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Abstract. Denote by Kn the convex hull of n independent random points distributed
uniformly in a convex body K in Rd , by Vn the volume of Kn , by Dn the volume of K\Kn ,
and by Nn the number of vertices of Kn . A well-known identity due to Efron relates the
expected volume EDn—and thus EVn—to the expected number ENn+1. This identity is
extended from expected values to higher moments.

The planar case of the arising identity for the variances provides in a simple way the
corrected version of a central limit theorem for Dn by Cabo and Groeneboom (K being a
convex polygon) and an improvement of a central limit theorem for Dn by Hsing (K being
a circular disk). Estimates of varDn (K being a two-dimensional smooth convex body) and
varNn (K being a d-dimensional smooth convex body, d ≥ 4) are obtained.

The identity for moments of arbitrary order shows that the distribution of Nn determines
EVn−1,EV2

n−2, . . . ,EVn−d−1
d+1 . Reversely it is proved that these n−d−1 moments determine

the distribution of Nn entirely. The resulting formula for the probability that Nn = k (k =
d + 1, . . . , n) appears to be new for k ≥ d + 2 and yields an answer to a question raised by
Baryshnikov. For k = d + 1 the formula reduces to an identity which has been repeatedly
pointed out.

1. Introduction and Main Results

WriteKd for the set of all convex bodies (convex compact sets with non-empty interiors)
in Rd . Fix K ∈ Kd , and choose points x1, . . . , xn ∈ K randomly, independently, and
according to the uniform distribution on K . The set Kn = conv{x1, . . . , xn} is a random
polytope. Denote the volume of Kn by the random variable Vn , the volume of K\Kn by
the random variable Dn , and the number of vertices of Kn by the random variable Nn .

Numerous papers were devoted to the question of how to determine the expected
values of these and similar random variables (e.g. the surface area or the number of
facets of Kn) for certain classes of convex bodies K . Particular attention was paid to the
asymptotic behaviour of the expected values as n tends to infinity. It is beyond the scope
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of this paper to list the results on expected values. Surveys were given by Affentranger
[1], Buchta [10], Gruber [19], Schneider [39], [40], and Weil and Wieacker [43]. Many
references are also contained in [5], [13], and [14].

In contrast to the large number of results on expected values, not much is known so
far about variances and higher moments. The available results concern throughout very
special convex bodies K and either just n = d + 1 random points (spanning a random
simplex in K ) or the asymptotic behaviour as n tends to infinity. (In the case of n < d+1
random points trivially Vn = 0, Dn = vol K , and Nn = n with probability one.)

The distribution function (implying all moments) of Vn has apparently only been
derived in the case d = 2 and n = 3: by Alagar [2] if K is a triangle and by Henze
[20] if K is a circular disk or a parallelogram. All moments of Vn in the case d = 2 and
n = 3 had been obtained before by Miles [31] for the circular disk and by Reed [33] for
the triangle and the parallelogram. The result derived by Miles is much more general
and comprises all moments of Vd+1 for the d-dimensional ball. Reed also obtained the
second moment of Vd+1 if K is a d-dimensional simplex; this result was supplemented
in the three-dimensional case by Mannion [27] who calculated the fourth and the sixth
moment of V4 if K is a tetrahedron.

Whereas all these results concern n = d + 1 random points, substantial progress in
regard of the asymptotic behaviour as n tends to infinity was achieved by deriving the
following central limit theorems. The first two results concern the random variable Nn

and are due to Groeneboom [18]: If K is a convex polygon with r vertices, then

Nn − 2
3r log n√

10
27r log n

D→ N (0, 1) (1.1)

as n → ∞, where
D→ denotes convergence in distribution and N (0, 1) is the standard

normal distribution. If K is a circular disk, then

Nn − 2πc1n1/3√
2πc2n1/3

D→ N (0, 1), (1.2)

with c1 = (2/3π)1/3�( 5
3 ) ≈ 0.53846 and c2 given by an integral which was evaluated

numerically; see also Section 5.3. Subsequently, Cabo and Groeneboom [15] considered
the random variable Dn in the case that K is a convex polygon with r vertices and stated
that

Dn − 2
3 rn−1 log n√

100
189 rn−1 log n

D→ N (0, 1). (1.3)

In the case that K is a circular disk, Hsing [21] proved that

lim
n→∞ varDnn5/3 = σ 2, (1.4)

with a number σ 2 <∞, and that

(Dn − EDn)n
5/6 D→ N (0, σ 2). (1.5)
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The number σ 2 is given in terms of an integral such that the integrand is the covariance
of certain random variables. It is not obvious how to evaluate the integral or at least to
conclude whether σ 2 > 0. A result in higher dimensions similar to (1.4) is due to Küfer
[26], who showed that varDn is at most of order n−(d+3)/(d+1) if K is a d-dimensional
ball.

The results for circular disks and balls carry with them the respective results for
ellipses and ellipsoids, since Nn , (vol K )−1 Dn , and (vol K )−1Vn are invariant under
non-singular affine transformations of K .

