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Abstract. Let A ⊆ Rn+r be a set definable in an o-minimal expansion S of the real field,
let A′ ⊆ Rr be its projection, and assume that the non-empty fibers Aa ⊆ Rn are compact
for all a ∈ A′ and uniformly bounded, i.e. all fibers are contained in a ball of fixed radius
B(0, R). If L is the Hausdorff limit of a sequence of fibers Aai ,we give an upper-bound for
the Betti numbers bk(L) in terms of definable sets explicitly constructed from a fiber Aa . In
particular, this allows us to establish effective complexity bounds in the semialgebraic case
and in the Pfaffian case. In the Pfaffian setting, Gabrielov introduced the relative closure
to construct the o-minimal structure SPfaff generated by Pfaffian functions in a way that is
adapted to complexity problems. Our results can be used to estimate the Betti numbers of
a relative closure (X, Y )0 in the special case where Y = ∅.

Introduction

We consider a bounded subset A ⊆ Rn+r which is definable in an o-minimal expansionS
of the real field (the reader can refer to [7] or [8] for definitions). Let A′ be the canonical
projection of A in Rr , and for all a ∈ A′ we define the fiber Aa as Aa = {x ∈ Rn |
(x, a) ∈ A}. Assume that these fibers are compact for all a ∈ A′. Note that since we
assumed that A was bounded, the fibers Aa are all contained in a ball B(0, R) for some
R > 0. Recall that for compact subsets A and B of Rn, we can define the Hausdorff
distance between A and B as

dH(A, B) = max
x∈A

min
y∈B

|x− y| +max
y∈B

min
x∈A

|x− y|.

The Hausdorff distance gives the space Kn of compact subsets of Rn a metric space
structure.

If (ai ) is a sequence in A′, and L is a compact subset of Rn such that the limit of
the sequence dH(Aai , L) is zero, we call L the Hausdorff limit of the sequence Aai . It
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is a well-established fact that when A is definable in an o-minimal structure S, then
the Hausdorff limit L is also definable in S: it was first proved by Bröcker [4] in the
algebraic case; in the general case, it follows from the definability of types that was first
proved by Marker and Steinhorn [22], and later by Pillay [24]. Recently, direct proofs
were suggested, one using model theoretic arguments by van den Dries [9] and a purely
geometric one by Lion and Speissegger [21].

Main Result

In this paper we investigate how the topology of the Hausdorff limit can be related to the
topology of the fibers Aa and their Cartesian powers. To do so, we need to introduce for
any integer p a distance function ρp on (p + 1)-tuples (x0, . . . , xp) of points in Rn by

ρp(x0, . . . , xp) =
∑

0≤i< j≤p

|xi − xj |2 (1)

(where |x| is the Euclidean distance in Rn). The expanded pth diagonal of Aa is defined
for all δ > 0 by D0

a(δ) = Aa and for p ≥ 1,

D p
a (δ) = {(x0, . . . , xp) ∈ (Aa)

p+1 | ρp(x0, . . . , xp) ≤ δ}. (2)

Let bk(L) denote the kth Betti number of L , by which we mean the rank of the singular
homology group Hk(L ,Z). Our main result is the following upper-bound.

Theorem 1. Let A ⊆ Rn+r be a bounded definable set with compact fibers and let L
be the Hausdorff limit of some sequence Aai . Then there exists a ∈ A′ and δ > 0 such
that for any integer k we have

bk(L) ≤
∑

p+q=k

bq(D
p
a (δ)), (3)

where the set D p
a (δ) is the expanded pth diagonal defined in (2).

The proof of this theorem relies on the construction of a continuous surjection from
some fiber Aa to L , and the use of the spectral sequence associated to such a surjection
that was already used in [15]. The spectral sequence alone does not provide directly an
estimate in terms of the topology of explicit sets such as the sets D p

a (δ): the bound (3)
is finally obtained after an approximation process.

Thus, Theorem 1 allows us to estimate the Betti numbers of L—which is a definable
set, but not obviously so—in terms of the Betti numbers of the sets D p

a (δ) which are not
only clearly definable, but also easy to describe from a formula defining A. In particular,
if A is defined by a quantifier-free formula, the sets D p

a (δ) can also be described without
quantifiers. In the semialgebraic setting, this allows us to give good effective bounds
on the Betti numbers of Hausdorff limits, since the terms bq(D

p
a (δ)) are easy to bound.

When A is given by a quantifier-free formula (see Definition 29), we obtain the following
estimates.
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Corollary 2. Let A ⊆ Rn+r be a bounded semialgebraic set with compact fibers and
defined by a quantifier-free sign condition 
(x, a) on a family

P = {p1(x, a), . . . , ps(x, a)}
of polynomials (where x ∈ Rn and a ∈ Rr ). Let L be the Hausdorff limit of some
sequence of fibers Aai . If degx(pj ) ≤ d for all 1 ≤ j ≤ s, we have for any integer k,

bk(L) ≤ O(k2s2d)(k+1)n.

In particular, the Betti numbers of the Hausdorff limit do not depend on the degrees
in a of the polynomials of P.

Application to the Pfaffian Structure

The present work was motivated by the case whereS is the o-minimal structure generated
by Pfaffian functions. This class of real-analytic functions was introduced by Khovan-
skiı̆ [18]; it contains many of the so-called tame functions that can appear in applications,
such as real elementary functions or Liouville functions. They are also the basis for the
theory of fewnomials, the study of the behavior of real polynomials in terms of the num-
ber of monomials that appear with a non-zero coefficient. (See Section 4 for definitions.)
Wilkie proved in [26] that Pfaffian functions generate an o-minimal structure SPfaff; this
result was generalized in [17], [20], and [25].

Pfaffian functions are endowed with a natural notion of complexity, or format (see
Definition 25), which is a tuple of integers that control their behavior. This translates
easily into a notion of format for sets defined by quantifier-free formulas (called semi-
Pfaffian sets). However, the structure SPfaff contains sets that cannot be defined by a
quantifier-free sign condition on Pfaffian functions. In [11] Gabrielov gave an alternative
to Wilkie’s construction of SPfaff, showing that definable sets could be constructed by
allowing the operation of relative closure on one-parameter couples of semi-Pfaffian sets.
The object of this construction was to extend the notion of format to all Pfaffian sets,
and use it to generalize the quantitative results already known for semi- and sub-Pfaffian
sets (see the survey [13] and references).

