241
2413 → 4231
3412 → 3421

Combined with the previously shown h{1} ≤ h{1,2}, the above example provides a com-
binatorial proof of h1 ≤ h2 for geometric lattices of rank 4 or greater.

As noted earlier, the cd-index of an oriented matroid is a nonnegative linear combi-
nation of the ab-index of the associated geometric lattice.

Problem 6.6. Are there groupings of subsets such that the corresponding flag h-vector
inequality translates to a cd-inequality for oriented matroids?
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