
DOI: 10.1007/s00454-004-1118-2

Discrete Comput Geom 32:269–288 (2004) Discrete & Computational

Geometry
© 2004 Springer-Verlag New York, LLC

High-Dimensional Shape Fitting in Linear Time∗

Sariel Har-Peled1 and Kasturi R. Varadarajan2

1Department of Computer Science, University of Illinois at Urbana-Champaign,
201 N. Goodwin Avenue, Urbana, IL 61801-2302, USA
sariel@uiuc.edu
http://www.uiuc.edu/∼sariel/

2Department of Computer Science, University of Iowa,
Iowa City, IA 52242-1419, USA
kvaradar@cs.uiowa.edu

Abstract. Let P be a set of n points in Rd . The radius of a k-dimensional flat F with
respect to P , which we denote by RD(F , P), is defined to be maxp∈P dist(F , p), where
dist(F , p) denotes the Euclidean distance between p and its projection onto F . The k-flat
radius of P , which we denote by Ropt

k (P), is the minimum, over all k-dimensional flats F ,
of RD(F , P). We consider the problem of computing Ropt

k (P) for a given set of points
P . We are interested in the high-dimensional case where d is a part of the input and not a
constant. This problem is NP-hard even for k = 1. We present an algorithm that, given P
and a parameter 0 < ε ≤ 1, returns a k-flat F such thatRD(F , P) ≤ (1+ ε)Ropt

k (P). The
algorithm runs in O(ndCε,k) time, where Cε,k is a constant that depends only on ε and k. Thus
the algorithm runs in time linear in the size of the point set and is a substantial improvement
over previous known algorithms, whose running time is of the order of dnO(k/εc), where c
is an appropriate constant.

1. Introduction

Let P be a set of n points in Rd . The radius of a k-dimensional flat F with respect to P ,
which we denote by RD(F, P), is defined to be maxp∈P dist(F, p), where dist(F, p)
denotes the Euclidean distance between p and its projection onto F . The k-flat radius
of P , which we denote by Ropt

k (P), is the minimum, over all k-dimensional flats F ,

∗ A preliminary version of this paper appeared in Proc. 19th Annual ACM Symposium on Computational
Geometry, pages 39–47, 2003. Work on this paper by the first author was partially supported by NSF CAREER
Award CCR-0132901, and that by the second author was partially supported by NSF CAREER Award CCR-
0237431.

270 S. Har-Peled and K. R. Varadarajan

of RD(F, P). (See Section 2 for detailed definitions.) Thus Ropt
0 (P) is the radius of

the min-enclosing ball of P , Ropt
1 (P) is the radius of the min-enclosing cylinder of P ,

and so on. Informally, the k-flat radius of P measures how well the point set P can be
approximated by an affine subspace of dimension k. Computing the k-flat radius of a
point set is a fundamental problem in computational convexity and has applications in
data mining, statistics, and clustering [GK1], [GK2], [HV2].

The problem of computing the k-flat radius of a point set has received considerable at-
tention in the computational geometry literature. A classic result is that the min-enclosing
ball (i.e., Ropt

0 (P)) of a point set P can be computed in linear time when the dimension is
fixed. For k ≥ 1, the k-flat radius of a set P of n points can be computed exactly in poly-
nomial time in fixed dimension [FKS]. It can also be approximated to within a factor of
(1+ε), for any ε > 0, in O(n+(1/ε)c) time, where c is a constant that depends only on d
and k [BH], [HV1]. Thus the problem is reasonably well understood when the dimension
d is taken to be a fixed constant. These algorithms are not satisfactory when the dimen-
sion is large as their running times depend exponentially on the dimension. In the rest of
this paper we are interested in efficient algorithms when the dimension d can be as large
as n.

It is well known that the minimum enclosing ball of a set of points can be computed in
polynomial time; see for instance the paper by Gritzmann and Klee [GK1]. Megiddo [Me]
shows that the problem of determining whether there is a line that intersects a set of balls
is NP-hard. In his reduction, the balls have the same radius, which implies that computing
the radius Ropt

1 (P) of the min-enclosing cylinder of a set of points P is NP-hard. Bădoiu
et al. [BHI] give a poly-time algorithm that computes a (1+ ε)-approximation, for any
ε > 0, of the minimum enclosing cylinder (i.e., Ropt

1 (P)) of a set of points. The authors
[HV2] gave a poly-time algorithm that computes a (1+ε)-approximation, for any ε > 0,
to Ropt

k (P)whenever k is a fixed constant. This algorithm runs in, roughly, dnO(k/ε5) time.
These results show that the k-flat radius can be efficiently approximated for small k.

The problem seems to become harder when k becomes large. Bodlaender et al.
[BGKvL] show that computing the width, Ropt

d−1(P), of a point set is NP-hard. Gritzmann
and Klee [GK1] show that it is NP-hard to compute the width of even a d-dimensional
simplex (that is, a set of d + 1 points). They also show that it is NP-hard to compute
Ropt

k (P) for small point sets (consisting of 2d points) as long as k ≥ c · d, for any
fixed 0 < c < 1. Recently, Brieden [Br] showed that it is NP-hard to approximate the
width of a point set to within any constant factor. Varadarajan et al. [VVZ] show that
Brieden’s result can be strengthened as follows: there exists a constant δ > 0 such that
it is NP-hard to approximate the k-flat radius of a set of n points to within a factor of
(log n)δ whenever k ≥ dε, for any constant ε > 0. Turning to upper bounds, the papers
of Nesterov [Ne] and Nemirovski et al. [NRT] imply an O(

√
log n)-approximation for

the width (i.e., Ropt
d−1) of a point set in polynomial time. Varadarajan et al. [VVZ] describe

a poly-time algorithm that approximates the k-flat radius of a point set to within a factor
of O(

√
log n · log d) (for any k). We refer the reader to this paper for further details on

approximating the k-flat radius for large k. Recently, Ye and Zhang [YZ] improved the
result of Varadarajan et al. [VVZ] by presenting an algorithm that gives an O(

√
log n)

approximation.
Our current paper focuses on the case when k is small and significantly improves

upon our previous work [HV2]. In that paper we presented an algorithm that, given

High-Dimensional Shape Fitting in Linear Time 271

a point set P with n points and a parameter 0 < ε ≤ 1, computes a k-flat whose
radius with respect to P is at most (1 + ε)Ropt

k (P) in dnO(k/ε5 log(1/ε)) time. The basic
algorithm of [HV2] is based on proving the existence of a small set of points, called a
coreset, such that the affine subspace spanned by the points contains a k-flat that is near-
optimal. The size of the coreset depends on k and ε but not on the dimension d. Now,
by brute-force enumeration on all such small sets, the algorithms generates all possible
candidate coresets. For each candidate coreset, the algorithm finds the best k-flat in the
affine subspace spanned by the coreset; this, being a “low-dimensional” problem, is
feasible. The algorithm then returns the best k-flat overall. The nice property of coresets
is that they are deus ex machina—their existence immediately implies relatively efficient
approximation algorithms that extends immediately to fitting multiple-flats with outliers.
On the negative side, these techniques have relatively bad dependency on n. In this paper
we develop a new technique that bypasses the enumeration of coresets altogether, and
present direct algorithms for computing a good k-flat. In particular, our new algorithms
have linear dependency on the number of input points and the dimension.

Given a set P of n points in d dimensions (d might be as large as n) and a parameter
0 < ε ≤ 1, we present efficient algorithms for the following problems:

• Minimum Radius Line. In Section 3.2 we present an approximation algorithm
that returns a line 	 such that RD(, P) ≤ (1 + ε)Ropt

1 (P). The running time of
the new algorithm is O(ndCε), where Cε = exp((1/ε3) log2 (1/ε)).