The relative closure is defined as follows: we consider X and Y semi-Pfaffian subsets
of Rn ×R+ as families of semi-Pfaffian subsets of Rn depending on a parameter λ > 0.
When the couple (X, Y ) verifies additional properties (see [11] for details), the relative
closure of (X, Y ) is defined as (X, Y )0 = {x ∈ Rn | (x, 0) ∈ X\Y }, where X is the
topological closure of X. In the special case where Y = ∅,we denote the relative closure
by X0. When Y is empty, the restrictions put on couples imply that the fibers Xλ are
compact, and X0 is then simply the Hausdorff limit of Xλ as λ goes to zero.

Theorem 1 is applicable in this special case, and effective estimates can be derived
as in the algebraic case, since, as in the case of Corollary 2, the set D p

a (δ) is given by a
quantifier-free formula. We obtain

Corollary 3. Let X ⊆ R
n × R+ be a bounded semi-Pfaffian set such that the fiber

Xλ is compact for all λ > 0, and let X0 be the relative closure of X. If for λ small
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enough, the format of Xλ is bounded componentwise by (n, �, α, β, s), we have for any
integer k,

bk(X0) ≤ 2�
2(k+1)2/2s2n(k+1)O(kn(α + β))(k+1)(n+�). (4)

Remark 4. Theorem 1 can also be used to derive estimates on the Betti numbers
of a general relative closure (X, Y )0, where Y is not empty (and thus, (X, Y )0 is not
necessarily compact). This fact is proved in [29], and good upper-bounds for that case
is the subject of a separate paper.

Organization of the Paper

The rest of the paper is organized as follows: in Section 1 we reduce the problem of
the Hausdorff limit of a sequence in a definable family A ⊆ R

n+r to the case of the
Hausdorff limit X0 of a one-parameter family X ⊆ Rn ×R+ when the parameter λ goes
to zero. We then describe the ingredients of the proof of Theorem 1 for that case: we
need to construct a family of continuous surjections f λ: Xλ → X0. Using the spectral
sequence associated to such a surjection, we can estimate the Betti numbers of X0 in
terms of the Betti numbers of the fibered products of Xλ. Such fibered products then
need to be approximated to obtain an estimate in terms of the Betti numbers of expanded
diagonals D p

λ (δ).

In Section 2 the family f λ is constructed using definable triangulations of functions.
We prove two important properties of this family: f λ is close to identity when λ goes to
zero and, for any λ′ �= λ, we can obtain f λ by composing f λ

′
with a homeomorphism

h: Xλ → Xλ′ (see Proposition 8).
Section 3 is devoted to the topological approximations that lead to Theorem 1. In

Section 4 the algebraic and Pfaffian complexity estimates (Corollaries 2 and 3) are proved.
The section also contains all the relevant background material on Pfaffian functions and
on Betti numbers of quantifier-free formulas.

1. Reduction to One Parameter and Strategy

In this section we show how, using the results of Lion and Speissegger on the definability
of Hausdorff limits [21], we can reduce the general case of a Hausdorff limit that occurs
in a family with r parameters to the case where r = 1.

Fix an o-minimal expansion S of the real field (see [7] or [8]). Let A ⊆ Rn+r be a
bounded definable set with compact fibers, and let L be the Hausdorff limit of a sequence
of fibers of A.We assume of course that L is not already a fiber of A, since Theorem 1 is
trivial in this case. Since sequences of parameters (ai ) in A′ are not definable in S, it is
difficult to handle Hausdorff limits directly. To avoid this problem, Lion and Speissegger
constructed in [21] a new family B to model the Hausdorff limits of fibers of A. The
main result they prove is the following.

Theorem 5 [21]. If A ⊆ R
n+r is a bounded definable set with compact fibers, there
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exists R ≥ r and a definable compact B ⊆ Rn+R such that, if B ′ is the projection of B
on RR, the following properties hold:

(H1) For every a ∈ A′, there is a b ∈ B ′ such that Aa = Bb;
(H2) for every sequence (bi ) in B ′ such that lim bi = b∗, the Hausdorff limit of Bbi

exists and equals Bb∗ ;
(H3) dim B ′ = dim A′ and dim{b ∈ B ′ | ∀a ∈ A′, Bb �= Aa} < dim A′.

The proof of this result is quite technical, and involves representing the fibers of A
and their possible Hausdorff limits in terms of integral manifolds of some distributions
that depend only on A.

Using Theorem 5, we can obtain L as a limit of a one-parameter family by the
following proposition.

Proposition 6. Let A ⊆ R
n+r be a bounded definable set with compact fibers, and

let L be the Hausdorff limit of a sequence Aai . Then there exists a definable family
X ⊆ Rn × (0, 1) such that the following hold:

(X1) For every λ ∈ (0, 1), there exists a(λ) ∈ A′ such that Xλ = Aa(λ).

(X2) L is the Hausdorff limit X0 of Xλ when λ goes to zero.

Proof. Let B be the set described in Theorem 5. By property (H1), the set of parameters
B ′ contains a sequence bi such that Aai = Bbi for all i. Since B ′ is compact, we can
assume by taking a subsequence that bi converges to some b∗ ∈ B ′. By property (H2),
we must have L = Bb∗ , since the Hausdorff limit is unique. Since Aai = Bbi for all i,
the point b∗ is in the closure of the definable set

C = {b ∈ B ′ | ∃a ∈ A′, Aa = Bb}.

By the curve selection lemma [8, Chapter 6, Corollary 1.5], there exists a definable curve
γ : (0, 1)→ C such that limλ→0 γ (λ) = b∗. Consider the definable family X given by

X = {(x, λ) ∈ Rn × (0, 1) | x ∈ Bγ (λ)}.

Since γ (λ) ∈ C for all λ ∈ (0, 1), there exists for each λ a point a(λ) ∈ A′ such
that Bγ (λ) = Aa(λ), so property (X1) holds. Moreover, property (H2) in Theorem 5
guarantees that the Hausdorff limit of Bγ (λ) when λ goes to zero is Bb∗ , and since
Bb∗ = L by construction, (X2) holds too.

Throughout the rest of this paper, we assume we are given X as in Proposition 6,
with Hausdorff limit X0 when λ goes to zero. The strategy will be the following. Using
the fact that X is definable and compact, and thus that the projection π of X on the
λ-axis can be triangulated, we construct in Section 2 a family of continuous surjections
f λ: Xλ → X0 defined for small values of λ. Since Xλ and X0 are both compact, the
surjection f λ is closed, and we can apply the following theorem [15, Theorem 1].
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Theorem 7. Let f : X → X0 be a closed continuous surjective map definable in an
o-minimal structure. For all integers k, the following inequality holds:

bk(X0) ≤
∑

p+q=k

bq(W
p), (5)

where W p is the (p + 1)-fold fibered product of X;

W p = {(x0, . . . , xp) ∈ X p+1 | f (x0) = · · · = f (xp)}. (6)

Thus, the existence of f λ for a fixed λ > 0 gives estimates on the Betti numbers of
X0 in terms of the Betti numbers of the definable sets W p

λ (obtained by taking f to be
f λ in Theorem 7). However, there is no explicit description of these fibered products in
the general case, so this fact alone is not sufficient to establish effective upper-bounds in
the algebraic and Pfaffian case.