As for the results on expected values, the simple identity due to Efron [17],

EDn

vol K
= ENn+1

n + 1
(1.6)

or, equivalently,

EVn

vol K
= 1− ENn+1

n + 1
, (1.7)

turned out to be a very useful tool, see, e.g., p. 42 of [15]. Hence the question arises
whether similar identities also exist for variances and higher moments. In particular:
Given n ∈ N, is there an m ∈ N such that varNm on the one hand and varDn or varVn on
the other hand are related by an identity?

In the following we give affirmative answers to these questions. In Section 2 we prove
that, for every K ∈ Kd , every n ∈ N, and every k ∈ N,

EVk
n

(vol K )k
= E

k∏
i=1

(
1− Nn+k

n + i

)
(1.8)

and, consequently,

EDk
n

(vol K )k
=

k∑
j=1

(−1) j−1

(
k

j

)
E

(
1−

j∏
i=1

(
1− Nn+ j

n + i

))
. (1.9)

Thus the kth moment of Vn can be expressed by the first k moments of Nn+k :

EVk
n

(vol K )k
= 1−

(
1

n + 1
+ · · · + 1

n + k

)
ENn+k

+ · · · + (−1)k
1

(n + 1) · · · (n + k)
ENk

n+k,

and, analogously, the kth moment of Dn is a linear function of the first moment of Nn+1,
the first two moments of Nn+2, . . . , and the first k moments of Nn+k .

As an immediate consequence of (1.8) and (1.9), which we consider in Section 3, we
obtain that

varVn

(vol K )2
= varDn

(vol K )2
= varNn+2 + dn+2

(n + 1)(n + 2)
, (1.10)

where dn+2 is entirely determined by the expected values ENn+1 and ENn+2. (See Corol-
lary 1 in Section 3 for the precise definition of dn; note also Remark 4.)
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If K is a convex polygon with r vertices, a classical result due to Rényi and Sulanke
[37] says that ENn = 2

3r log n + c0(K ) + o(1) as n→∞ (where the constant c0(K )
depends on the shape of K ). A more detailed investigation by Buchta and Reitzner
[13] shows that o(1) can be replaced by O(n−1). Then it is immediately seen that
dn ∼ 2

3r log n. According to Groeneboom [18, p. 328], it can be deduced from the central
limit theorem stated as (1.1) in the present paper that varNn ∼ 10

27r log n as n→∞. (See
the comment on this conclusion in Section 5.4.) Consequently the identity (1.10) yields
(vol K )−2varDn ∼ 28

27 rn−2 log n. This is incompatible with the corresponding conclusion
for the variance of Dn from the central limit theorem stated as (1.3) in the present paper
and suggests that (1.3) has to be replaced by

(vol K )−1 Dn − 2
3 rn−1 log n√

28
27 rn−2 log n

D→ N (0, 1).

Analogously, if K is a circular disk, a particular case of a further result by Rényi and
Sulanke [37] says that ENn ∼ 2πc1n1/3 as n → ∞, where the constant c1 is the same
as in (1.2). A refinement of this result due to Gruber [19] and Reitzner [34] exhibits the
further terms in the asymptotic expansion of ENn and implies dn ∼ 2

3πc1n1/3. According
to Groeneboom (ibid.), it can likewise be deduced from the central limit theorem stated
as (1.2) in the present paper that varNn ∼ 2πc2n1/3 as n→∞. Consequently it follows
that (vol K )−2varDn ∼ 2π( 1

3 c1+ c2)n−5/3, and the number occurring in (1.4) and (1.5)
is given by

σ 2 = 2π( 1
3 c1 + c2)(vol K )2 > 0.

Furthermore, according to (1.6), ENn ∼ 2πc1n1/3 implies (vol K )−1EDn ∼ 2πc1n−2/3

(alternatively, see [38]), and Hsing’s result (1.5) can be improved to

(vol K )−1 Dn − 2πc1n−2/3√
2π( 1

3 c1 + c2)n−5/3

D→ N (0, 1),

where the constants c1 and c2 are the same as in (1.2).
Beyond that, the simple identity (1.10) gives rise to estimates of varDn and varNn ,

respectively, for much more general convex bodies: If K is a d-dimensional convex
body with sufficiently smooth boundary, a result by Bárány [3] shows that ENn ∼
C(K )n(d−1)/(d+1) as n → ∞, where C(K ) > 0 is known explicitly and depends on
the curvature of the boundary. Reitzner [36] obtained further terms in the asymptotic
expansion of ENn . Hence it follows that dn ∼ ((3− d)/(d + 1))C(K )n(d−1)/(d+1). Thus
varNn ≥ 0 implies for d = 2 that, asymptotically,

varDn

(vol K )2
≥ 1

3 C(K )n−5/3, (1.11)

and from varDn ≥ 0 it follows for d ≥ 4 that, asymptotically,

varNn ≥ d − 3

d + 1
C(K )n(d−1)/(d+1). (1.12)
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Presumably, the right-hand sides of (1.11) and (1.12), respectively, give the exact order
of the estimated variances and the constants are not “too far” from the exact ones. A
similar reasoning is possible for other convex bodies as far as asymptotic expansions of
ENn are available.