This is a substantial improvement over the previously fastest algorithms of [BC],
[BHI], [KMY], and [HV2], which all had running times of the form dnO(1/εc), where
c is an appropriate constant.

It is natural to ask if there is an algorithm for solving this problem with a running
time that depends polynomially on n, d, and 1/ε. We prove in Section 4 that such an
algorithm does not exist unless P = NP. We do this by showing that the NP-hardness
reduction of Megiddo [Me] can be modified so that it yields an appropriate hardness
of approximation result.
• Minimum Radius k-Flat. In Section 5 we generalize the algorithm for a line to

compute a k-flatF such thatRD(F, P) ≤ (1+ε)Ropt
k (P). The running time of the

new algorithm is n · d · exp((eO(k2)/ε2k+1) log2(1/ε)). This substantially improves
over the previous fastest algorithm [BC], [KMY], [HV2] that has running time
dnO(k/εc), where c is an appropriate constant. It is clear that the hardness result for
k = 1 implies a hardness result for any k ≥ 1, but we have not attempted to prove
this rigorously.

The main result of this paper is the algorithm for the case k = 1, which extends
naturally to the case k > 1. We describe the ideas behind this algorithm. Let 	opt denote
an optimal line for the point set P , and let 	 be any line. If 	 is not nearly as good
as 	opt, then the 2-flat h containing 	 and the point in P maximizing dist(, p) has a
line 	′ that is “significantly closer” to 	opt than 	. Moreover, we can compute a small
number of candidate lines on h, one of which is guaranteed to contain 	′. By trying all
the candidates, we are guaranteed to have a line that is significantly closer to 	opt than
	. By repeating this process a small number of times, we either stumble upon a line that
is near-optimal, or we end up with a line that is very close to 	opt and is therefore near-

272 S. Har-Peled and K. R. Varadarajan

optimal. To realize this vision, we need an appropriate notion of “closeness” between
lines and corresponding machinery to argue about convergence; the provision of these
is the most interesting contribution of this paper.

2. Preliminaries

Definition 2.1. Given j points v1, . . . , vj ∈ Rd , the linear subspace they span is de-
noted by span(v1, . . . , vj) = {v | v =

∑ j
i=1 aivi for any a1, . . . , aj ∈ R}.

Given j + 1 points p1, . . . , pj+1 in Rd , the affine space spanned by them is

affine(p1, . . . , pj+1)

=
{
v

∣∣∣∣∣ v =
j+1∑
i=1

ai pi , for any a1, . . . , aj+1 ∈ R such that
j+1∑
i=1

ai = 1

}
.

Alternatively, affine(p1, . . . , pj+1) = p1 + span(p2 − p1, p3 − p1, . . . , pj+1 − p1).
We refer to an affine subspace of dimension k as a k-flat. When the dimension is

not relevant, we simply refer to an affine subspace as a flat. See [Ed] for more on these
definitions.

Definition 2.2. For a flat F in Rd and a point y ∈ Rd , let proj(F, y) denote the
projection of y onto F . Namely, proj(F, y) = argminx∈F ‖xy‖, where ‖xy‖ denotes
the Euclidean distance between x and y. For a set point Y ∈ Rd , let proj(F, Y) =
{proj(F, y) | y ∈ Y }.

For a flat F and a point y, we let dist(F, y) denote the distance ‖y proj(F, y)‖. We
sometimes refer to dist(F, y) as the distance of y from F . For a flat F and point set
P ⊆ Rd , the radius of F with respect to P isRD(F, P) = maxp∈P dist(F, p).

For k ≥ 0, let Ropt
k (P) denote the radius of a k-flat which minimizes the radius with

respect to P . Formally, Ropt
k (P) = minF∈FLTk RD(F, P), where FLTk is the set of all

k-flats in Rd .

Given a k-flat F , a point p on F , and positive real numbers 0 < β ≤ α, an (α, β)-
net around p on F is a set S of points on F such that for any point q on F such
that ‖qp‖ ≤ α, there is a point s ∈ S such that ‖qs‖ ≤ β. It is well known that
there exists an (α, β)-net S of size exp(O(k log(α/β))) [Mat], and it is easy to see that a
larger (α, β)-net of size exp(O(k log(kα/β))) can be computed in exp(O(k log(kα/β)))
time.

2.1. Distance Function

Definition 2.3. Given a j-flatG, the distance function dG(x), for x ∈ Rd , is the distance
of x from its projection onto G; namely, dG(x) = ‖x proj(G, x)‖.

High-Dimensional Shape Fitting in Linear Time 273

Lemma 2.4. Let dG(·) be the distance function to a flat G. Let x, y ∈ Rd be any two
points.

(i) For any 0 ≤ β ≤ 1, dG(βx + (1 − β)y) ≤ βdG(x) + (1 − β)dG(y). That is,
dG(·) is convex.

(ii) Let 	 be the line through x and y, and w and z be any two points on 	. Then

dG(z) ≤ dG(w)+ 2
‖wz‖
‖xy‖ max(dG(x), dG(y)).

Proof. Suppose that the line 	 through x and y is parameterized by {x + tv | t ∈ R},
where v ∈ Rd is the unit vector (1/‖xy‖)(y − x). Let d(t) denote the distance of
the point 	(t) = x + tv on 	 from G, that is, d(t) = dG((t)). Then d(t) is of the
form d(t) = √at2 + bt + c, where a, b, c are appropriate constants that depend on 	
(specifically x, y) and G. Moreover, the constants a, b, and c are such that at2 + bt + c
is non-negative for every t ∈ R. This implies that a ≥ 0. Since

at2 + bt + c = a

(
t + b

2a

)2

+ 4ac − b2

4a
,

this also implies that 4ac − b2 ≥ 0. Let α = −b/2a, and let d = (4ac − b2)/4a. Thus
d(t) =

√
a(t − α)2 + d , where d ≥ 0.

(i) This is well known but we give the proof for completeness. If d = 0, d(t) is a linear
function in t and is therefore convex. So we assume that d > 0 and thus 4ac − b2 > 0
and d(t) > 0 for all t . Observe that

d′(t) = 1
2 (2at + b)(at2 + bt + c)−1/2 = (at + b/2)(at2 + bt + c)−1/2 and

d′′(t) = a(at2 + bt + c)−1/2 − (at + b/2)2(at2 + bt + c)−3/2.

Now

f (t) = d′′(t)(at2 + bt + c)3/2 = a(at2 + bt + c)− (at + b/2)2 = (4ac − b2)/4 > 0

for all t . Since at2 + bt + c > 0 for all t , we conclude that d′′(t) > 0 for all t . This
implies that d(t) is convex [Man, page 89].

(ii) Consider the function g(t) =
√

a(t − α)2 = √a|t − α|. It is easy to verify that
g(t) ≤ d(t) for all t ∈ R and |d′(t)| ≤ |g′(t)| for all t ∈ R\{α}.

Let U = max(dG(x), dG(y)). Because of the convexity established in part (i), we
have d(t) ≤ U for any t ∈ [tx , ty], and thus, g(t) ≤ U , for all t ∈ [tx , ty]. Note that
|g′(t)| = √a, for all t ∈ R\{α}, and the value of

√
a is maximized when α is the middle

point of [tx , ty]. Otherwise, since g(·) is a symmetric function around α, we could move
α to the middle of the segment [tx , ty] and increase the value of a, and get a new function
which complies with the above conditions. Furthermore, in such a case, a is maximized
when g(tx) = g(ty) = U . In this case, a = (2U/(ty − tx))

2, and |g′(t)| = 2U/(ty − tx),
for all t ∈ R\{α}. This implies |d′(t)| ≤ |g′(t)| ≤ 2U/(ty − tx), for all t ∈ R.