Section 3 is devoted to refining the estimate given by the spectral sequence to finally
obtain Theorem 1, which gives an estimate for the Betti numbers of X0 in terms of
definable sets that are described in a completely explicit way: the expanded diagonals
D p
λ (δ). The result is achieved by showing that for suitable values of δ and λ, the fibered

product W p
λ is included in the expanded diagonal D p

λ (δ), and that this inclusion induces
an isomorphism between the corresponding homology groups (Proposition 22).

2. Construction of a Family of Surjections

The setting for this section is the following: we consider a definable family X ⊆ Rn ×
(0, 1) such that the fiber Xλ is compact for all λ ∈ (0, 1) and such that this family has a
Hausdorff limit X0 when λ goes to zero. As announced in the previous section, we will
construct for small values of λ a family of continuous surjections f λ: Xλ → X0 that are
close to identity. More precisely, we will prove the following result.

Proposition 8. Let X be a definable family as above. There exists λ0 > 0 and a family
of definable continuous surjections f λ: Xλ → X0, defined for all λ ∈ (0, λ0) such that

lim
λ→0

max
x∈Xλ

|x− f λ(x)| = 0. (7)

Moreover, this family f λ verifies the following property: for all 0 < λ′ < λ < λ0, there
exists a (uniformly) definable homeomorphism h: Xλ → Xλ′ such that for all x ∈ Xλ,
we have f λ(x) = f λ

′
(h(x)).

2.1. Triangulation of the Projection on λ

Since the terminology concerning simplexes is somewhat variable, we now state the
precise definitions we use. These definitions follow [7] rather than [8].
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Definition 9. If α0, . . . ,αd are affine-independent points in Rn, the closed simplex
σ̄ = [α0, . . . ,αd ] is the subset of Rn defined by

σ̄ =
{

d∑
i=0

wi αi |
d∑

i=0

wi = 1, w1 ≥ 0, . . . , wd ≥ 0

}
. (8)

A function g: σ̄ → R is affine if it satisfies the equality

g

(
d∑

i=0

wi αi

)
=

d∑
i=0

wi g(αi ) (9)

for any w0, . . . , wd as in (8).

A face of σ̄ is any closed simplex obtained from a non-empty subset of α0, . . . ,αd .

The open simplex σ = (α0, . . . ,αd) is the subset of points
∑d

i=0wi αi in σ̄ for which
wi > 0 for all 0 ≤ i ≤ d.

Definition 10. A (finite) simplicial complex K of Rn is a finite collection {σ̄1, . . . , σ̄k}
of closed simplexes that is closed under taking faces, and such that σ̄i ∩ σ̄j is a common
face of σ̄i and σ̄j for any 1 ≤ i, j ≤ k. The geometric realization of K is the subset of
R

n defined by |K | = σ̄1 ∪ · · · ∪ σ̄k .

Throughout Section 2, we denote by π : X → R the projection on the λ-coordinate.
Note that X is definable (since it is the closure of a definable set, see for instance
Proposition 1.12 of [7]), so π is definable too (i.e. the graph of π is a definable set).
Since X is also compact, the triangulation theorem for definable functions (see [6] or
[7]) allows us to assume without loss of generality that X is the geometric realization
of a simplicial complex K and that the map π is affine on each simplex σ̄ of K . (Note
that, in general, this requires a linear change of coordinates in the fibers, but this does
not affect our results.) Moreover, we identify X0 with X0×{0} ⊆ X and we assume that
the triangulation has been refined so that it is compatible with X0, i.e. X0 is the union
of open simplices of the triangulation.

In the present section we need to consider points in both the total space X ⊆ Rn×[0, 1]
and points in fibers Xλ, which are by definition subspaces of Rn. To avoid ambiguities,
we use the following convention: bold Greek letters such as ξ denote points in the total
space, whereas bold Roman letters are used to denote the points in fibers Xλ. Thus, if
π(ξ) = λ > 0, we have ξ = (x, λ), where x ∈ Xλ.

Definition 11. The star S of X0 in X is the union of X0 with all the open simplices
(α0, . . . ,αd) that have at least one vertex αi in X0.

2.2. Constructing a Retraction

Let us define the retraction F : S → X0 as follows. If ξ ∈ X0, we let F(ξ) = ξ. If ξ
belongs to some open simplex σ = (α0, . . . ,αd), where α0, . . . ,αd are vertices such
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that α0, . . . ,αk are in X0 and αk+1, . . . ,αd are not in X0, for some k with 0 ≤ k < d,
define F on σ by

F

(
d∑

i=0

wi αi

)
= 1∑k

i=0wi

k∑
i=0

wi αi . (10)

If ξ = (x, λ) ∈ S with λ > 0, we denote by �(ξ) the intersection between the line
through ξ and F(ξ) and the unique open simplex σ containing ξ.

Proposition 12. The above definition gives a continuous retraction F : S → X0 that
verifies: for all ξ = (x, λ) ∈ S with λ > 0 and all ζ ∈ �(ξ), we have F(ζ) = F(ξ).

Proof. Letσ =(α0, . . . ,αd)be an open simplex, withα0, . . . ,αk in X0 andαk+1, . . . ,

αd not in X0, for some k with 0 ≤ k < d, so that σ ⊆ S. Fix ξ =∑d
i=0wiαi in σ, and

let s =∑k
i=0wi . Since all the weights wi are positive, the inequality 0 ≤ k < d implies

that 0 < s < 1. Thus, formula (10) clearly defines a continuous function from σ to X0.

Moreover, if σ ′ = (αi0 , . . . ,αie) is a face of σ with at least one 0 ≤ j ≤ e such that
i j ≤ k (so that σ ′ ⊆ S), it is clear that expression (10) extends F continuously to σ ′.

If σ and ξ are as above and ζ = tξ + (1− t)F(ξ) is a point on �(ξ), we now show
that F(ξ) = F(ζ). We have ζ =∑k

i=0w
′
i αi , where

w′i =
{

twi + (1− t)wi
s if 0 ≤ i ≤ k,

twi if k + 1 ≤ i ≤ d.

