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Abstract. We show how to construct an arrangement of n lines having a monotone path

of length �(n2−(d/
√

log n)), where d > 0 is some constant, and thus nearly settle the long
standing question on monotone path length in line arrangements.

1. Introduction

Let L = {�1, . . . , �n} be a set of n given lines in R2 . A path in the arrangement A(L)
is a simple polygonal chain joining a set of distinct vertices in V = {�i ∩ �j , i < j} by
segments which are on lines in L . The length of a path is one plus the number of vertices in
V at which the path turns. A path is monotone in direction (a, b) if its sequence of vertices
is monotone when projected orthogonally along the line with equation ay− bx = 0. An
interesting open question asks for the value of λn , the maximal monotone path length
that can occur in an arrangement of n lines.1 Clearly λn ≤

(n
2

)+ 1.

∗ The work of the first three authors was done while at the Institute for Advanced Study, Princeton, NJ. The
second and third authors were supported by NSF Grant CCR-9987845. The second author was also supported
by ARO Grant DAAD19-03-1-0082. The fifth author’s research was supported by NSF Grant 0105692.

1 Clearly, this is equivalent to the usual definition that considers paths monotone in the direction of the
x-axis.
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A sequence of results by Sharir (see [2]), Matoušek [3], and Radoičić and Tóth [4]
established that λn = �(n3/2), λn = �(n5/3), λn = �(n7/4), respectively. The last
paper also showed λn ≤ 5n2/12. Here we give an explicit construction that proves

Theorem 1. For any integers n,m > 0 such that m ≤ 1
2

√
log n, there is an arrange-

ment of at most 2n + 2(30m)n lines in which there is a monotone path of length at least
2−m · n2−1/(m+1).

Notice that for m = 3 this gives the previously best bound λn = �(n7/4).

Corollary 1. The maximal monotone path length satisfies

λn = �(n2−(d/
√

log n)),

where d > 0 is some constant.

Proof. Let m be 1
2

√
log n. Then Theorem 1 gives a monotone path of length at least

n2−(3/
√

log n) using at most 2n+2(30
√

log n/2)n lines. A straightforward calculation gives
the claimed bound on λn .

2. The Construction

2.1. The Basic Setup

Observe that k parallel horizontal lines and k parallel vertical lines give a path that
is monotone in any direction (a, b) with a, b > 0, has length n = 2k, and uses n
lines. We call this path a “staircase” (see Fig. 1). Given an integer m > 0 let αk =
1/((k+1)(k+2)), 0 ≤ k < m, andαm = 1/(m+1). Sinceα0+· · ·+αk = (k+1)/(k+2),

α0 + · · · + αm = 1

2
+ 1

6
+ · · · + 1

m(m + 1)
+ 1

m + 1
= 1. (1)

In the course of the proof we shall set an ε > 0 that will be suitably small. For now
we treat ε as an infinitesimal quantity. We develop a notation to describe points in a

2

k

k-1

3

1

1 2 3 kk-1

Fig. 1. A “staircase” with n = 2k lines, and having length n.
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hierarchical construction. For ε > 0, the vector-matrix product

(1, ε, ε2, . . . , εm)

(
i0 i1 · · · im

j0 j1 · · · jm

)T

is a point of the plane that we denote by
[

i0 i1 · · · im

j0 j1 · · · jm

]
.

The construction uses the set S of points for which i0, j0, . . . , im, jm are integers with

0 ≤ i0, j0 ≤ �nα0� − 1
def= D0,

0 ≤ i1, j1 ≤ �nα1� − 1
def= D1,

...

0 ≤ im, jm ≤ �nαm� − 1
def= Dm .