274 S. Har-Peled and K. R. Varadarajan

b a

c

d

Fig. 1. The triangles bac and bda are similar.

Suppose that 	(tw) = w and 	(tz) = z. Because of the bound on d′(t), we have

d(tz) ≤ d(tw)+ (max
t
|d′(t)|)|tz − tw| ≤ d(tw)+ 2U

ty − tx
· |tz − tw|,

which completes the proof.

2.2. Triangles

We now state a simple lemma that will play an important role in this paper. See Fig. 1.

Lemma 2.5. Let a, b, and c be points in Rd such that ‖ab‖ ≤ r and ‖bc‖ ≥ (1+ ε)r ,
where r ≥ 0 and 0 < ε ≤ 1. Then there is a point d on the segment bc such that
‖ad‖ ≤ (1− ε/2)‖ac‖.

Proof. Let ρ = ‖ab‖/‖bc‖, and let d be the point placed on segment bc at distance
ρ‖ab‖ from b. It is easy to see that �bac is similar to �bda, with a scaling factor of ρ.
Thus

‖ad‖ = ρ‖ac‖ ≤ 1

1+ ε ‖ac‖ ≤
(

1− ε
2

)
‖ac‖.

2.3. Rotations

Let F be a k-dimensional flat in Rd , let G be a j-dimensional flat that lies in F , where
j < k, and let p be any point in Rd . We define Rot(F,G, p) to be the rotation of F
around G such that it passes through p. Formally, if p ∈ F , Rot(F,G, p) is F itself.
Otherwise, let p′ = proj(F, p) and p′′ = proj(G, p′) = proj(G, p). If p′ = p′′, we let
H be any (k − 1)-flat that contains G; otherwise, we letH be the (k − 1)-flat contained

in F that passes through p′′ and is orthogonal to the vector
−−→
p′′ p′. It is easy to see that in

either caseH contains G. We define Rot(F,G, p) to be the k-flat that containsH and p.
See Fig. 2.

High-Dimensional Shape Fitting in Linear Time 275

(i) (ii)

Rot(F ,G, p)

q

p′

r

p

r′

p′

� p′′, r′′

F

H

p

�′�

q = p′′

Fig. 2. (i) 	′ = Rot(, q, p) for a line 	, a point q on 	, and a point p. (ii) In the proof of Lemma 2.6, triangles
pp′ p′′ and rr ′r ′′ are similar.

As we rotate F around G, the distance from an arbitrary point q to it changes. The
rate of this change is a function of the distance of q from G, and is roughly proportional
to the ratio between this distance and the distance of p (the “target” point) from the “axis
of rotation” G. The following lemma states this fact more formally.

Lemma 2.6. Let F be a k-flat in Rd , let G be a j-flat that lies in F , where j < k, and
let p be any point in Rd not on G. For any q ∈ Rd , we have

dist(Rot(F,G, p), q) ≤ dist(F, q)+ dist(G, q)

dist(G, p)
dist(F, p).

Proof. The claim follows readily when p ∈ F , since in that case Rot(F,G, p) = F .
Otherwise, let p′ = proj(F, p) and p′′ = proj(G, p′) = proj(G, p). LetH be the (k−1)-
flat in the definition of Rot(F,G, p); that is,H is the intersection of Rot(F,G, p) with
F . It is easy to see that p′′ = proj(H, p′) = proj(H, p).

Let r = proj(F, q). If r lies onH, then the lemma follows because dist(Rot(F,G, p),
q) ≤ dist(H, q) = dist(F, q). If r does not lie onH, let r ′ = proj(Rot(F,G, p), r) and
r ′′ = proj(H, r) = proj(H, r ′). We claim that �pp′ p′′ and �rr ′r ′′ are similar. To see
that, consider the projection T , which projectsRd to the d−k+1 subspace perpendicular
toH (namely,H is mapped to a point by T). Clearly, the lengths of the edges of the two
triangles we are interested in are preserved under this projection, and they both lie on a
common 2-flat. The triangles are clearly similar, as the situation is now as depicted in
Fig. 2. It follows that

‖rr ′′‖ = ‖rr ′′‖
‖pp′′‖‖pp′‖ = dist(H, r)

dist(G, p)
dist(F, p) ≤ dist(G, r)

dist(G, p)
dist(F, p).

We conclude that

dist(Rot(F,G, p), q) ≤ ‖qr‖ + ‖rr ′‖ = dist(F, q)+ dist(G, q)

dist(G, p)
dist(F, p).

276 S. Har-Peled and K. R. Varadarajan

3. Minimum Radius Cylinder

In this section we present an efficient algorithm that given a set P ⊆ Rd of n points and
a parameter 0 < ε ≤ 1 computes a line 	 such that RD(, P) ≤ (1 + ε)Ropt

1 (P). It is
convenient first to describe the algorithm assuming the presence of an appropriate oracle
(to be described below). At any time during its execution, the algorithm can present the
oracle with a set of possible choices, and the oracle simply picks the right one.

The Algorithm. Let 	opt denote an optimal line for the input point set P , that is,
RD(opt, P) = Ropt

1 (P). Let Ropt = Ropt
1 (P). For any p ∈ P , let p′ = proj(opt, p)

denote the projection of p onto 	opt. Let P ′ = {p′ | p ∈ P}. Let I = CH(P ′) denote the
convex hull of P ′. Clearly, I is the line segment joining u′ and v′, for some u, v ∈ P .
The length L of the segment I is clearly at most diam(P). We need the following lemma,
whose proof is presented at the end of this section.

Lemma 3.1. Let P be a set of n points inRd , let 	opt be a line such thatRD(opt, P) =
Ropt

1 (P), let I be the convex hull of proj(opt, P), let r ≥ 0 be a number such that
Ropt

1 (P) ≤ r ≤ 4Ropt
1 (P), let h be any 2-flat, and let 0 < β ≤ 1 be a parameter. We can

compute, in O(nd/β2) time, a family of O(1/β2) lines on h such that at least one line 	 in
the family has the property that for any point x ∈ I, dist(, x) ≤ dist(proj(h, 	opt), x)+
βRopt

1 (P).

Let p� be any point of P , and let q� be the farthest point of P from p. Let 	0 =
affine(p�, q�). It is easy to verify that RD(0, P) ≤ 4Ropt; see Lemma 5.2 for a
proof of a more general result. We compute a sequence of lines 	0, . . . , 	ν , where ν =
c(1/ε3) log(1/ε) and c is a sufficiently large constant to be determined below. We describe
below how the line 	i is computed from line 	i−1 in the i th iteration.

In the i th iteration, let pi be the point of P farthest away from 	i−1. Let hi be the
2-flat containing 	i−1 and pi and let 	̂i denote the projection of 	opt onto hi . Using the
algorithm of Lemma 3.1 (setting r = RD(0, P)), we compute a family of O(1/δ2)

lines on hi such that at least one line 	 in the family has the property that for any x ∈ I,
dist(, x) ≤ dist(̂i , x)+δRopt, where δ = ε/4ν. We present the oracle for this family of
lines, and the oracle picks a line with this property. It can do this by specifying O(log 1/δ)
bits. We let 	i be the line chosen by the oracle.

At the end of the νth iteration, we return the best line from the sequence 	0, . . . , 	ν .
That is, we return the line 	 from the sequence that minimizes RD(, P). We argue
below that RD(, P) ≤ (1 + ε)Ropt for such a line 	. Let us assume the contrary, that
is,RD(i , P) > (1+ ε)Ropt, for each 0 ≤ i ≤ ν. We will derive a contradiction.