In Section 4 we return to the general identity (1.8). The fact that EVk
n is determined

by moments of Nn+k trivially implies that EVk
n is determined by the distribution of

Nn+k . The argument is the same for any n and any k; hence any moment EVk
n with

n + k = m is determined by the distribution of Nm . Reversely we derive that, for every
m ∈ N, the distribution of Nm is determined by the moments EVm− j

j ( j = 1, . . . ,m).

The probabilities p(m)l that Nm = l (l = 1, . . . ,m) turn out to be

p(m)l = (−1)l
(

m

l

) l∑
j=1

(−1) j

(
l

j

)
EVm− j

j

(vol K )m− j
. (1.13)

This formula—as well as Efron’s identity and its generalization—does not depend on
the dimension d and is purely combinatorial, indicating that it holds under more general
assumptions; see Remark 2. The dimension comes into play if we omit the moments
EVm−1

1 , . . . ,EVm−d
d , which are zero. Then the summation on the right-hand side of (1.13)

starts with j = d + 1, and the sum is empty if l ≤ d, corresponding to p(m)1 = · · · =
p(m)d = 0.

Apparently, only the particularly simple case l = d + 1 of (1.13), where the sum
reduces to one summand, has been noticed before. (The expression in this case,

p(m)d+1 =
(

m

d + 1

)
EVm−d−1

d+1

(vol K )m−d−1
, (1.14)

is stated, e.g., in the Handbook of Convex Geometry [43, p. 1396], in the Handbook
of Discrete and Computational Geometry [40, p. 169] and in Schneider’s survey [39,
p. 219].) The probability p(m)m , i.e. the probability that m random points are in convex
position, was recently investigated by Valtr [41], [42] and Bárány [4].

Related work is due to Baryshnikov [7], Bräker and Hsing [8], Devroye [16], Hueter
[22], [23], Jewell and Romano [25, p. 424], Massé [28]–[30], Nagaev and Khamdamov
[32], and Reitzner [35].

2. Extension of Efron’s Identity to Higher Moments

Theorem 1. Let K ∈ Kd , n ∈ N, and k ∈ N. Then

EVk
n

(vol K )k
= E

k∏
i=1

(
1− Nn+k

n + i

)

and, consequently,

EDk
n

(vol K )k
=

k∑
j=1

(−1) j−1

(
k

j

)
E

(
1−

j∏
i=1

(
1− Nn+ j

n + i

))
.
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Proof. Assuming that n + k points are distributed independently and uniformly in K ,
we investigate the number Pn,k of subsets of the set of the n + k points which are of the
following type: The subset consists of exactly k points, and these k points are contained
in the convex hull of the remaining n points. As we are going to express the expected
value of the random variable Pn,k in two different ways, the first of the claimed identities
follows.

We start by considering any fixed arrangement {x1, . . . , xn+k} of n + k pairwise
different points in K . Denote by Nn+k(x1, . . . , xn+k) the number of vertices of
conv{x1, . . . , xn+k}. The number Pn,k(x1, . . . , xn+k) of subsets of {x1, . . . , xn+k} con-
sisting of exactly k points which are contained in the convex hull of the remaining
n points equals the number of possibilities of choosing k points from those of the
n+ k points which are not vertices of conv{x1, . . . , xn+k}. Since, by definition, there are
n + k − Nn+k(x1, . . . , xn+k) non-vertices,

Pn,k(x1, . . . , xn+k) =
(

n + k − Nn+k(x1, . . . , xn+k)

k

)
.

Hence the random variables Pn,k and Nn+k are related by

Pn,k =
(

n + k − Nn+k

k

)
.

In particular,

EPn,k = E

(
n + k − Nn+k

k

)
. (2.1)

We now return to a fixed arrangement {x1, . . . , xn+k} of n+k pairwise different points
in K . The number Pn,k(x1, . . . , xn+k) can alternatively be determined in the following
way: Check for each of the

(n+k
k

)
selections of k points whether the selected points are

contained in the convex hull of the remaining n points. As the points are identically
distributed, every selection is with the same probability contained in the convex hull of
the remaining points. Denote by pn,k this probability, i.e. the probability that k points
distributed independently and uniformly in K are contained in the convex hull of n
further points distributed independently and uniformly in K . Then

EPn,k =
(

n + k

k

)
pn,k . (2.2)

Finally, we derive an expression for pn,k which is suitable for our purpose. For every
fixed arrangement {x1, . . . , xn} of n points the probability that a point chosen uniformly
at random in K falls within conv{x1, . . . , xn} is given by (vol K )−1vol conv{x1, . . . , xn},
consequently the probability that each of k points chosen independently and uniformly
at random in K falls within conv{x1, . . . , xn} is given by(

vol conv{x1, . . . , xn}
vol K

)k

.