In view of (1), the number of points in S is at most (nα0)2(nα1)2 · · · (nαm )2 = n2.
For k < m write Bk for the subset of S where ir = jr = 0, r > k. That is,

Bk =
{

P =
[

i0 i1 · · · ik−1 ik 0 · · · 0
j0 j1 · · · jk−1 jk 0 · · · 0

]}
. (2)

There are at most (nα0)2 · · · (nαk )2 = n2−2/(k+2) such points.
Another way to think about Bk is as follows: we call the square [x, x+t)×[y, y+t) ⊆

R
2 the “square of side t at (x, y).” The points of B0 are given by the intersection of the

integer lattice Z × Z ⊆ R2 with the square of side �√n� at (0, 0). To get the points
of B1, the next level of the hierarchy, replace each point P ∈ B0 by the intersection of
the square of side ε�nα1� at P with the points P + ε(Z × Z). For 1 ≤ k < m − 1 we
construct Bk+1 by replacing each point P ∈ Bk by the intersection of the square of side
εk+1�nαk+1� at P and the points P + εk+1(Z×Z). For example in Fig. 2, P1, P2, P3, P4

are neighboring points in Bk , each the lower-left corner of a square of side εk+1�nαk+1�
that contains �nαk+1�2 grid points. If in Fig. 2 P1 has coordinates

[
i0 · · · ik−1 I 0 · · · 0
j0 · · · jk−1 J 0 · · · 0

]
∈ Bk,

then P2 and P4 have ik = I + 1, and P3 and P4 have jk = J + 1.
We now pick a direction in which we want our path to be monotone (see Fig. 3). Our

choice is w = (√2, 1). Orthogonal to this is the direction w′ = (−1,
√

2). A vector is
said to point forward if it has positive scalar product with (

√
2, 1). In particular, (1, 0)

and (0, 1) point forward. For p, q > 0 the vector (−q, p) points forward iff p/q >
√

2,
and (q,−p) points forward iff p/q <

√
2. In the first case we say p/q approximates√

2 from above; in the second, p/q approximates
√

2 from below.
For each point in S consider the horizontal line and the vertical line that go through

this point and let L be the union of all these lines. The points of S have at most n distinct



170 J. Balogh, O. Regev, C. Smyth, W. Steiger, and M. Szegedy

4

2
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PP1

3

Fig. 2. Some points in Bk+1

x coordinates and at most n distinct y coordinates, so L has at most 2n lines. As we
will see later, our monotone path goes through every point in Bm−1. Whenever it reaches
a point [

i0 · · · im−1 0
j0 · · · jm−1 0

]
∈ Bm−1,

it follows the staircase to [
i0 · · · im−1 Dm

j0 · · · jm−1 Dm

]
∈ S.

This staircase is a monotone path because (1, 0) and (0, 1) both point forward. We use
the following coarse lower bound on the number of staircases (which is good enough for
our claim):

�nα0�2 · · · �nαm−1�2 ≥ 2−m(nα0)2 · · · (nαm−1)2 = 2−mn2−2/(m+1),

where the first inequality holds since nαk ≥ n2/ log n = 4 for all 0 ≤ k ≤ m − 1. On each
of these staircases the path makes 2�n1/(m+1)�−1 ≥ n1/(m+1) turns, so if we could move
from staircase to staircase in a monotone fashion, the resulting path would have length
at least 2−mn2−1/(m+1), as required.

w=( 2 ,1)

(1,-1)

(-2,3)

Fig. 3. w is the chosen direction of monotonicity. (−2, 3) and (1,−1) point forward, since 3
2 approximates√

2 from above and 1
1 from below.
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2.2. Helping Lines

In this section we complete the construction by showing how to connect the staircases
using at most 2(30m)n extra lines, and moving along each in a direction that points
forward with respect to w.

Suppose we project the points of S orthogonally onto the line � given by the equation√
2y − x = 0. The points in B0 project to distinct points on � and are ordered by these

projections. When each point in B0 is replaced by a square of side ε�nα1�, each square
projects to an interval, and if ε is suitably small, these intervals will be disjoint. This
gives an ordering for the points in B1 based first on the ordering for B0, and then on
the ordering for points with the same i0, j0. Inductively, the points in Bk are ordered,
and when we replace each by a square of side εk+1�nαk+1�, each square projects to an
interval; if ε is suitably small, these intervals will be disjoint. This gives an ordering for
the points in Bk+1, first based on the ordering of points in Bk , and then on the ordering
of points with the same values of ir , jr , r ≤ k.