Proof of Correctness. For 0 ≤ i ≤ ν, let di (x) = ‖x proj(i , x)‖ denote the distance
between a point x ∈ Rd and 	i . For each 1 ≤ i ≤ ν and any x ∈ I, we have

di (x) ≤ dist(̂i , x)+ δRopt ≤ di−1(x)+ δRopt. (1)

Intuitively, d1, d2, . . . , are almost monotonically decreasing functions converging to the
zero function on the points in I.

High-Dimensional Shape Fitting in Linear Time 277

Clearly, dist(u, u′) ≤ Ropt (we remind the reader that u′ and v′ are the two endpoints
of I). SinceRD(0, P) ≤ 4Ropt, we have dist(0, u) ≤ 4Ropt. Thus

d0(u
′) = dist(0, u′) ≤ dist(0, u)+ dist(u, u′) ≤ 5Ropt.

By a symmetric argument, we have d0(v
′) ≤ 5Ropt. From Lemma 2.4(i), we conclude

that d0(x) ≤ 5Ropt for any x ∈ I. Using (1), it then follows that for i = 1, . . . , ν and
any x ∈ I, we have di (x) ≤ d0(x)+ iδRopt ≤ 6Ropt.

Spread �160/ε2� + 1 equally spaced points on the segment I, and let S denote this
set. We say that a point z ∈ S is hit in the i th iteration if di−1(z) ≥ (ε/2)Ropt and
di (z) ≤ (1 − ε/5)di−1(z). (Intuitively, every time a point z in S is being hit, the value
associated with it, di (z), goes down “considerably”.) Suppose z has been hit m times till
the j th iteration; from (1) we have

dj (z) ≤ (1− ε/5)md0(z)+ νδRopt ≤ (1− ε/5)m5Ropt + νδRopt.

Thus, for m = O((1/ε) log (1/ε)), we have 5(1− ε/5)m ≤ ε/4 and

dj (z) ≤ (ε/4)Ropt + ν · (ε/(4ν)) · Ropt ≤ (ε/2)Ropt.

Thus, after z has been hit m = O((1/ε) log (1/ε)) times, it can never be hit again. Note
that the bound on m is independent of ν.

We claim that in every iteration of the algorithm, at least one point of S is being hit.
Indeed, consider pi and p′i , the projection of pi into 	opt. Let ci be the projection of p′i
onto 	i . We know that ‖p′i pi‖ ≤ Ropt, and ‖pi ci‖ > (1+ ε)Ropt (sinceRD(i−1, P) >
(1+ε)Ropt). From Lemma 2.5, we conclude that dist(p′i , pi ci) ≤ (1−ε/2)‖p′i ci‖. Thus,

di (p
′
i) ≤ dist(p′i , pi ci)+δRopt ≤ (1−ε/2)‖p′i ci‖+δRopt = (1−ε/2)di−1(p

′
i)+δRopt.

Namely, di (p′i) is significantly smaller than di−1(p′i). Also, we note that di−1(p′i) ≥
εRopt, as otherwise

RD(i−1, P) = dist(i−1, pi) ≤ dist(p′i , pi)+ dist(i−1, p′i)
≤ Ropt + εRopt = (1+ ε)Ropt.

Thus, we have

di (p
′
i) ≤

(
1− ε

2

)
di−1(p

′
i)+ δRopt ≤

(
1− ε

2

)
di−1(p

′
i)+ δ

di−1(p′)
ε

≤
(

1− ε
3

)
di−1(p

′
i),

since δ < ε2/6 for ε ≤ 1 and sufficiently large c.
Let y ∈ S be a point such that ‖p′i y‖ ≤ ε2L/320. We argue that y is hit in the i th

iteration. From Lemma 2.4(ii), we have

|di−1(y)− di−1(p
′
i)| ≤

‖p′i y‖
u′v′

· 2 max(di−1(u
′), di−1(v

′)) ≤ ε
2L/320

L
· 12Ropt

≤ ε2

16
Ropt.

278 S. Har-Peled and K. R. Varadarajan

Consequently, we have di−1(y) ≥ di−1(p′i) − (ε2/16)Ropt ≥ εRopt − ε2/16 ≥
(15ε/16)Ropt.

By applying Lemma 2.4 again, this time to di (·),

di (y) ≤ di (p
′
i)+

ε2

16
Ropt

≤
(

1− ε
3

)
di−1(p

′
i)+

ε2

16
Ropt

≤
(

1− ε
3

)(
di−1(y)+ ε2

16
Ropt

)
+ ε2

16
Ropt

≤
(

1− ε
3

)
di−1(y)+ 2ε2

16
Ropt

≤
(

1− ε
3

)
di−1(y)+ 2ε

15

15ε

16
Ropt

≤
(

1− ε
3

)
di−1(y)+ 2ε

15
di−1(y)

≤
(

1− ε
5

)
di−1(y).

Thus, the point y is hit in the i th iteration.
We choose the constant c large enough so that the number of iterations ν = c(1/ε3)

log(1/ε) is larger than m · |S|. Since a point from S is hit in each of the ν iterations, but
each point in S is hit at most m times, we have a contradiction.

Removing the Oracle. The algorithm as we described it uses O(ν log(1/δ)) =
O((1/ε3) log2(1/ε)) bits from the oracle. To remove the dependence on the oracle,
we simply try all possible strings of size O(ν log(1/δ)), and execute the algorithm on
each of these strings. The overall running time of the resulting algorithm is n · d · Cε,
where Cε = exp(O((1/ε3) log2(1/ε))). We therefore conclude:

Theorem 3.2. Let P be a set of n points in Rd and let 0 < ε ≤ 1 be a parameter. We
can compute a line 	, such that RD(, P) ≤ (1 + ε)Ropt

1 (P), in n · d · Cε time, where
Cε = exp(O((1/ε3) log2(1/ε))).

Proof of Lemma 3.1. We generate a set of O(1/β2) pairs of points (p1, p2) as follows.
Set γ = β/8. Let p be any point in P , and let p1 be any point from a (5r, γ r)-net
around proj(h, p) on h. For each choice of p1, we find the point q ∈ P whose projection
proj(h, q) is farthest from p1, and we choose p2 from a (5r, γ r)-net around proj(h, q)
on h. For each pair (p1, p2) that is generated, we include the line through p1 and p2 in
our family.

We now argue that our family has the required line in it. Since projection does not
expand distances, we have dist(proj(h, 	opt), proj(h, p)) ≤ r , so there is a choice p∗1 of p1

such that dist(proj(h, 	opt), p∗1) ≤ γ r . Let 	′ be the translation of proj(h, 	opt) through p∗1 .
Let q∗ ∈ P be the point whose projection is farthest from p∗1 . Since dist(′, proj(h, q∗)) ≤
r + γ r ≤ 2r , there exists a choice p∗2 for p2 from the (5r, γ r)-net around proj(h, q∗)

High-Dimensional Shape Fitting in Linear Time 279

such that (a) dist(′, p∗2) ≤ γ r , and (b) ‖p∗1 p∗2‖ ≥ ‖p∗1 proj(h, q∗)‖+ r . Let 	 be the line
through p∗1 and p∗2 . Notice that 	 = Rot(′, p∗1, p∗2).

For any s ∈ P , let s ′ denote proj(opt, s). Since projection does not expand distances,
we have

‖ proj(h, s ′)p∗1‖ ≤ ‖ proj(h, s)p∗1‖ + r ≤ ‖ proj(h, q∗)p∗1‖ + r ≤ ‖p∗1 p∗2‖.
From Lemma 2.6, we conclude that for any s ∈ P ,

dist(, proj(h, s ′)) ≤ dist(′, proj(h, s ′))+ ‖ proj(h, s ′)p∗1‖
‖p∗1 p∗2‖

dist(′, p∗2)

≤ dist(′, proj(h, s ′))+ dist(′, p∗2) ≤ 2γ r.