Thus, as the points x1, . . . , xn are distributed independently and uniformly in K ,

pn,k = EVk
n

(vol K )k
. (2.3)
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From (2.1), (2.2), and (2.3) we conclude that(
n + k

k

)
EVk

n

(vol K )k
= E

(
n + k − Nn+k

k

)
, (2.4)

and since(
n + k

k

)−1

E

(
n + k − Nn+k

k

)

= E
(n + k − Nn+k)(n + k − 1− Nn+k) · · · (n + 1− Nn+k)

(n + k)(n + k − 1) · · · (n + 1)

= E
k∏

i=1

(
1− Nn+k

n + i

)
,

the first statement of Theorem 1 follows. The second statement is a simple consequence
of the first one, since the identity

(1− z)k =
k∑

j=1

(−1) j−1

(
k

j

)
(1− z j ),

which is easily verified, implies that

EDk
n

(vol K )k
= E

(
1− Vn

vol K

)k

=
k∑

j=1

(−1) j−1

(
k

j

)
E

(
1− V j

n

(vol K ) j

)
.

Remark 1. Observe that neither in the expression for EVk
n nor in the expression for

EDk
n do “mixed” moments of the type ENi1

n+ j1
N i2

n+ j2
with j1 �= j2 occur. Analogously to

the form of (vol K )−kEVk
n stated in the Introduction, (vol K )−kEDk

n can be written in
the form(

k

1

)
1

n + 1
ENn+1 +

(
k

2

)[
−
(

1

n + 1
+ 1

n + 2

)
ENn+2 + 1

(n + 1)(n + 2)
EN2

n+2

]

+ · · · +
(

k

k

)[
(−1)k−1

(
1

n + 1
+ · · · + 1

n + k

)
ENn+k

+ · · · + 1

(n + 1) · · · (n + k)
ENk

n+k

]
.

Remark 2. If the uniform distribution on K is replaced by some other probability
distribution in Rd , the reasoning leading to (2.1) and (2.2) still works as long as single
points do not have positive measure. In the argument yielding (2.3), the ratio of the
volume of the convex hull of n random points to the volume of K then has to be replaced
by the probability content of the convex hull of n random points. The resulting identity
relates moments of the probability content of the convex hull of n random points to
moments of the number of vertices of the convex hull of n + k random points.
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Remark 3. Efron [17, p. 335] considered the random variable Un = n−Nn and derived
that

EUk
n =

k∑
r=1

N (n, k, r)
EVr

n−r

(vol K )r
, (2.5)

where N (n, k, r) is the number of k-tuples from 1, 2, . . . , n having exactly r different
entries,

N (n, k, r) =
(

n

r

) r∑
s=1

(−1)r−s

(
r

s

)
sk .

The case k = 1 yields

EUn = n
EVn−1

vol K
,

whence, replacing n by n + 1, (1.6) and (1.7) follow immediately. The case k = 2 is
considered separately in Remark 5 below. In the general case the right-hand side of (2.5)
involves moments of k different random variables, and Efron did not take the equation
into further consideration. Replacing the equation by the system

EUi
n =

i∑
r=1

N (n, i, r)
EVr

n−r

(vol K )r
(i = 1, . . . , k)

and using the additional equations to eliminate the occurring moments of the random
variables Vn−1, . . . , Vn−k+1, the remaining moment EVk

n−k can be expressed by the
moments EUi

n (i = 1, . . . , k) and consequently by the moments ENi
n (i = 1, . . . , k).

Thus EVk
n can be expressed by the moments ENi

n+k (i = 1, . . . , k). The details, however,
appear to be cumbersome and tedious, and the simple structure of formula (1.8) does not
become obvious immediately.

3. The Arising Identity for the Variances and Some Consequences

Theorem 1 implies an identity for the variances which is almost as simple as Efron’s
identity (1.6), (1.7) for the expected values:

Corollary 1. Let K ∈ Kd , n ∈ N, and k ∈ N. Then

varVn

(vol K )2
= varDn

(vol K )2
= varNn+2 + dn+2

(n + 1)(n + 2)
,

where

dn = (ENn)
2 − n

n − 1
(ENn−1)

2 − (2n − 1)ENn + 2nENn−1.