To prove that F(ξ) = F(ζ), we must prove that for all 0 ≤ i ≤ k,

wi∑k
j=0wj

= w′i∑k
j=0w

′
j

.

Cross-multiplying, we get the following quantities:

wi

k∑
j=0

w′j = wi

k∑
j=0

(
twj + (1− t)

wj

s

)
= wi (1− t + ts) (11)

and

w′i
k∑

j=0

wj =
(

twi + (1− t)
wi

s

)
s = (ts + (1− t))wi . (12)

The two final expressions in (11) and (12) are clearly equal, so F(ζ) = F(ξ) for any
ζ ∈ �(ξ).

Definition 13. Let λ0 = min{π(α) | α is a vertex of X, α �∈ X0}. For any λ ∈
(0, λ0), we define f λ : Xλ → X0 by f λ(x) = F(x, λ).

Since π(α) = 0 can only happen if α ∈ X0, it follows that λ0 > 0. Note also that
if ξ = (x, λ) is not in S, then we must have λ ≥ λ0. Indeed, if ξ �∈ S, it belongs to an
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open simplex σ of the form (α0, . . . ,αd) such that none of the vertices is in X0. Thus,
π(αi ) ≥ λ0 for all i, and since π is affine on σ, we must have λ = π(ξ) ≥ λ0 too.
Thus, for any fixed λ ∈ (0, λ0), we have {(x, λ) | x ∈ Xλ} ⊆ S, so f λ is well-defined
for λ ∈ (0, λ0). Since F is continuous, f λ is continuous too.

2.3. Properties of the Maps f λ

We must still show that the family of mappings f λ has all the properties described in
Proposition 8: f λ is surjective (Lemma 14), close to identity (Proposition 15), and f λ

can be obtained from f λ
′
by composing on the right by a homeomorphism h: Xλ → Xλ′

(Proposition 16).

Lemma 14. For all λ ∈ (0, λ0), the map f λ is surjective.

Proof. Let ζ ∈ X0. Then there exists a unique set of vertices {α0, . . . ,αk} such that ζ
belongs to the open simplex (α0, . . . ,αk); let v0, . . . , vk be the corresponding weights,
so that ζ =∑k

i=0 viαi . There must be verticesαk+1, . . . ,αd such that the open simplex
σ = (α0, . . . ,αd) is in X, otherwise ζ could not be approximated by points of Xλ for
λ > 0.

Let ξ =∑d
i=0wiαi wherewi = vi/2 for 0 ≤ i ≤ k andwk+1, . . . , wd are arbitrarily

chosen positive numbers so that
∑d

i=0wi = 1. By choice of w0, . . . , wk, we have∑k
i=0wi = 1

2 , and thus F(ξ) = ζ. Moreover, if �(ξ) is as defined in Proposition 12,
there must be a point τ ∈ �(ξ) such that π(τ ) = λ. Indeed, if we parameterize the
line between ξ and ζ by {(1 − t)ζ + tξ | t ∈ R}, the endpoints of �(ξ) are obtained
for t = 0 and t = 2, which give respectively the points ζ and ζ ′ = 2

∑d
i=k+1wiαi . We

have π(ζ) = 0, and since ζ ′ is not in S, we have π(ζ ′) ≥ λ0. Since by restriction π is
affine on �(ξ), π(τ ) takes all the values in the interval (0, π(ζ ′)) when τ runs through
�(ξ). In particular, if λ < λ0 there exists τ ∈ �(ξ) with π(τ ) = λ. By Proposition 12,
we must have F(τ ) = F(ξ) and since F(ξ) = ζ, this proves that f λ is surjective.

Proposition 15. For f λ as in Definition 13, we have

lim
λ→0

max
x∈Xλ

|x− f λ(x)| = 0. (13)

Proof. Let σ = (α0, . . . ,αd) be an open simplex where α0, . . . ,αk are in X0 and
αk+1, . . . ,αd are not in X0, where 0 ≤ k < d. Fix ξ = ∑d

i=0wi αi in σ, and let
s =∑k

i=0wi . We have

d∑
i=k+1

wi =
d∑

i=0

wi −
k∑

i=0

wi = 1− s

and

ξ − F(ξ) =
d∑

i=0

wi αi − 1

s

k∑
i=0

wi αi =
(

1− 1

s

)( k∑
i=0

wi αi

)
+

d∑
i=k+1

wi αi .
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By the triangle inequality, we obtain

|ξ − F(ξ)| ≤ max
o≤i≤d

|αi |
(∣∣∣∣1− 1

s

∣∣∣∣
(

k∑
i=0

wi

)
+

d∑
i=k+1

wi

)
= 2(1− s) max

0≤i≤d
|αi |. (14)

Let λ = π(ξ) =∑d
i=k+1wi π(αi ). Since π(αi ) ≥ λ0 for all i ≥ k + 1, it follows that

λ =
d∑

i=k+1

wi π(αi ) ≥ λ0

(
d∑

i=k+1

wi

)
= λ0(1− s). (15)

It follows that 1− s ≤ λ/λ0. Combining this with (14), we obtain

|ξ − F(ξ)| ≤ 2
λ

λ0
max
0≤i≤d

|αi | ≤ 2
λ

λ0
max{|α|, α vertex of K }.

Thus, |ξ − F(ξ)| is bounded by a quantity independent of ξ that goes to zero when λ
goes to zero, and since |x− f λ(x)| ≤ |ξ − F(ξ)|, the result follows.

Proposition 16. For all 0 < λ′ < λ < λ0, there exists a homeomorphism h: Xλ → Xλ′

such that f λ = f λ
′ ◦ h.

Proof. Let ξ ∈ Xλ, and let �(ξ) be as in Proposition 12. Since π is affine on �(ξ), if
τ = tξ + (1− t)F(ξ) is a point on �(ξ), we have

π(τ ) = tπ(ξ)+ (1− t)π(F(ξ)) = tλ.

Thus, τ ∈ Xλ′ if and only if t = λ′/λ, and so the map h defined by

h(ξ) = λ′

λ
ξ +

(
1− λ′

λ

)
F(ξ) (16)

maps Xλ to Xλ′ .