Let x ∈ I be any point. Since proj(h, x) lies in the convex hull of the set {proj(h, s ′) |
s ∈ P}, we conclude using Lemma 2.4(i) that dist(, proj(h, x)) ≤ 2γ r ≤ βRopt

1 (P),
which implies that 	 has the properties claimed in the lemma.

4. A Lower Bound

Megiddo [Me] shows that the problem of determining whether there is a line that inter-
sects a given set of balls is NP-hard. The balls in his construction have the same radius,
which implies that the problem of computing the radius of the min-enclosing cylinder
(i.e., Ropt

1) of a set of points is also NP-hard. We show below that his construction yields
the following hardness of approximation result: unless P = NP, there is no algorithm that,
given a set of n points in Rd and an 0 < ε ≤ 1, runs in time polynomial in n, d, and 1/ε,
and returns a number r such that Ropt

1 (P) ≤ r ≤ (1+ ε)Ropt
1 (P).

Megiddo gives a reduction from 3CNF-satisfiability. Let ϕ be a 3CNF formula with n
variables and m clauses in which, without loss of generality, we assume that each clause
consists of three distinct variables. Let x1, . . . , xn denote the literals and E1, . . . , Em

denote the clauses in ϕ. Let d = n + 1. Let ei denote the point in Rd with 1 in the i th
coordinate and 0 elsewhere. Let rd =

√
1− (1/d), and α be chosen so that

(12− 4/d)α2 = r2
d .

Let P1 be the set of 2d points {±ei | 1 ≤ i ≤ d}. Let Q denote the set {(x1, . . . , xd) |
xi = ±1/

√
d} of 2d points. Let L denote the set of lines obtained by considering

each point q ∈ Q and taking the line passing through the origin and q. Though Q
consists of 2d points, L has only 2d−1 lines. As shown by Megiddo, Ropt

1 (P1) equals
rd , and this is attained by exactly the lines in L . Megiddo constructs a set of m points
P2 = {p1, . . . , pm}, one for each clause Ej of ϕ. The point p j = (p j

1 , . . . , p j
n+1)

is constructed as follows. The last coordinate p j
n+1 is set to 3α. For 1 ≤ i ≤ n, if

the variable xi does not occur in Ej , then p j
i = 0; if the literal xi occurs in Ej , then

p j
i = α; if the literal xi occurs in Ej , then p j

i = −α.1 Megiddo shows that the following

1 Since α may be irrational, we have to use instead a good rational approximation that can be represented
with a small number of bits. We ignore this technicality here since it can be easily accommodated.

280 S. Har-Peled and K. R. Varadarajan

properties hold:

1. For each point p ∈ P2, ‖p‖ ≤ 1.
2. If ϕ is satisfiable, then there is a line 	 ∈ L such that dist(, p)2 ≤ (12−4/d)α2 =

r2
d for each p ∈ P2. Thus Ropt

1 (P1 ∪ P2) = rd in this case.
3. If ϕ is not satisfiable, then for every line 	 ∈ L , there is a point p ∈ P2 such that

dist(, p)2 = 12α2 > r2
d .

We add, for each point p in P2, the point −p into the set P2. It is easy to check that
the properties above hold for the new P2. (We need the fact that for a line 	 through the
origin, dist(, p) = dist(,−p).) Our goal here is to show that in the case where ϕ is not
satisfiable, Ropt

1 (P1 ∪ P2) is significantly larger than rd . We need the following lemma.

Lemma 4.1. Let x = (x1, . . . , xd) and y = (y1, . . . , yd) be unit vectors such that
|xi − yi | ≤ 1/14d2, for each 1 ≤ i ≤ d. Let 	x (resp. 	y) denote the line through the
origin and the point x (resp. y). Let p be a point such that ‖p‖ ≤ 1. Then | dist(x , p)2−
dist(y, p)2| ≤ 1/7d .

Proof. Notice that ‖x − y‖ ≤ 1/14d3/2 ≤ 1/14d.

| dist(x , p)2 − dist(y, p)2| = |〈p, x〉2 − 〈p, y〉2|
= |(〈p, x〉 − 〈p, y〉)(〈p, x〉 + 〈p, y〉)|
≤ 2|(〈p, x〉 − 〈p, y〉)|
= 2|〈p, x − y〉|
≤ 2‖p‖ ∗ ‖x − y‖
≤ 1/7d.

Suppose that ϕ is unsatisfiable. Let 	 denote the line that achieves Ropt
1 (P1 ∪ P2).

Since P1 ∪ P2 is symmetric, we may assume that 	 passes through the origin. Suppose
	 also passes through the point z = (z1, . . . , zd), where z is a unit vector.

Case 1. Suppose that ||zi | − 1/
√

d| ≤ 1/14d2 for each 1 ≤ i ≤ d. Then there is a point
q = (q1, . . . , qd) ∈ Q such that |qi − zi | ≤ 1/14d2 for each 1 ≤ i ≤ d. Let 	q ∈ L be
the line through the origin and q. Since ϕ is unsatisfiable, there exists a point p ∈ P2

such that dist(q , p)2 = 12α2. From Lemma 4.1,

dist(, p)2 ≥ dist(q , p)2 − 1/7d

= 12α2 − 1/7d

= 12/(12− 4/d)r2
d − 1/7d

≥ (1+ 1/3d)r2
d − 1/7d

≥ r2
d + 1/6d − 1/7d

= r2
d + 1/42d.

Case 2. Suppose that ||zi | − 1/
√

d| ≥ 1/14d2. It is easy to see that there must be a j

High-Dimensional Shape Fitting in Linear Time 281

such that z2
j ≤ 1/d − 1/196d3. Now the square of the distance dist(, ej)

2 of the point
ej from 	 equals ‖ej‖2 − 〈ej , z〉2 = 1− z2

j , which is at least r2
d + 1/196d3.

Thus, Ropt
1 (P1 ∪ P2)

2 ≥ r2
d + min(1/42d, 1/196d3) = r2

d + 1/196d3 ≥ r2
d (1 +

1/196d3) for sufficiently large d . We conclude that Ropt
1 (P1 ∪ P2) ≥ rd(1 + 1/792d3)

for sufficiently large d .
Let k = |P1∪ P2|. Since k > d , we have that Ropt

1 (P1∪ P2) ≥ rd(1+1/792k3)when
ϕ is not satisfiable, and Ropt

1 (P1 ∪ P2) = rd when ϕ is satisfiable.

Theorem 4.2. Unless P=NP, there is no polynomial time algorithm that, given a point
set P inRd with k points, returns a number between Ropt

1 (P) and (1+1/792k3)Ropt
1 (P).

Corollary 4.3. Unless P = NP, there is no algorithm that, given a set of n points in Rd

and any 0 < ε ≤ 1, returns a number r such that Ropt
1 (P) ≤ r ≤ (1 + ε)Ropt

1 (P) and
has a running time that is bounded by a polynomial in n, d, and 1/ε.

5. Minimum Radius k-Flat

In this section we describe an efficient algorithm that, given a set P of n points inRd and
a 0 < ε ≤ 1, returns a k-flat F such thatRD(F, P) ≤ (1+ ε)Ropt

k (P). We first extend,
in Section 5.1, the basic machinery used for the case of a line to the more general case
of a k-flat. In Section 5.2, we use this machinery in a straightforward fashion to achieve
an approximation algorithm for the optimal k-flat.