Remark 4. According to Efron’s identity (1.6), (1.7), dn can equivalently be expressed
by the expected values EDn−1 and EDn−2 as well as by the expected values EVn−1 and
EVn−2. We note the latter of the resulting formulae,

dn = n2

(
EVn−1

vol K

)2

− n(n − 1)

(
EVn−2

vol K

)2

− n
EVn−1

vol K
. (3.1)
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Remark 5 (Continuation of Remark 3). The case k = 2 of (2.5) yields

EU2
n = n(n − 1)

EV2
n−2

(vol K )2
+ n

EVn−1

vol K
,

and consequently (see the expression for EUn in Remark 3)

varUn = n(n − 1)
EV2

n−2

(vol K )2
+ n

EVn−1

vol K
− n2

(
EVn−1

vol K

)2

. (3.2)

Apparently, neither Efron, who mentioned this relation in passing [17, p. 335, for-
mula (3.6)], nor subsequent authors paid further attention to it. Taking into account
that varUn = varNn , (3.2) can be rewritten as

varNn = n(n − 1)

(
varVn−2

(vol K )2
+
(

EVn−2

vol K

)2
)
+ n

EVn−1

vol K
− n2

(
EVn−1

vol K

)2

,

and, applying (3.1), as

varNn = n(n − 1)
varVn−2

(vol K )2
− dn.

Replacing n by n + 2 just gives Corollary 1.

As for the result by Cabo and Groeneboom displayed as (1.3), Hüsler [24, p. 111]
had already pointed out that it seemed to be incorrect. In fact, if the random variable
Dn is asymptotically normally distributed with asymptotic mean EDn and asymptotic
variance varDn , in order to avoid Dn attaining negative values with positive probability,
EDn ≥ η

√
varDn has to be fulfilled asymptotically for every η > 0. Otherwise, if there

were an η0 > 0 such that asymptotically EDn < η0
√

varDn , the probability that

Dn − EDn√
varDn

≤ −η0

would tend to �(−η0) = 1 − �(η0) > 0 (where � is the distribution function of the
standard normal distribution), implying that

Dn ≤ EDn − η0

√
varDn < 0

with positive probability. Since the relation EDn ≥ η
√

varDn can only be fulfilled
asymptotically for every η > 0 if the order of varDn is less than the order of (EDn)

2

and since EDn ∼ 2
3 rn−1 log n as K is a convex polygon with r vertices, the order of

varDn has to be less than n−2 log2 n. The denominator in (1.3), which exhibits the order
of varDn to be n−1 log n, is incompatible with this requirement.

To see what accounts for the discrepancy, recall that the method by Cabo and Groene-
boom is based on the approximation of the process of vertices of the convex hull of
a uniform sample by the process of extreme points of a realization of a Poisson point
process in such a way that the “left-lower boundary” of the convex hull of a uniform sam-
ple of size n from the interior of the square [0,

√
n ]2 is associated with the “left-lower
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boundary” of the convex hull of a realization of a Poisson point process on R2
+ with

intensity Lebesgue measure. (See in particular Corollary 2.2 in [18] and the preceding
comment at the bottom of p. 334.) Accordingly, if Corollary 2.1 or rather Theorem 2.3
in Section 2 of [15] is assumed to be correct and used as the starting point, the reasoning
sketched in Section 3 of [15] leads to

Dn − 4( 2
3 log n)

2
√

100
189 log n

D→ N (0, 1)

in the case that K is the square [0,
√

n ]2, i.e. a square with area n, hence to

n(vol K )−1 Dn − 4( 2
3 log n)

2
√

100
189 log n

= (vol K )−1 Dn − 4( 2
3 n−1 log n)

2
√

100
189 n−2 log n

D→ N (0, 1)

in the case that K is a square with area vol K , and, more generally, to

(vol K )−1 Dn − 2
3 rn−1 log n√

100
189 rn−2 log n

D→ N (0, 1) (3.3)

in the case that K is a convex polygon with r vertices and area vol K . To be consistent
with these conclusions, in Theorem 3.1 in [15] the expression for cn has to be replaced

by
√

100
189 n−2 log n. Correspondingly, in the main result, Theorem 3.2, stated as (1.3) in

the Introduction, the denominator has to be replaced by
√

100
189 kn−2 log n. (In the present

paper we write r instead of k.) Furthermore, in the numerator the “remaining area” An

(Dn in the notation of the present paper) has to be replaced by the ratio of the “remaining
area” to the area of the considered convex polygon ((vol K )−1 Dn in the notation of the
present paper).

The arising order of the denominator, n−2 log n instead of n−1 log n, meets the re-
quirement of being less than n−2 log2 n. A further consideration, however, shows that in
the denominator in Theorem 3.2 the constant, 100

189 , which is not affected by the above
alterations, cannot be correct either: In view of varNn ≥ 0, the identity (1.10) implies
(vol K )−2varDn ≥ (n + 1)−1(n + 2)−1dn+2. Since dn ∼ 2

3r log n as K is a convex
polygon with r vertices, it follows that, asymptotically, (vol K )−2varDn ≥ 2

3 rn−2 log n,
whereas—according to a conclusion analogous to the ones by Groeneboom [18, p. 328]—
the denominator in (3.3) exhibits that (vol K )−2varDn ∼ 100

189 rn−2 log n. Therefore The-
orem 2.3 in [15], which was used as the starting point of the above conclusions, cannot be
entirely correct, and a further mistake must have crept in somewhere in the fundamental
papers [18] and [15]. It would be very interesting to discover this further mistake.