Suppose that there exists ξ and ξ′ in Xλ such that h(ξ) = h(ξ′) = τ . Then τ ∈ �(ξ)
and τ ∈ �(ξ′), and by Proposition 12 this means that F(ξ) = F(τ ) = F(ξ′). Then (16)
implies that ξ = ξ′, so h is injective. The map h is also surjective, since for τ ∈ Xλ′ , it
is easy to verify that the point ξ defined by

ξ = λ

λ′
τ −

(
λ

λ′
− 1

)
F(τ )

is a point in Xλ such that h(ξ) = τ .
The continuity of h follows from the continuity of F. Since h(ξ) ∈ �(ξ) by con-

struction, Proposition 12 implies that F(h(ξ)) = F(ξ), so f λ = f λ
′ ◦ h.

3. Approximation of the Fibered Products

We now turn our attention to the fibered products associated to the surjections f λ: Xλ →
X0 that were constructed in the previous section. We prove in Proposition 22 the approx-
imation result for those sets that yields the result of the main theorem.
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Define for p ∈ N and λ ∈ (0, λ0),

W p
λ = {(x0, . . . , xp) ∈ (Xλ)

p+1 | f λ(x0) = · · · = f λ(xp)}. (17)

From Theorem 7 we have for any λ ∈ (0, λ0),

bk(X0) ≤
∑

p+q=k

bq(W
p
λ ). (18)

Thus, bounding the Betti numbers of X0 can be reduced to estimating the Betti numbers
of the sets W p

λ for some λ ∈ (0, λ0). The first step in that direction is the following.

Proposition 17. For all 0 < λ′ < λ < λ0, the sets W p
λ and W p

λ′ are homeomorphic.

Proof. Fix 0 < λ′ < λ < λ0, and let h be the homeomorphism between Xλ and Xλ′

described in Proposition 16. Since f λ
′ ◦ h = f λ, the map h p: (Xλ)

p+1 → (Xλ′)
p+1

defined by

h p(x0, . . . , xp) = (h(x0), . . . , h(xp)) (19)

maps W p
λ homeomorphically onto W p

λ′ .

Recall that for p ∈ N and x0, . . . , xp ∈ Rn, ρp is the polynomial

ρp(x0, . . . , xp) =
∑

0≤i< j≤p

|xi − xj |2. (20)

For λ ∈ (0, λ0), ε > 0 and δ > 0, we define the following sets:

W p
λ (ε) = {(x0, . . . , xp) ∈ (Xλ)

p+1 | ρp( f λ(x0), . . . , f λ(xp)) ≤ ε},
D p
λ (δ) = {(x0, . . . , xp) ∈ (Xλ)

p+1 | ρp(x0, . . . , xp) ≤ δ}.

Proposition 18. Let p ∈ N be fixed. There exists ε0 > 0, such that for all λ ∈ (0, λ0)

and all 0 < ε′ < ε < ε0, the inclusion W p
λ (ε

′) ↪→ W p
λ (ε) is a homotopy equivalence.

In particular, this implies that

bq(W
p
λ (ε)) = bq(W

p
λ ) (21)

for all integer q, all λ ∈ (0, λ0) and all ε ∈ (0, ε0).

Proof. First, notice that it is enough to prove the result for a fixed λ ∈ (0, λ0), since if
0 < λ′ < λ < λ0 are fixed, the map h p introduced in (19) induces a homeomorphism
between W p

λ (ε) and W p
λ′(ε) for any ε > 0.

Fix λ ∈ (0, λ0). By the generic triviality theorem (see Chapter 9, Theorem 1.2, of [8]
or Theorem 5.22 of [7]), there exists ε0 > 0 such that the projection

{(x0, . . . , xp, ε) | ε ∈ (0, ε0) and (x0, . . . , xp) ∈ Wλ(ε)} �→ ε

is a trivial fibration. It follows that for all 0 < ε′ < ε < ε0, the inclusion W p
λ (ε

′) ↪→
W p
λ (ε) is a homotopy equivalence, which proves the first part of the proposition.
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The inclusions W p
λ (ε

′) ↪→ W p
λ (ε) for ε′ < ε make the family W p

λ (ε), ε > 0, into a
directed system, and we have

lim←− W p
λ (ε)

∼=
⋂
ε>0

W p
λ (ε) = W p

λ .

The induced maps in Čech homology make the family Ȟ∗(W
p
λ (ε)), ε > 0, into a directed

system too, and by the continuity property of the Čech homology [10, Chapter 10], this
implies that the Čech homology groups of W p

λ are isomorphic to the inverse limit of the
groups Ȟ∗(W

p
λ (ε)).Note however that the sets W p

λ and W p
λ (ε), being compact definable

sets, are homeomorphic to finite simplicial complexes, and thus their singular and Čech
homologies coincide. Hence, we have for all q,

Hq(W
p
λ )
∼= lim←− Hq(W

p
λ (ε)). (22)

Since the inclusion W p
λ (ε

′) ↪→W p
λ (ε) is a homotopy equivalence for all 0<ε′<ε<ε0,

it induces an isomorphism in homology for the directed system Hq(W
p
λ (ε)). Thus, the

ranks in that system are constant and equal to the rank of the limit, yielding (21).

Example 19. Consider the family X ⊆ R
2 × R+ such that the fiber is given for all

λ > 0 by

Xλ = {(x, 0) | 0 ≤ x ≤ 1} ∪ {(0, λ)} ∪ {(λ, λ)}.
If we construct f λ from a triangulation as in Definition 13, we must have f λ(0, λ) =
f λ(λ, λ) = 0, independently of the choice of the triangulation. However, there are other
families of continuous surjections from Xλ into X0 that are close to identity. A natural
choice would be for instance to take the maps gλ defined by gλ(x, y) = (x, 0), for which
we still have

lim
λ→0

max
(x,y)∈Xλ

|gλ(x, y)− (x, y)| = 0.

However, it is easy to check that the topological type of the corresponding sets W 2
λ (ε)

changes exactly when ε = λ, since the two connected components of (Xλ)
2 formed by

the isolated points {(0, λ, λ, λ)} and {(λ, λ, 0, λ)} belong to W 2
λ (ε) exactly when ε ≥ λ.

Example 19 shows that finding a family of surjections close to identity is not enough
to guarantee the existence of an ε0 independent of λ for which Proposition 18 holds.
This explains why a careful construction of f λ was necessary in Section 2. The fact
that we can find ε0 independent of λ plays a key part in approximating the sets W p

λ (see
Proposition 22).

Proposition 20. Let p ∈ N be fixed. There exists λ1 such that 0 < λ1 ≤ λ0 and
definable functions δ0(λ) and δ1(λ) defined for λ ∈ (0, λ1) such that limλ→0 δ0(λ) = 0,
limλ→0 δ1(λ) �= 0, and such that for all 0 < δ0(λ) < δ′ < δ < δ1(λ), the inclusion
D p
λ (δ

′) ↪→ D p
λ (δ) is a homotopy equivalence.