To sum up, we obtain a lexicographic ordering of the points in S. We define Q ∈ S
to be the successor of P ∈ S if it comes immediately after P in this ordering. These
observations imply that the set of staircases can be connected in a monotone manner.
We also obtain

Lemma 1. Let

P =
[

i0 · · · ik−1 ik Dk+1 · · · Dm

j0 · · · jk−1 jk Dk+1 · · · Dm

]

be a point in S with either ik �= Dk or jk �= Dk , and k < m. The successor of P is a
point

Q =
[

i0 · · · ik−1 i ′k 0 · · · 0
j0 · · · jk−1 j ′k 0 · · · 0

]

with either i ′k �= ik , j ′k �= jk , or both.

The point P can be seen as the top of a staircase at level k. Let us define this notion
more precisely: for 0 ≤ k < m define Tk ⊆ S as

Tk =
{

P =
[

i0 · · · ik Dk+1 · · · Dm

j0 · · · jk Dk+1 · · · Dm

]
∈ S : (ik, jk) �= (Dk, Dk)

}
. (3)

These points are the tops of staircases at level k of the hierarchy. Consider Fig. 4 for
some fixed k < m. All the points in the figure except P2 and P5 are in Bk+1. Moreover,
the points that are at the bottom left of the shaded squares are also in Bk . P2 is in Tk and
P5 is in Tk−1. Hence, we can write

P1 =
[

i0 · · · ik−1 ik 0 · · · 0
j0 · · · jk−1 jk 0 · · · 0

]
∈ Bk,

P2 =
[

i0 · · · ik−1 ik Dk+1 · · · Dm

j0 · · · jk−1 jk Dk+1 · · · Dm

]
∈ Tk,
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w = (
√

2, 1)P2

P4

P5
v1

v2

v4

v3

w = (
√

2, 1)

P1

P3

Fig. 4. Successors at level k.

P4 =
[

i0 · · · ik−1 Dk 0 · · · 0
j0 · · · jk−1 Dk 0 · · · 0

]
∈ Bk,

P5 =
[

i0 · · · ik−1 Dk · · · Dm

j0 · · · jk−1 Dk · · · Dm

]
∈ Tk−1.

Finally, notice that P3 ∈ Bk is the successor of P2 ∈ Tk while the successor of P5 ∈ Tk−1

is some point from Bk−1 which is not shown.
We now discuss the issues concerning the choice of lines used to move from a point

to its successor. We call these lines helping lines. We first use Fig. 4 to describe the main
ideas. From points in Tk we either follow a line in direction v1 or a line in direction v2.
The actual choice is determined by the position of the successor: for example, from P2

we choose the direction v1 because P3 is above P2. In order to be able to move from a
point in Tk to its successor in Bk , the directions v1 and v2 must be almost orthogonal
to w. However, as we explain next, it is crucial that neither v1 nor v2 are completely
orthogonal to w.

As we said above, we need a helping line for every point in Tk . However, there are as
many as n2−2/(k+2) � 2(30m)n such points! The main idea is to reuse each helping line
many times. Hence, even though we define a helping for every point in Tk , the number
of distinct helping lines is actually much smaller than |Tk |. The way to reuse a line is the
following: when we move to the successor of a point in Tk−1 we do so on a helping line
that is more orthogonal to w than the helping line used for points in Tk . For example, in
Fig. 4, v3 and v4 point less forward than v1 and v2. This essentially allows us to cross
v1 and v2 on the way to the successor and then to use them again. We now describe the
choice of the helping lines more formally.
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Definition 1. A best upper approximator of
√

2 is a rational number p/q >
√

2 such
that no other rational p′/q ′ with q ′ ≤ q approximates

√
2 better from either above or

below. A best lower approximator of
√

2 is a rational r/s <
√

2 such that no other
rational r ′/s ′ with s ′ ≤ s approximates

√
2 better from either above or below.