Beyond the fact that varNn implies varDn−2 and vice versa, Corollary 1 yields esti-
mates of these quantities even if neither the one nor the other is known, provided that
precise information about the asymptotic behaviour of ENn or, equivalently, EDn is
available, whence the asymptotic behaviour of dn can be determined. Such precise in-
formation was recently obtained by Reitzner for convex bodies with sufficiently smooth
boundaries. The following particular case of Reitzner’s results (Theorem 1 of [36]; for
d = 2: Theorem 3 of [34]) suffices for our purpose:
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Let K ∈ Kd have a boundary of differentiability class Cd+6 (if d = 2, C6 is sufficient)
with positive Gaussian curvature κ . Then

EDn

vol K
= c2(K )n

−2/(d+1) + · · · + cd+3(K )n
−(d+3)/(d+1) + O(n−(d+4)/(d+1)) (3.4)

as n → ∞, where the constants satisfy c2m+1(K ) = 0 for m ≤ d/2 if d is even, and
c2m+1(K ) = 0 for all m if d is odd.

An immediate consequence, obtained according to (n + 1)−α = n−α − αn−α−1 +
O(n−α−2) as n→∞, is the remarkable relation

EDn − EDn+1 = 2

d + 1
EDn n−1(1+ O(n−1/(d+1))) (3.5)

as n→∞ (which can presumably be established under less restrictive differentiability
assumptions).

In order to evaluate dn , we write (3.1) in the form

dn = n(n − 1)

(
EDn−2

vol K
− EDn−1

vol K

)(
2− EDn−2

vol K
− EDn−1

vol K

)

−n
EDn−1

vol K

(
1− EDn−1

vol K

)

and conclude from (3.4) and (3.5) that

dn = 3− d

d + 1
C(K )n(d−1)/(d+1) + O(n(d−2)/(d+1)) (3.6)

as n→∞, where C(K ) is the constant c2(K ) of formula (3.4). It is known that

C(K ) = η(d)A(K )(vol K )−(d−1)/(d+1).

Here A(K ) is the affine surface area of K ,

A(K ) =
∫

bdK
κ1/(d+1) dσ,

and η(d) is a constant depending only on the dimension,

η(d) = �(d + 1+ 2/(d + 1))

2(1+ 2/(d + 1))�(d + 1)

(
d + 1

�d−1

)2/(d+1)

, (3.7)

�d denoting the volume of the d-dimensional unit ball. (For arbitrary d the constant
C(K ) was first determined by Wieacker [44] in the case that K is a ball, where

A(K ) = d�2/(d+1)
d (vol K )(d−1)/(d+1).

For d = 2 the constant C(K ) is due to Rényi and Sulanke [37], [38]. In the particular case
that K is a circular disk, C(K ) equals 2πc1, c1 being the constant mentioned repeatedly
in the Introduction.)
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As η(d) > 0, A(K ) > 0, and consequently C(K ) > 0, the sign of dn for sufficiently
large n corresponds to the sign of (3− d)/(d + 1), provided that (3− d)/(d + 1) �= 0.

Thus, on the one hand, we have dn > 0 for sufficiently large n if d = 2, and it follows
from Corollary 1 and varNn+2 ≥ 0 that

varDn

(vol K )2
≥ dn+2

(n + 1)(n + 2)
,

whence

varDn ≥ 1
3η(2)A(K )

(
vol K

n

)5/3

+ O

(
1

n2

)

as n→∞. Observing that η(2) = ( 2
3 )

1/3�( 5
3 ), our result can be stated in the following

form:

Corollary 2. Let K ∈ K2 have a boundary of differentiability class C6 with positive
Gaussian curvature κ . Then

lim inf
n→∞ varDn

( n

vol K

)5/3
≥ 1

3

(
2

3

)1/3

�

(
5

3

)∫
bdK

κ1/3dσ.

On the other hand, we have dn < 0 for sufficiently large n if d ≥ 4, and it follows
from Corollary 1 and varDn ≥ 0 that

varNn+2 ≥ −dn+2,

whence

varNn ≥ d − 3

d + 1
η(d)A(K )

( n

vol K

)(d−1)/(d+1)
+ O(n(d−2)/(d+1))

as n→∞. Thus we obtain:

Corollary 3. Let K ∈ Kd , d ≥ 4, have a boundary of differentiability class Cd+6 with
positive Gaussian curvature κ . Then

lim inf
n→∞ varNn

(
vol K

n

)(d−1)/(d+1)

≥ d − 3

d + 1
η(d)

∫
bdK

κ1/(d+1) dσ,

where η(d) is given by (3.7).

Presumably, Corollaries 2 and 3 can be improved and extended as follows:

Conjecture 1. Let K ∈ Kd , d ≥ 2, have a sufficiently smooth boundary with positive
Gaussian curvature κ . Then

lim
n→∞ varNn

(
vol K

n

)(d−1)/(d+1)

= α(d)
∫

bdK
κ1/(d+1) dσ
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and

lim
n→∞ varDn

( n

vol K

)(d+3)/(d+1)
= β(d)

∫
bdK

κ1/(d+1) dσ,

where α(d) and β(d) are constants depending only on d .