Topology of Definable Hausdorff Limits 435

Proof. Let λ ∈ (0, λ0) be fixed. As in the proof of Proposition 18, we can apply the
generic triviality theorem to the projection of the family {D p

λ (δ) | δ > 0} on the δ-axis.
This yields real numbers d0(λ) = 0 < d1(λ) < · · · < dm(λ) < dm+1(λ) = ∞ such that
for all 0 ≤ i ≤ m the projection is a trivial fibration above the interval (di (λ), di+1(λ)).

We now show that we can choose the numbers di (λ) to depend definably on λ for λ
in an interval of the form (0, λ1). Consider the definable set

D = {(x0, . . . , xp, λ, δ) | (x0, . . . , xp) ∈ D p
λ (δ), λ > 0, δ > 0}

and its projection on the (λ, δ)-plane. By the generic triviality theorem, the region {λ >
0, δ > 0} can be partitioned in finitely many definable subsets such that the projection
of D is a trivial fibration over each of those subsets. Without loss of generality, we can
assume that those subsets are cylindrical cells for the λ-projection (this is the o-minimal
equivalent of cylindrical algebraic decomposition, see Chapter 3 of [8] or Definition 2.4
of [7]). In particular, there exists λ1 > 0 and continuous definable functions d0(λ) =
0 < d1(λ) < · · · < dm(λ) < dm+1(λ) = ∞ defined for λ ∈ (0, λ1) such that the
cells

Ci = {(λ, δ) | λ ∈ (0, λ1), di (λ) < δ < di+1(λ)}

are part of this partition for 0 ≤ i ≤ m. Without loss of generality, we can assume that
λ1 ≤ λ0.

The functions di (λ) being definable, each has a well-defined (although possibly infi-
nite) limit when λ goes to zero. Let j be the largest index such that limλ→0 dj (λ) = 0,
and let δ0(λ) = dj (λ) and δ1(λ) = dj+1(λ). The functions δ0 and δ1 are definable and
verify

lim
λ→0

δ0(λ) = 0 and lim
λ→0

δ1(λ) > 0.

Since the projection of D is a trivial fibration over the cell Cj , then for any fixed λ ∈
(0, λ1) and any 0 ≤ δ0(λ) < δ′ < δ < δ1(λ), the inclusion D p

λ (δ
′) ↪→ D p

λ (δ) is certainly
a homotopy equivalence.

Let R > 0 be such that Xλ ⊆ {|x| ≤ R} for all λ ∈ (0, 1). We define for p ∈ N,

ηp(λ) = p(p + 1)

(
4R max

x∈Xλ
|x− f λ(x)| + 2

(
max
x∈Xλ

|x− f λ(x)|
)2
)
. (23)

By Proposition 15, we have

lim
λ→0

ηp(λ) = 0.

Lemma 21. For all λ ∈ (0, λ0), δ > 0 and ε > 0, the following inclusions hold:

D p
λ (δ) ⊆ W p

λ (δ + ηp(λ)) and W p
λ (ε) ⊆ D p

λ (ε + ηp(λ)).
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Proof. Let m(λ) = maxx∈Xλ |x − f λ(x)|. For any xi , xj in Xλ, the triangle inequality
gives

| f λ(xi )− f λ(xj )|2 ≤ [| f λ(xi )− xi | + |xi − xj | + |xj − f λ(xj )|]2

≤ [|xi − xj | + 2m(λ)]2

≤ |xi − xj |2 + 8R m(λ)+ 4m(λ)2.

Summing this inequality for all 0 ≤ i < j ≤ p,we obtain that for any x0, . . . , xp in Xλ,

ρp( f λ(x0), . . . , f λ(xp)) ≤ ρp(x0, . . . , xp)+ ηp(λ).

The first inclusion follows easily from this inequality. The second inclusion follows from
a similar reasoning.

Proposition 22. For any p ∈ N, there exists λ ∈ (0, λ0), ε ∈ (0, ε0) and δ > 0 such
that

H∗(W
p
λ (ε))

∼= H∗(D
p
λ (δ)). (24)

Proof. Let δ0(λ) and δ1(λ) be the functions defined in Proposition 20. Since the limit
when λ goes to zero of δ1(λ)− δ0(λ) is not zero, whereas the limit of ηp(λ) is zero, we
can choose λ > 0 such that δ1(λ) − δ0(λ) > 2ηp(λ). Then we can choose δ′ > 0 such
that δ0(λ) < δ′ < δ′ + 2ηp(λ) < δ1(λ). Taking a smaller λ if necessary, we can also
assume that δ′ + 3ηp(λ) < ε0.

Let ε = δ′ + ηp(λ), δ = δ′ + 2ηp(λ) and ε′ = δ′ + 3ηp(λ). From Lemma 21 we have
the following sequence of inclusions:

D p
λ (δ

′)
i
↪→ W p

λ (ε)
j
↪→ D p

λ (δ)
k
↪→ W p

λ (ε
′).

Since both ε and ε′ are less than ε0, Proposition 18 ensures that the inclusion map k◦ j
is a homotopy equivalence. Similarly, since both δ and δ′ are in the interval (δ0(λ), δ1(λ)),

it follows from Proposition 20 that the inclusion j ◦ i is a homotopy equivalence too.
In particular, both inclusions give rise to isomorphisms on the homology level. The
resulting diagram in homology is the following:

H∗(D
p
λ (δ

′))
( j◦i)∗
∼=

��

i∗

�������������
H∗(D

p
λ (δ))

k∗

�������������

H∗(W
p
λ (ε))

(k◦ j)∗
∼=

��

j∗
�������������

H∗(W
p
λ (ε

′))

Since ( j ◦ i)∗ = j∗ ◦ i∗, the surjectivity of ( j ◦ i)∗ implies that j∗ must be surjective, and,
similarly, the fact that (k ◦ j)∗ = k∗ ◦ j∗ is injective implies that j∗ is injective. Hence,
j∗ is an isomorphism between H∗(Wλ(ε)) and H∗(Dλ(δ)), as required.
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Proof of Theorem 1. The proof of the main theorem now follows easily from the results
in this section. If L is the Hausdorff limit of a sequence of fibers Aai , we can construct
a family X as in Proposition 6 such that X0 = L . Then, for all λ ∈ (0, λ0), we have

bk(L) ≤
∑

p+q=k

bq(W
p
λ ).