5.1. Preliminaries

Let Fopt = Fopt
k (P) denote a k-flat that realizes Ropt

k (P); there can be more than one
such flat but we fix an arbitrary one for the rest of this section. For any p ∈ P , let p′

denote proj(Fopt, p); let P ′ = proj(Fopt, P). Let Eopt
k (P) denote the minimum-volume

ellipsoid on affine(P ′) that encloses P ′; if affine(P ′) is j-dimensional, we are speaking
here of the j-dimensional volume [GLS]. Let Bopt

k (P) denote the minimum bounding
box (on affine(P ′)), with axes aligned with those of Eopt

k (P), that encloses Eopt
k (P). For

the case k = 1, the set I = CH(P ′)was a line segment on the optimal line. For k > 1, the
convex hull CH(P ′) does not necessarily look so simple, so the enclosing box Bopt

k (P)
will play the role of I in the proofs here.

For a point x = (x1, . . . , xd) ∈ Rd and a real number α, let αx denote the point
(αx1, . . . , αxd). For a set X ⊆ Rd , let αX denote the set {αx | x ∈ Rd}. We say that a
compact, convex set X ∈ Rd is centrally symmetric, or just symmetric, if there exists a
point x ∈ X such that for any y ∈ Rd , x + y ∈ X if and only if x − y ∈ X . We call
such a point x the center of X . It is easy to see that a compact, convex, symmetric set
has a unique center. For a compact, convex, symmetric set X with center x and a given
α ≥ 0, the concentric scaling of X by α is the set {x+α(y− x) | y ∈ X}. The following
lemma is the reason we use Bopt

k (P) and not any bounding box for P ′.

282 S. Har-Peled and K. R. Varadarajan

Lemma 5.1. Let G be any flat, and let d : Rd → R be the distance function dG(·).
(i) Let Bin and Bout be compact, convex, symmetric bodies centered at v ∈ Rd such

that Bout is the concentric scaling of Bin by a factor of α > 1. We have

max
x∈Bout

d(x) ≤ α max
x∈Bin

d(x).

(ii) Let P ′ and Bopt
k (P) be as defined above. We have maxx∈Bopt

k (P) d(x) ≤ k3

maxp′∈P ′ d(p′).
(iii) For any flatH, we have maxx∈proj(H,Bopt

k (P)) d(x) ≤ k3 maxp′∈P ′ d(proj(H, p′)).

Proof. (i) Let z ∈ Bout be a point such that d(z) = maxx∈Bout d(x). If z = v, the
claim is immediate. Otherwise, let 	 be the line through v and z, and let its intersection
with Bin be the segment yw. We assume that ‖wz‖ ≤ ‖yz‖. It is easy to check that
‖wz‖/‖yw‖ ≤ (α − 1)/2. From Lemma 2.4, we see that

d(z) ≤ d(w)+ (α − 1)max(d(y), d(w)) ≤ αmax(d(y), d(w)) ≤ α max
x∈Bin

d(x).

(ii) Let Eopt
k (P) denote the min-enclosing ellipsoid of P ′, and let E be the concentric

scaling of Eopt
k (P) by a factor of 1/k2. It follows from John’s theorem [GLS, Section

4.6] that E ⊆ CH(P ′) ⊆ Eopt
k (P) (in fact, John’s theorem is slightly stronger, but this

does not matter for our discussion). Recall that Bopt
k (P) is the bounding box of Eopt

k (P)
which is aligned with its main axes. Let Bin be the concentric scaling of Bopt

k (P) by a
factor of 1/k3. It is easy to argue that Bin ⊆ E and so Bin ⊆ CH(P ′). By part (i) above,
we have

max
x∈Bopt

k (P)
d(x) ≤ k3 max

x∈Bin

d(x) ≤ k3 max
x∈CH(P ′)

d(x) ≤ k3 max
p′∈P ′

d(p′),

where the last inequality follows from the convexity established in Lemma 2.4(i).
(iii) We note that proj(H,Bopt

k (P)) is a concentric scaling by a factor of k3 of
proj(H,Bin) and that proj(H,Bin) ⊆ CH(proj(H, P ′)) ⊆ proj(H,Bopt

k (P)). The claim
follows by an argument similar to that in (ii).

The statement of the following lemma is folklore but we include a proof here for
completeness. The algorithm can be viewed as a version of the Gram–Schmidt orthog-
onalization carried out for k stages.

Lemma 5.2. Given a set P of n points in Rd , and a parameter k, we can compute in
O(ndk) time a k-flat F , such thatRD(F, P) ≤ 2k+1 Ropt

k (P).

Proof. We may assume that affine(P) has dimension at least k + 1; otherwise, we
simply compute and return a k-flat that contains P . Let p1 be an arbitrary point of P , and
let pi ∈ P be the point such that RD(Gi−1, P) = dist(Gi−1, pi), for i = 2, . . . , k + 1,
where Gi−1 = affine(p1, . . . , pi−1). We set Gk+1 to be the flat F that we return. Let Fi

be the k-flat that minimizesRD(F, P) over all k-flats F that contain Gi . We claim that
RD(Fi , P) ≤ 2i Ropt

k (P). For i = 1, the claim is trivial, as we can just translate the
optimal k-flat so that it passes through p1. We haveRD(F1, P) ≤ 2Ropt

k (P).

High-Dimensional Shape Fitting in Linear Time 283

Assume the claim is correct for Fi−1. Let F ′i be the rotation Rot(Fi−1,Gi−1, pi) of
Fi−1 around Gi−1, so it passes through pi . From Lemma 2.6, it follows that for any
q ∈ P ,

dist(F ′i , q) ≤ dist(Fi−1, q)+ dist(Gi−1, q)

dist(Gi−1, p)
dist(Fi−1, p)

≤ dist(Fi−1, q)+ dist(Fi−1, p) ≤ 2RD(Fi−1, P).

This implies that RD(F ′i , P) ≤ 2RD(Fi−1, P), which implies that RD(Fi , P) ≤
2RD(Fi−1, P). Thus RD(Fk+1, P) ≤ 2k+1 Ropt

k (P). However, Fk+1 = Gk+1, since
Gk+1 is itself a k-flat. It is clear that Gk+1 can be computed in O(ndk) time.

The following is a generalization of Lemma 3.1 for k > 1.

Lemma 5.3. Let P , Fopt, Bopt
k (P) be as defined above. Given P , a (k + 1)-flat H, a

parameter 0 < β ≤ 1, and a number r such that Ropt
k (P) ≤ r ≤ 2k+1 Ropt

k (P), we can
compute in nd exp(O(k3 log(1/β))) time a family of exp(O(k3 log(1/β))) k-flats onH
such that at least one k-flat F̂ in the family has the property that for any x ∈ Bopt

k (P),

dist(F̂, x) ≤ dist(K, x)+ βRopt
k (P),

where K = proj(H,Fopt).

Proof. Let γ = β/(2k+1k3(k+1)). We specify a set of sequences v1, . . . , vk+1 of points
onH as follows. Let p1 be any point in P , and let v1 be chosen from a (5r, γ r)-net around
proj(H, p1) onH. For 2 ≤ i ≤ k + 1, we choose vi given the choice of v1, . . . , vi−1 as
follows. Let Gi−1 = affine(v1, . . . , vi−1). Let pi be the point in P whose projection onto
H is farthest from Gi−1. We choose vi from a (5r, γ r)-net around proj(H, pi) onH.

For each choice of v1, . . . , vk+1, we add the k-flat affine(v1, . . . , vk+1) to our family.
The claims in the lemma about the size of the family and the running time are readily
verified.