Lemma 2. For every t ≥ 1 there is a best upper approximator p/q and a best lower
approximator p′/q ′ of

√
2 such that t < q, q ′ ≤ 10t .

Proof. The convergents of the simple continued fraction for
√

2 are 1, 3
2 ,

7
5 ,

17
12 , . . .

They can be defined by ri/si where s0 = r0 = 1, ri+1 = ri + 2si , and si+1 = ri + si . It
is easy to see that for j ≥ 0,

r2 j

s2 j
<

r2 j+2

s2 j+2
<
√

2 <
r2 j+3

s2 j+3
<

r2 j+1

s2 j+1
.

It is also well known (and easy to check) that r2 j/s2 j is a best lower approximator of√
2 and r2 j+1/s2 j+1 is a best upper approximator of

√
2. Since si+1 = ri + si ≤ 3si , for

every t ≥ 1 there exists some i ≥ 0 such that t < si < si+1 ≤ 10t .

For 0 ≤ k < m, let pk/qk be a best upper approximator of
√

2 such that nαk < qk ≤
10nαk and let p′k/q

′
k be a best lower approximator of

√
2 such that nαk < q ′k ≤ 10nαk .

We can now define for every point P ∈ Tk two lines that are incident with P: one in
direction (−qk, pk) (an upper helping line, like v1 and v3 in Fig. 4) and one in direction
(q ′k,−p′k) (a lower helping line, like v2 and v4 in Fig. 4). Formally, Lup

k denotes the set
of lines of slope −pk/qk through the points of Tk and Ldown

k , the lines of slope −p′k/q
′
k

through these points. As mentioned above, the monotone path will actually follow only
one of these lines but for simplicity we define both.

Lemma 3. From each point in P ∈ Tk there is a monotone path to its successor Q,
that either follows the line in Lup

k through P or the line in Ldown
k through P , and then

follows a horizontal line to Q (see Fig. 5).

Proof. The choice of pk/qk and p′k/q
′
k as best approximators with qk, q ′k > nαk guar-

antee that if ε is small enough, the successor of P is on a line from P of slope less than
−pk/qk in the upper case, or greater than −p′k/q

′
k in the lower case.

P

w=( 2 ,1)

Qaw’ P

Q

w’
b

w=( 2 ,1)

Fig. 5. Helping lines precede successors.
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2.3. Counting

To complete the proof of the theorem we count the number of distinct helping lines used
in the construction.

Lemma 4. Let |Lup
k | and |Ldown

k | denote the number of distinct lines in the respective
sets, k < m. Then the total number of helping lines is

≤
m−1∑
k=0

(|Lup
k | + |Ldown

k |) ≤ 2(30m)n. (4)

Proof. Fix some k < m. We just treat |Lup
k |, the down case being completely analogous.

Fix non-negative Ir , Jr ≤ Dr , r < k, and consider the points in

A = {P ∈ Tk : (ir , jr ) = (Ir , Jr ) for all r < k}.

There are at most N = n2αk such points, one for each possible pair (ik, jk) �= (Dk, Dk),
and they require N distinct lines in Lup

k . Let R be the points in Tk which have the same
values of ir , jr as do the points in A, for all r < k − 1; i.e.,

R = {P ∈ Tk : (ir , jr ) = (Ir , Jr ) for all r < k − 1}.

The N lines just considered (for A) will also meet all points in R for which both ik−1 =
Ik−1 − cqk ≥ 0 and jk−1 = Jk−1 + cpk ≤ Dk−1 for some integer c. For example, in
Fig. 6, the square B is located qk squares to the left of A and pk squares above it and
therefore the N lines going through A are the same as the N lines going through B.
Similarly, C is located 2qk squares to the left and 2pk squares above A and also shares
the same N lines.