If Conjecture 1 turns out to be true, α(d) and β(d) are determined in the case d = 2 by
the constants c1 and c2 mentioned in the Introduction and in Section 5.3: α(2) = π1/3c2,
β(2) = π1/3( 1

3 c1 + c2) = 1
3η(2)+ α(2). Corollary 1 and (3.6) yield for arbitrary d the

relation

β(d) = 3− d

d + 1
η(d)+ α(d).

Thus α(d) and β(d) coincide in the case d = 3 where (3− d)/(d + 1) vanishes. In
other words:

Conjecture 2. Let K ∈ K3 have a sufficiently smooth boundary. Then

lim
n→∞

varDn

varNn

( n

vol K

)2
= 1.

4. The Distribution of the Number of Vertices

Theorem 2. Let K ∈ Kd and m ∈ N. Then, for l = 1, . . . ,m, the probability p(m)l
that Nm = l is given by

p(m)l = (−1)l
(

m

l

) l∑
j=1

(−1) j

(
l

j

)
EVm− j

j

(vol K )m− j
.

Proof. Relation (2.4) is equivalent to

(
n + k

k

)
EVk

n

(vol K )k
=

n+k∑
i=1

(
n + k − i

k

)
p(n+k)

i .

Thus we have for j = 1, . . . ,m that

(
m

j

)
EVm− j

j

(vol K )m− j
=

m∑
i=1

(
m − i

m − j

)
p(m)i .

It is immediately verified that the inverse of the matrix
((m−i

m− j

))
i=1,...,m; j=1,...,m

is given

by
(
(−1) j+l

(m− j
m−l

))
j=1,...,m; l=1,...,m

. (Observing that both
(m−i

m− j

)
and

(m− j
m−l

)
are different

from zero only if i ≤ j ≤ l and that(
m − i

m − j

)(
m − j

m − l

)
=
(

m − i

m − l

)(
l − i

l − j

)
,
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the inner product of any row of the first matrix with any column of the second matrix
can be easily evaluated.) Consequently

p(m)l =
m∑

j=1

(−1) j+l

(
m − j

m − l

)(
m

j

)
EVm− j

j

(vol K )m− j

for l = 1, . . . ,m. Hence Theorem 2 follows as
(m− j

m−l

)
is different from zero only if j ≤ l

and as (
m − j

m − l

)(
m

j

)
=
(

m

l

)(
l

j

)
.

Remark 6. If n < d+1, the probability that Nn+k attains one of the values n+1, . . . ,
n + k is one. Thus the probability that one of the quantities

1− Nn+k

n + i
(i = 1, . . . , k)

vanishes is one, and in the first identity of Theorem 1 both sides reduce to zero. (Conse-
quently, in the second identity of Theorem 1 both sides reduce to one.)

Correspondingly, if m < d + 1, the identity in Theorem 2 reduces to p(m)m = 1 and
p(m)l = 0 for l = 1, . . . ,m − 1. Furthermore, if m ≥ d + 1, still p(m)l vanishes for
l = 1, . . . , d, and the identity simplifies to

p(m)l = (−1)l
(

m

l

) l∑
j=d+1

(−1) j

(
l

j

)
EVm− j

j

(vol K )m− j
(4.1)

for l = d + 1, . . . ,m.

Remark 7. Efron’s identity mentioned as (2.5) in Remark 3 can easily be derived from
Theorem 2: Express

EUk
n =

n∑
l=1

(n − l)k p(n)l

according to Theorem 2, change the order of summation in the arising double sum, note
that (

n

l

)(
l

j

)
=
(

n

n − j

)(
n − j

n − l

)
,

replace n − j and n − l by r and s, respectively, and recall the definition of N (n, k, r)
from Remark 3. It follows that

EUk
n =

n−1∑
r=1

N (n, k, r)
EVr

n−r

(vol K )r
.

This sum is equivalent to the sum in (2.5), since, on the one hand, if n − 1 > k, the
summands corresponding to r = k + 1, . . . , n − 1 vanish as N (n, k, r) = 0 for r > k,
and, on the other hand, if k > n − 1, the summand corresponding to r = n vanishes
as then EVr

n−r = 0, while the summands corresponding to r = n + 1, . . . , k vanish as
N (n, k, r) = 0 for r > n.
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5. Concluding Remarks

5.1. A Question of Baryshnikov

It had been proved in an earlier paper [11, Theorem 3] that the probabilities p(d+3)
l (l =

d + 1, d + 2, d + 3) can be expressed by the moments EVd+1 and EV2
d+1:

p(d+3)
d+1 =

(
d + 3

2

)
EV2

d+1

(vol K )2
, p(d+3)

d+2 =
(

d + 3

2

)(
EVd+1

vol K
− 2

EV2
d+1

(vol K )2

)
,

p(d+3)
d+3 = 1−

(
d + 3

2

)(
EVd+1

vol K
− EV2

d+1

(vol K )2

)
.