We now argue that there is a sequencev∗1 , . . . , v
∗
k+1 such that F̂ = affine(v∗1 , . . . , v

∗
k+1)

has the properties claimed in the lemma. We assume for simplicity thatK = proj(H,Fopt)

is a k-flat; it is straightforward to extend this argument when it is a lower-dimensional
flat. For any p ∈ P , let p′ denote proj(Fopt, p). Let v∗1 be the point in the (5r, γ r)-net
around proj(H, p1) that is closest to K, and let F1 be the translation of K through v∗1 .
Since dist(K, proj(H, p1)) ≤ dist(Fopt, p1) ≤ r , we have dist(K, v∗1) ≤ γ r . It follows
that for any p ∈ P , dist(F1, proj(H, p′)) ≤ γ r .

Let 2 ≤ i ≤ k+ 1 and suppose we have constructed a sequence v∗1 , . . . , v
∗
i−1 and a k-

flatFi−1 inH containing v∗1 , . . . , v
∗
i−1 such that for any p ∈ P , dist(Fi−1, proj(H, p′)) ≤

(i − 1)γ r . This implies that

dist(Fi−1, proj(H, p)) ≤ dist(Fi−1, proj(H, p′))+ ‖ proj(H, p) proj(H, p′)‖
≤ (i − 1)γ r + r ≤ 2r.

Let p∗i ∈ P be the point whose projection proj(H, p∗i) is farthest from G∗i =
affine(v∗1 , . . . , v

∗
i−1). We choose v∗i to be any point from the (5r, γ r)-net around

284 S. Har-Peled and K. R. Varadarajan

proj(H, p∗i) such that (1) dist(Fi−1, v
∗
i) ≤ γ r and (2) dist(G∗i , v∗i) ≥ dist(G∗i ,

proj(H, p∗i)) + r . It is not hard to see that such a v∗i exists since dist(Fi−1,

proj(H, p∗i)) ≤ 2r . Let Fi = Rot(Fi−1,G∗i , v∗i).
For any p ∈ P , we have

dist(G∗i , proj(H, p′)) ≤ dist(G∗i , proj(H, p))+ r

≤ dist(G∗i , proj(H, p∗i))+ r

≤ dist(G∗i , v∗i).

From Lemma 2.6, we conclude that for any p ∈ P ,

dist(Fi , proj(H, p′)) ≤ dist(Fi−1, proj(H, p′))+ dist(G∗i , proj(H, p′))
dist(G∗i , v∗i)

dist(Fi−1, v
∗
i)

≤ dist(Fi−1, proj(H, p′))+ dist(Fi−1, v
∗
i) ≤ iγ r.

We conclude that for any p ∈ P , dist(F̂, proj(H, p′)) ≤ (k + 1)γ r , where F̂ =
Fk+1 = affine(v∗1 , . . . , v

∗
k+1). Applying Lemma 5.1(iii), we have that for any x ∈

Bopt
k (P),

dist(F̂, proj(H, x)) ≤ k3 max
p∈P

dist(F̂, proj(H, p′)) ≤ k3(k + 1)γ r ≤ βRopt
k (P),

which implies the lemma.

Definition 5.4. A sequence of distance functions d0, . . . , dν , where di : Rd → R is
U-bounded, if ∀x ∈ Bopt

k (P), we have di (x) ≤ U , for i = 0, . . . , ν.

Lemma 5.5. Let d0, . . . , dν be a sequence of U-bounded distance functions, let 0 <
ε ≤ 1, and let Cε = 3ε2 Ropt

k (P)/(200U). Let x ∈ Bopt
k (P) be a point and let i be

an integer, such that di (x) ≤ (1 − ε/3)di−1(x) and di−1(x) ≥ εRopt
k (P). Let Bε be

the translate of CεBopt
k (P) centered at x . Then for any z ∈ Bε, we have (i) di−1(z) ≥

(ε/2)Ropt
k (P) and (ii) di (z) ≤ (1− ε/5)di−1(z).

Proof. Consider any z ∈ Bε. Assume that z �= x , for otherwise the claim is immediate.
Let 	 be the line through x and z and let the segment wy denote the intersection of
	 with 2Bopt, the concentric scaling by 2 of Bopt

k (P). Observe that ‖xz‖/‖wy‖ ≤ Cε.
Indeed, consider the translate B̂ of Bopt

k (P) centered at x , and observe that B̂ ⊆ 2Bopt,
by construction, Thus, ‖wy‖ ≥ ‖B̂ ∩ 	‖ ≥ ‖xz‖/Cε.

From Lemma 5.1, we see that di−1(w), di−1(y) ≤ 2U . We obtain from Lemma 2.4
that

|di−1(z)− di−1(x)| ≤ ‖xz‖
‖wy‖2 max(di−1(w), di−1(y)) ≤ 4CεU .

Consequently,

di−1(z) ≥ di−1(x)− 4CεU = εRopt
k (P)− (12ε2/200)Ropt

k (P) ≥ (9ε/10)Ropt
k (P),

High-Dimensional Shape Fitting in Linear Time 285

which implies (i). By a similar application of Lemma 2.4 to di (·), we get

di (z) ≤ di (x)+ 4CεU
≤ (1− ε/3)di−1(x)+ 4CεU
≤ (1− ε/3)(di−1(z)+ 4CεU)+ 4CεU
≤ (1− ε/3)di−1(z)+ 8CεU
≤ (1− ε/3)di−1(z)+ (2ε/15) · (9εRopt

k (P)/10)

≤ (1− ε/3)di−1(z)+ (2ε/15)di−1(z)

≤ (1− ε/5)di−1(z).

5.2. The Algorithm

We compute, in O(ndk) time, a k-flat F0 such that RD(F0, P) ≤ 2k+1 Ropt
k (P), using

the algorithm of Lemma 5.2. We compute a sequence of k-flats F0, . . . ,Fν , where

ν = exp(ck2)

ε2k+1
log

1

ε
,

and c is a sufficiently large constant to be determined below. We describe below how the
flat Fi is computed from Fi−1 in the i th iteration.

In the i th iteration we compute pi , the point of P farthest away from Fi−1. Let F̂i

denote the projection of Fopt onto the (k + 1)-flatHi containing Fi−1 and pi . Using the
algorithm of Lemma 5.3 (setting r = RD(F0, P)), we compute a family of k-flats on
Hi such that at least one flat F in the family has the property that for any x ∈ Bopt

k (P),
dist(F, x) ≤ dist(F̂i , x) + δRopt

k (P), where δ = ε/4ν. We present the oracle with this
family, and the oracle picks the flat from the family with the above property. It can do
this by specifying O(k3 log 1/δ) bits. Let Fi be the k-flat chosen by the oracle.

At the end of the νth iteration, we return the best k-flat from the sequenceF0, . . . ,Fν .
That is, we return the flat F from the sequence that minimizes RD(F, P). We argue
below thatRD(F, P) ≤ (1+ ε)Ropt

k (P) for such a flat F . We assume the contrary, that
is,RD(Fi , P) > (1+ ε)Ropt

k (P), for each 0 ≤ i ≤ ν. We derive a contradiction.

Proof of Correctness. Let di (x) denote the distance dist(Fi , x) of a point x ∈ Rd from
Fi . For each 1 ≤ i ≤ ν and any x ∈ Bopt

k (P), we have

di (x) ≤ dist(F̂i , x)+ δRopt ≤ di−1(x)+ δRopt.

In particular, this implies that di (x) ≤ d0(x)+ iδRopt ≤ d0(x)+ Ropt. On the other hand,
we have that for any x ∈ Bopt

k (P),

d0(x) ≤ k3 max
p∈P

dist(F0, p′)

≤ k3 max
p∈P

dist(F0, p)+ ‖pp′‖
≤ k3(2k+1 + 1)Ropt.