From Proposition 22, for λ small enough, we can find ε ∈ (0, ε0) and δ > 0 such that
bq(W

p
λ ) = bq(W

p
λ (ε)) = bq(D

p
λ (δ)) for every integer 0 ≤ p ≤ k. Thus, if a ∈ A′ is

such that Xλ = Aa, inequality (3) in Theorem 1 holds for that a.

Remark 23. Note that the upper-bound in Theorem 1 depends only on the sets D p
a (δ),

which are defined from the original family A but independent of the auxiliary family X.
Thus, we will be able to derive quantitative estimates from our main result without ever
having to worry about the complexity of the fibers Xλ.

This is an important remark, because the complexity of the description of Xλ may be
much worse than the complexity of a fiber Aa, even for a choice of a such that the two
sets are equal.

4. Effective Estimates on the Betti Numbers

This section is devoted to the quantitative estimates than can be derived from Theorem 1,
both in the algebraic and the Pfaffian case.

4.1. Pfaffian Functions

We start by recalling the basic results about Pfaffian functions. Let U ⊆ Rn be an open
domain.

Definition 24. Let x = (x1, . . . , xn) and let ( f1(x), . . . , f�(x)) be a sequence of an-
alytic functions in U . This sequence is called a Pfaffian chain if the functions fi are
solution on U of a triangular differential system of the form

d fi (x) =
n∑

j=1

Pi, j (x, f1(x), . . . , fi (x)) dxj , (25)

where the functions Pi, j are polynomials in x, f1, . . . , fi .

If ( f1, . . . , f�) is a fixed Pfaffian chain on a domain U, the function q is a Pfaffian
function in the chain ( f1, . . . , f�) if there exists a polynomial Q such that for all x ∈ U,

q(x) = Q(x, f1(x), . . . , f�(x)). (26)

Pfaffian functions come naturally with a notion of complexity, or format. If ( f1,. . . , f�)
is a Pfaffian chain, we call � its length, and we let its degree α be the maximum of the
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degrees of the polynomials Pi, j appearing in (25). If q is as in (26), the degree β of the
polynomial Q is called the degree of q in the chain ( f1, . . . , f�).

Definition 25. For q as above, the tuple (n, �, α, β) is called the format of q.

Example 26. Let x = (x1, . . . , xn) ∈ Rn and let m1, . . . ,m� be fixed vectors in Rn.

Define for all 1 ≤ i ≤ �, fi (x) = e〈mi ,x〉 (where 〈·, ·〉 denotes the Euclidean scalar
product). Then ( f1, . . . , f�) is a Pfaffian chain of length � and degree α = 1 on Rn.

The class of Pfaffian functions is a very large class that contains, among other things,
all real elementary functions (for a suitable choice of the domain of definition), Liouville
functions, and Abelian integrals. We refer the reader to the book [18] or papers [12] and
[13] for more details and examples. The main result about Pfaffian functions is the
following.

Theorem 27 [18]. Let ( f1, . . . , f�) be a Pfaffian chain of length � and degree α defined
on Rn. Let (q1, . . . , qn) be Pfaffian functions in that chain, and let (n, �, α, βi ) be the
format of qi for 1 ≤ i ≤ n. Then the number of solutions of the system

q1(x) = · · · = qn(x) = 0 (27)

that are isolated in Cn is bounded from above by

2�(�−1)/2 β1 · · ·βn(β1 + · · · + βn − n +min(n, �)α + 1)�. (28)

Remark 28. In particular, using Example 26 through a logarithmic change of variables,
one can show that if (q1, . . . , qn) are sparse real polynomials, the number of isolated
roots of the system q1(x) = · · · = qn(x) = 0 in the quadrant (R+)n can be bounded
independently of the degrees of the polynomials qi . If no more than �monomials appear
with a non-zero coefficient in at least one of the polynomials, Theorem 27 gives that the
number of roots of the system is bounded by 2�(�−1)/2 (n + 1)�. (See [18]. Note that this
bound is known to be pessimistic, at least in some cases, see [19] for instance.)

Theorem 27 can be easily generalized to the case where the Pfaffian chain ( f1, . . . , f�)
is defined on a domain U different from Rn. In that case the bound (28) becomes

2�(�−1)/2 βn O(n(α + β))�. (29)

The constant coming from the O(· · ·) notation depends only on the geometry of the open
domain U . In many cases (for instance if the functions qi are real elementary functions)
the domain U is given by

U = {x | g1(x) > 0, . . . , gr (x) > 0},
where the functions gi are Pfaffian. In that case a suitable constant can be determined
explicitly (see for instance Chapter 1 in [29] for a discussion of the determination of
such constants).
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4.2. Quantifier-Free Formulas

In this section we let P = {p1, . . . , ps} be either a set of polynomials or a set of Pfaffian
functions defined in a common Pfaffian chain ( f1, . . . , f�) on a definable domain U . By
a quantifier-free formula on P, we mean a Boolean combination of sign conditions on
the functions in P, as defined below.

Definition 29. A formula 
 is called a quantifier-free formula on P if it is derived
from atoms of the form pi � 0, where 1 ≤ i ≤ s and � ∈ {=,≤,≥}, using conjunctions,
disjunctions and negations. Moreover, we say that the formula 
 is P-closed if it was
derived without using negations.

We endow quantifier-free formulas with the following format.1

Definition 30. Let 
 be a quantifier-free formula on P, where P is a collection of s
polynomials in n variables of degree bounded by d. Then (n, d, s) is called the format
of 
.

Similarly, if ( f1, . . . , f�) is a fixed Pfaffian chain and P is a collection of s functions
in that chain, where the format of those functions is at most (n, �, α, β), then the format
of any quantifier-free formula on P is (n, �, α, β, s).

If 
 is a quantifier-free formula on P , where P is a collection of polynomials, the
associated semialgebraic set is X = {x ∈ Rn | 
(x)}. If P is a collection of Pfaffian
functions in a Pfaffian chain defined on a domain U and 
 is a quantifier-free formula
on P , the associated semi-Pfaffian set is the set X = {x ∈ U | 
(x)}.

Both polynomials and Pfaffian functions generate o-minimal structures. For polyno-
mials, this is a consequence of the famous Tarski–Seidenberg theorem (see [3] or [8]).
The o-minimality of the structure SPfaff generated by Pfaffian functions was first proved
by Wilkie [26], and generalized in [17], [20], and [25]. Gabrielov introduced the notion
of relative closure in [11] to offer a description of SPfaff more adapted to solving quanti-
tative questions in that structure, and Corollary 3 is an example of how this construction
can yield answers in the case of topological complexity (see also [16] for estimates on the
number of connected components). The relation between relative closures and Hausdorff
limits is discussed in more detail in the Introduction. The reader can also refer to [11],
[13], and [16] for a precise description of the construction of SPfaff via relative closures.