This indicates that the number of distinct lines in Lup
k needed for all points in R is

less than the trivial bound of n2αk−1 · N . Indeed, consider the lines of slope −pk/qk at
those points with (ir , jr ) = (Ir , Jr ), r < k − 1, and with ik−1 = 0, . . . , 2�nαk−1� and

B

A

C

D

R

pk

bn�k�1c

Fig. 6. Lines in Lup
k for points with the same ir , jr , r < k − 1.
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jk−1 = 0, . . . , pk − 1 (in Fig. 6 these are the lines emanating from the squares inside
the dashed rectangle, such as A and D). Because pk > qk (i.e., the lines form an angle
of more than 45◦ with the x-axis), all points in R will be covered. Each square uses at
most N lines in Lup

k and we cover R with at most 2pknαk−1 squares. Hence, the number
of distinct lines in Lup

k needed for all the points in R ⊆ Tk is at most

2pk · nαk−1 N ≤ (30nαk )nαk−1 n2αk ,

where we used the fact that pk ≤ 1.5qk and qk ≤ 10nαk .
Applying this argument again to points in Tk that have (ir , jr ) = (Ir , Jr ) for r < k−2

we deduce that at most

(30nαk )2nαk−2 nαk−1 n2αk

lines in Lup
k are needed, and, continuing inductively, we see that Tk needs at most

(30nαk )kn(α0+···+αk−1)n2αk = (30)kn(α0+···+αk−1+(k+2)αk )

lines in Lup
k . Using the fact that (k+2)αk = 1/(k+1) and α0+· · ·+αk−1 = k/(k+1),

we obtain

|Lup
k | ≤ (30)kn.

Applying this estimate for each k, we establish the bound in (4) and prove the lemma.

Proof of Theorem 1. We have constructed an arrangement of at most 2n + 2(30m)n
lines, at most n horizontal and at most n vertical lines used in the staircases, and the
helping lines. Also, as mentioned above, the staircases alone comprise part of a monotone
path of length at least 2−m · n2−1/(m+1).

3. Remarks

1. One interesting open question concerns the quantity λn(k), the length of the longest
monotone path in an arrangement of n lines with at most k distinct slopes. Clearly, λn(k)
increases with k and is at most λn . The construction of Sharir used k = 4 different
slopes, so λn(4) ≥ �(n3/2). Matoušek’s construction gives λn(5) ≥ �(n5/3). For any
constant m, our construction uses a set of O(n) lines with 2m+2 distinct slopes. Hence,
it implies λn(2m + 2) ≥ �(n2−1/(m+1)). Recently, Dumitrescu [1] showed that λn(k) ≤
O(n2−1/Fk−1) where Fk is the kth Fibonacci number (F1 = F2 = 1, F3 = 2, F4 = 3,
etc.). In particular, this provides tight upper bounds for k = 4, 5.

2. Matoušek [3] also studied arrangements of pseudolines; i.e., n continuous functions
f1, . . . , fn with the same intersection rules as lines. Specifically, for each i < j there is
a point xi j (a vertex) such that ( fi (u)− f j (u))( fi (t)− f j (t)) < 0 whenever (u− xi j )(t−
xi j ) < 0. General position would impose the condition that the vertices be distinct.
A “path” moves along a function and may turn at a vertex. Matoušek constructed a
pseudoline arrangement with an x-monotone path of length �(n2/log n). He also had
conjectured that λn = O(n5/3), i.e., that his lower bound for monotone path length in
line arrangements was optimal. If this were true we would have a neat combinatorial
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separation of line and pseudoline arrangements based on monotone path length. The result
of this paper implies that such a strong separation is impossible. A weaker separation is
still possible by showing a o(n2/ log n) upper bound for λn (but we do not even know
how to show λn = o(n2)!).
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