286 S. Har-Peled and K. R. Varadarajan

It follows that for i = 1, . . . , ν and x ∈ Bopt
k (P), dj (x) ≤ (k3(2k+1 + 1) +

1)Ropt ≤ k32k+2 Ropt. Thus, d1, . . . , dν is a (k32k+2 Ropt
k (P))-bounded sequence (see

Definition 5.4).
We partition Bopt

k (P) into a grid G, where each grid cell is a copy of CεBopt
k (P), where

Cε = 3ε2/(200 · 2k+2k3). Let S be the set of vertices of G. Clearly, |S| = O((200 ·
2k+2k3)/ε2)k = eO(k2)/ε2k . The set S has the property that any translate of CεBopt

k (P)
centered at a point in Bopt intersects some point in S. We say that a point z ∈ S is hit in
the i th iteration if di−1(z) ≥ (ε/2)Ropt

k (P) and di (z) ≤ (1− ε/5)di−1(z).
Suppose that a point z ∈ S has been hit m times until the j th iteration; we have

dj (z) ≤ (1− ε/5)md0(z)+ νδRopt ≤ (1− ε/5)mk32k+2 Ropt + νδRopt.

Thus, for m = O((k/ε) log(1/ε)), we have

dj (z) ≤ (ε/4)Ropt + ν · (ε/(4ν)) · Ropt ≤ (ε/2)Ropt.

Thus, after z is hit m = O((k/ε) log(1/ε)) times, it can never be hit again. Note that the
bound on m is independent of ν.

We now argue that for each 1 ≤ i ≤ ν, some point of S is hit in the i th iteration. Using
an argument identical to the one for lines, we conclude that di (p′i) ≤ (1− ε/3)di−1(p′i)
and di−1(p′i) ≥ εRopt. (Recall that p′i = proj(Fopt, pi).) Let B denote the translate of
CεBopt

k (P) centered at p′i . As noted above, some point z ∈ S lies in B. Now Lemma 5.5
tells us that z is hit in the i th iteration.

We choose c large enough so that the number of iterations ν is larger than m · |S|.
Since a point from S is hit in each of the ν iterations, but each point in S is hit at most
m times, we have a contradiction.

Removing the Oracle. The algorithm as we described it uses O(k3 log(4ν/ε))
bits from the oracle in each iteration, and therefore M = O(νk3 log(4ν/ε)) =
(eO(k2)/ε2k+1) log2(1/ε) bits overall. To remove the dependence on the oracle, we sim-
ply try all possible strings of size M , and execute the algorithm on each of these
strings. The overall running time of the resulting algorithm is nd · Dε, where Dε =
exp((eO(k2)/ε2k+1) log2(1/ε)). We therefore conclude:

Theorem 5.6. Given a set P of n points in Rd and a parameter 0 < ε ≤ 1, we can
compute, in n · d · exp((eO(k2)/ε2k+1) log2(1/ε)) time, a k-flat F such thatRD(F, P) ≤
(1+ ε)Ropt

k (P).

Remark 5.7. In estimating the running time, we have not explicitly kept track of the
number of bits needed to represent the numbers involved and have assumed that all
simple arithmetic operations can be performed in unit time. We note however that the
maximum number of bits needed to represent any such number depends only on ε, k,
and the maximum number of bits needed to represent any input number. In particular,
the number of bits is independent of n and d. A careful scrutiny tells us that the bound
on the running time claimed in Theorem 5.6 remains valid even if we take into account
the bit complexity of the arithmetic operations.

High-Dimensional Shape Fitting in Linear Time 287

6. Conclusions

We have presented a linear-time approximation algorithm for fitting low-dimensional
flats in high dimensions. This is a substantial improvement over previous algorithms.
Currently, the bottleneck in extending this approach to fitting a small number of flats
seems to be that we do not know how to do this in low dimensions. Also, unlike previous
algorithms, it cannot be used directly for fitting a k-flat in the presence of outliers. These
are open questions for further research. In particular, there is a huge gap between our
result, and the fastest algorithms for those more general problems [HV2]. Is this gap
inherent to the problems, or just a by-product of our techniques? Namely, can outliers
or multiple flats be handled in high dimensions in near-linear time?

Acknowledgments

The authors thank Ken Clarkson, Piotr Indyk, and Piyush Kumar for helpful discussions
concerning the problems studied in this paper. We also thank the anonymous referees
for their useful comments.

References

[BC] M. Bădoiu and K. L. Clarkson. Optimal core-sets for balls. In Proc. 14th ACM–SIAM Sympos.
Discrete Algorithms, pages 801–802, 2003.

[BGKvL] H. L. Bodlaender, P. Gritzmann, V. Klee, and J. van Leeuwen. The computational complexity of
norm-maximization. Combinatorica, 10:203–225, 1990.

[BH] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume bounding box of a
point set in three dimensions. J. Algorithms, 38:91–109, 2001.

[BHI] M. Bădoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proc. 34th Annu.
ACM Sympos. Theory Comput., pages 250–257, 2002.

[Br] A. Brieden. Geometric optimization problems likely not contained in APX. Discrete Compout.
Geom., 28(2):201–209, 2002.

[Ed] H. Edelsbrunner. Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Heidelberg, 1987.

[FKS] U. Faigle, W. Kern, and M. Streng. Note on the computational complexity of j-radii of polytopes
in Rn . Math. Programming, 73:1–5, 1996.

[GK1] P. Gritzmann and V. Klee. Computational complexity of inner and outer j-radii of polytopes in
finite-dimensional normed spaces. Math. Programming, 59:163–213, 1993.

[GK2] P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity:
I, containment problems. Discrete Math., 136:129–174, 1994.

[GLS] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization,
volume 2 of Algorithms and Combinatorics. Springer-Verlag, Berlin, 1st edition, 1988; 2nd edition,
1994.

[HV1] S. Har-Peled and K. R. Varadarajan. Approximate shape fitting via linearization. In Proc. 42nd
Annu. IEEE Sympos. Found. Comput. Sci., pages 66–73, 2001.

[HV2] S. Har-Peled and K. R. Varadarajan. Projective clustering in high dimensions using core-sets. In
Proc. 18th Annu. ACM Sympos. Comput. Geom., pages 312–318, 2002.

[KMY] P. Kumar, J. S. B. Mitchell, and E. A. Yildirim. Fast smallest enclosing hypersphere computation.
In Proc. 5th Workshop Algorithm Engrg. Exper., 2003.

[Man] O. L. Mangasarian. Nonlinear Programming. Classics in Applied Mathematics. SIAM, Philadel-
phia, PA, 1994.

288 S. Har-Peled and K. R. Varadarajan

[Mat] J. Matoušek. Lectures on Discrete Geometry. Springer-Verlag, Berlin, 2002.
[Me] N. Megiddo. On the complexity of some geometric problems in unbounded dimension. J. Symbolic

Comput., 10:327–334, 1990.
[Ne] Y. Nesterov. Global quadratic optimization via conic relaxation. Technical report, Catholic Uni-

versity of Louvaine, Belgium, 1998.
[NRT] A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic forms over intersection of

ellipsoids with common center. Math. Programming, 86(3):463–473, 1999.
[VVZ] K. R. Varadarajan, S. Venkatesh, and J. Zhang. Approximating the radii of point sets in high

dimensions. In Proc. 43th Annu. IEEE Sympos. Found. Comput. Sci., 2002.
[YZ] Y. Ye and J. Zhang. An improved algorithm for approximating the radii of point sets. In Proc.

APPROX, 2003.

Received May 27, 2003, and in revised form February 23, 2004. Online publication June 28, 2004.