4.3. Betti Number Bounds for Quantifier-Free Formulas

Elementary Morse theory used in conjunction with the Bézout inequality lets us bound
the Betti numbers of real algebraic varieties in terms of the degrees of the defining
polynomials. This was first noticed by Oleinik and Petrovsky, and then independently
by Thom and Milnor (the reader can refer to Chapitre 11 of [3] for a proof and the

1 Note that this may not be the most standard notion of format for quantifier-free formulas, but it is
well-adapted to the Betti number bounds we discuss next.
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corresponding references). Khovanskiı̆ noted that the method could be generalized to
zero-sets of Pfaffian functions [18], [28].

The notion of P-closed formulas was introduced by Basu in the algebraic setting.
Using basic algebraic topology techniques and the bound of Oleinik, Petrovsky, Milnor
and Thom, he was able to prove the following estimate.2

Theorem 31 [1]. Let 
 be a P-closed polynomial formula of format (n, d, s) and let
X be the corresponding semialgebraic set. The sum of Betti numbers of X admits the
upper-bound

b(X) ≤ O(sd)n. (30)

Basu’s technique goes through in the Pfaffian setting, and one obtains the following
result.

Theorem 32 [28]. Let ( f1, . . . , f�) be a Pfaffian chain on a definable domain U . Let
P be a collection of Pfaffian functions in that chain, and let
 be a P-closed formula of
format (n, �, α, β, s). If X is the corresponding semi-Pfaffian set X = {x ∈ U | 
(x)},
the sum of the Betti numbers of X admits the following upper-bound:

b(X) ≤ 2�(�−1)/2sn O(n(α + β))n+�, (31)

where the constant depends only on the definable domain U .

Note that the above bound requires that the constant depends on U because Kho-
vanskiı̆’s theorem applied on a general domain U gives a bound of the form (29), that
involves a constant depending on the geometry of U .

Remark 33. For any estimate on the Betti numbers of semi-Pfaffian sets, we must
assume that the domain U under consideration is definable. Indeed, one can easily con-
struct non-definable domains U for which there exists semi-Pfaffian sets X such that
b(X) is infinite.

In the case where X is compact, but is not given by a P-closed formula (for instance,
if X is a semialgebraic set that has been obtained by a quantifier elimination procedure),
bounds on the Betti numbers can be established using the fact that the singular homology
of X and its Borel–Moore homology coincide when X is compact. Using the sub-
additivity of the Borel–Moore homology (see for instance [23, Proposition 1.8], [27],
or [5]) along with Theorem 31 and the estimates on the number of sign cells in [2],
one can show that the rank of the Borel–Moore groups of a compact semialgebraic set
defined by a formula of format (n, d, s) is bounded by O(sd)2n. The same method yields
an estimate for semi-Pfaffian sets too [29, Theorem 2.23]. However, these results have
been superseded by Theorem 34 below.

2 Basu’s estimate is actually slightly sharper than the one given here, but the simpler form (30) is enough
for our purposes.
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Recently, Gabrielov and Vorobjov used Theorem 31 to establish a Betti number bound
valid for any semialgebraic set X, with no assumptions either on the topology of X or
on the shape of its defining formula. The result they obtained is the following.

Theorem 34 [14]. Let 
 be a polynomial quantifier-free formula of format (n, d, s)
and let X be the corresponding semialgebraic set. The sum of Betti numbers of X admits
the following upper-bound:

b(X) ≤ O(s2d)n. (32)

Again, the result can be generalized without problem to the Pfaffian case, to obtain
the following estimate.

Theorem 35. Let X be any semi-Pfaffian set defined by a quantifier-free formula of
format (n, �, α, β, s). The sum of the Betti numbers of X admits a bound of the form

b(X) ≤ 2�(�−1)/2s2n O(n(α + β))n+�, (33)

where the constant depends only on the definable domain U .

4.4. Proof of Corollaries 2 and 3

Let A ⊆ Rn×Rr be a definable family of compact, uniformly bounded sets defined by a
quantifier-free formula
(x, a)whose atoms are sign condition on either polynomials or
Pfaffian functions, and let L be a Hausdorff limit of fibers in A.According to Theorem 1,
we can bound bk(L) by estimating b(D p

a (δ)) for all 0 ≤ p ≤ k and suitable values a = a∗

and δ = δ∗ (the precise values of a∗ and δ∗ do not affect the estimate).
Suppose first that the atoms of
(x, a) are polynomials. Then for any p, δ, a, the set

D p
a (δ) is given by the quantifier-free formula �p(x0, . . . , xp, a) such that

�p(x0, . . . , xp, a) = 
(x0, a) ∧ · · · ∧
(xp, a) ∧ ρp(x0, . . . , xp) ≤ δ. (34)

The set of functions Qp appearing in the atoms of �p are of the form f (xi , a), for any
0 ≤ i ≤ p and any f ∈ P, plus of course ρp(x0, . . . , xp)− δ. Thus, specializing �p at
a = a∗ gives a formula of format (n(p + 1), d, s(p + 1)+ 1), where s = P and

d = max(2, {degx f (x, a) | f ∈ P}).
Theorem 34 gives bq(D

p
a (δ)) ≤ O(p2s2d)(p+1)n, and Corollary 2 follows.

The same reasoning goes through in the Pfaffian case. If after specialization the
format of
(x, a∗) is (n, �, α, β, s), then the format of�p(x0, . . . , xp, a∗) is (n(p+ 1),
�(p + 1), α, β, s(p + 1)+ 1).3 From Theorem 35, we obtain that

b(D p
a (δ)) ≤ 2�(p+1)[�(p+1)−1]/2 s2n(p+1) O(np(α + β))(p+1)(n+�),

3 The length of the Pfaffian chain is multiplied by p+1 since we need a copy of each function in the chain
for every one of the blocks of variables x0, . . . ,xp .
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and thus (4) holds for L . This is true for any number of parameters r in the family A,
and Corollary 3 is simply the special case where r = 1.

Remark 36. If the fiber Aa is defined by a P-closed formula, then the formula �p

defining D p
λ (δ) is aQp-closed formula, and the dependence on s of the bound on bk(L)

can be improved from s2n(k+1) to sn(k+1) by using the tighter estimates available in that
case (Theorem 31 in the algebraic case and Theorem 32 in the Pfaffian case).
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