This result is a particular case of the present Theorem 2 since

EVd+2 = d + 2

2
EVd+1

(Theorem 2 of [11]; see also [12]).
Baryshnikov [6] called the probabilities p(m)d+1 (m = d+2, d+3, . . .) Sylvester num-

bers. According to the identity mentioned as (1.14) in the Introduction, the probabilities
p(d+3)

l stated above can equivalently be expressed by the Sylvester numbers p(d+2)
d+1 and

p(d+3)
d+1 :

p(d+3)
d+2 =

d + 3

2
p(d+2)

d+1 − 2p(d+3)
d+1 , p(d+3)

d+3 = 1− d + 3

2
p(d+2)

d+1 + p(d+3)
d+1 .

In view of this relation Baryshnikov asked (for d = 2, the dimension, however, does
not matter) whether it can be extended from p(d+3)

l (l = d + 1, d + 2, d + 3) to
p(m)l (l = d + 1, . . . ,m), m > d + 3: “A really interesting question is if there exists a
functional dependence of p(m)l from some finite set of Sylvester numbers.”

Theorem 2 shows that an appropriate finite set in order to express the probabili-
ties p(m)l consists of the moments EVm−1,EV2

m−2, . . . ,EVm−d−1
d+1 . If m = d + 3, these

moments, i.e. EVd+2 and EV2
d+1, are equivalent to the Sylvester numbers p(d+2)

d+1 and

p(d+3)
d+1 , respectively, as described above. If m > d + 3, such a relation between the

mentioned moments and the Sylvester numbers does not exist. Observe that all Sylvester
numbers are known if K is a d-dimensional ball, a triangle, or a parallelogram (recall
the Introduction), whereas it appears to be difficult even to determine EV2

m−2 if K is a
d-dimensional ball and m > d + 3 or if K is a triangle or a parallelogram and m > 6.
(For m = 6, see Section 5.2.) If it were in fact possible to express the probabilities p(m)l
and hence the moments of Nm in terms of Sylvester numbers, according to Theorem 1 the
moments EVk

n with n + k = m could also be expressed in terms of Sylvester numbers.
In other words: The moments EVk

n (n ≥ d + 1, k ∈ N)—and thus in particular EV2
n and

varVn—could be expressed by the moments EVk
d+1 (k ∈ N).
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5.2. A Consequence of Recent Work by Valtr

As mentioned in the Introduction, EVk
n is not known for any convex body K if k > 1 and

n > d + 1. Theorem 2 can be used to deduce EV2
4 if K is a triangle or a parallelogram

from recent results by Valtr: The particular case l = m = 6 of (4.1) yields

EV2
4

(vol K )2
= 1

15
p(6)6 +

4

3

EV3
3

(vol K )3
+ 2

5

EV5

vol K
− 1

15
.

If K is a triangle or a parallelogram, the values of p(6)6 are 91
900 [42] and 49

400 [41],
respectively, the values of (vol K )−3EV3

3 are 31
9000 [2] and 137

72000 [20], and the values of
(vol K )−1EV5 are 43

180 [9] and 79
360 [9]. Hence we find that the value of (vol K )−2EV2

4 is
181
4500 if K is a triangle and 859

27000 if K is a parallelogram.

5.3. Groeneboom’s Constant c2 and Hsing’s Constant σ 2

It was pointed out in the Introduction that the constants c2 and σ 2 are related by

σ 2 = 2π( 1
3 c1 + c2)(vol K )2.

The exact value of c1 is due to Rényi and Sulanke [37]. The constants c2 and σ 2 are
known in terms of integrals. Whereas Hsing does not touch the question of how the
integral for σ 2 could be evaluated, Groeneboom reduces the integral for c2 to two still
very complicated double integrals for which he states approximate numerical values,
without giving any details of how these have been obtained. (Groeneboom derives the
numerical value of c2 by combining the results on pp. 361 and 362 of [18], in the course
of which apparently the factor 2 in front of the integral in the expression for var(N (a))
on p. 361 has got lost.) It would be interesting to determine the exact value of c2 or,
equivalently, of σ 2.

5.4. Just One More Word to Groeneboom’s Paper

As already mentioned in Section 1, Groeneboom [18, pp. 328–329] explains that asymp-
totic formulae for varNn can be deduced from the central limit theorems stated as (1.1)
and (1.2) in the present paper. Groeneboom writes that “it is not hard to show that certain
uniform integrability conditions are satisfied” and that “this analysis has not been carried
out to save space”. It would still be worthwhile to elaborate on the details.
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24. J. Hüsler, On the convex hull of dependent random vectors, Rend. Circ. Mat. Palermo (2) Suppl. 41 (1996),

109–117.
25. N. P. Jewell and J. P. Romano, Evaluating inclusion functionals for random convex hulls, Z. Wahrsch.

Verw. Gebiete 68 (1985), 415–424.
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