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Abstract. Computing at least one point in each connected component of a real algebraic
set is a basic subroutine to decide emptiness of semi-algebraic sets, which is a fundamental
algorithmic problem in effective real algebraic geometry. In this article we propose a new
algorithm for the former task, which avoids a hypothesis of properness required in many of
the previous methods. We show how studying the set of non-properness of a linear projection
� enables us to detect the connected components of a real algebraic set without critical
points for�. Our algorithm is based on this observation and its practical counterpoint, using
the triangular representation of algebraic varieties. Our experiments show its efficiency on
a family of examples.

1. Introduction

Finding at least one point in each connected component of a semi-algebraic set, or
at least deciding if it is empty, is a fundamental problem in effective real algebraic
geometry, which appears in many academic or industrial applications: filter banks [20],
robotics [34], celestial mechanics, etc. A well known algorithm having such an output is
Collins’ Cylindrical Algebraic Decomposition algorithm [14]. It has complexity doubly
exponential in the number of variables, in terms of arithmetic operations and size of the
output. In practice, the best implementations are limited to problems having about five
variables.

More recently, alternative algorithms were proposed in [25]–[27] and [9]–[11], with
complexity single exponential in the number of variables. These algorithms reduce this
question to the computation of at least one point in each connected component of several
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real algebraic sets. Thus, designing efficient algorithms for this last question is crucial
to deal with inequalities efficiently. This paper is in keeping with this framework.

The Critical Point Method. We first briefly describe the state of the art for the latter
problem. A widely used method is the critical point method. It consists in studying a
map that reaches an extremum on each connected component of the real algebraic set
under consideration, and whose critical locus is zero-dimensional.

In [25]–[27] and [9]–[11] the authors reduce the general case to the study of smooth
and compact real algebraic sets, via several infinitesimal deformations. Indeed, any
projection on a straight line reaches an extremum on each connected component of a
compact real algebraic set. The above articles show how to choose a projection with
zero-dimensional critical locus; this yields algorithms with complexities that are single
exponential in the number of variables.

A similar approach is studied in [6] and [5], [7] respectively for smooth compact
hypersurfaces and smooth compact complete intersections. In both cases the critical
points of the projection on a generic line are shown to belong to a family of formal
polar varieties. Studying these polar varieties allows them to define a notion of intrinsic
geometric degree for real algebraic systems. The resulting algorithms are based on
the representation of polynomials by straight-line programs; they have a complexity
polynomial in both the intrinsic geometric degree and the complexity of evaluation of
the input system. Recently, these results were extended to handle the case of non-compact,
smooth varieties in [50] and [8].

In [44], [4] and [48] the authors utilize the square of the distance to a given point;
such functions are simply called distance functions in what follows. In [44] the singular
case is treated by a single infinitesimal deformation, while in [4] it is treated by itera-
tively studying the real points of the singular locus. No complexity estimate is given in
either [44] or [4]. Nevertheless, an extensive family of examples was studied in [45];
on these examples the iterative approach of [4] performed better than the one using an
infinitesimal deformation.

Several of the algorithms mentioned above require isolating the real solutions of
zero-dimensional polynomial systems. Many solutions exist for this question; for com-
pleteness, we briefly review some of them.

A commonly used solution is the computation of a Gröbner basis [13], [19], [16], [17],
possibly followed by the computation of a Rational Univariate Representation [1], [42].
We also mention the work of Giusti and collaborators [21]–[24], which culminated in the
design of the algorithm of geometric resolution, whose real counterpart was mentioned
above. Through such approaches, isolating the real solutions of a zero-dimensional
system is reduced to studying the real roots of a univariate polynomial. For handling
this task, refer to [53], [47] and [46]. We also mention the algorithms based on triangular
sets, see [33], [32], [55], [31], [39], [38], [2] and [56] for a panoramic survey; the
arithmetic of the real algebraic numbers of [41] is well adapted to this representation.
Finally, symbolic-numeric techniques can also be used, see [15], [54] and references
therein.

Projection Functions in the Non-Compact Case. The above algorithms detect the con-
nected components of a real algebraic set by the presence of critical points, which are
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characterized by the vanishing of suitable minors of jacobian matrices. Two approaches
were considered, using either distance functions or projections; it turns out that both
suffer practical difficulties.

On the one hand, the degrees of the minors arising when using a distance function
limit the performance of the algorithm designed in [4]. This makes it desirable to use
projection functions in the first place, since the jacobian determinants characterizing the
critical locus of a projection have better properties, see the discussion in Section 5.

On the other hand, algorithms using projections apply only to compact varieties:
already simple examples like hyperbolas show that some projections may have no critical
points on non-compact varieties. Yet, the reduction of the general case to the compact
situation by infinitesimal deformations burdens the algorithms of [25]–[27] and [9]–
[11], so that the practical performances of these algorithms do not reflect their good
complexity.

Thus, using projection functions without compactification could lead to significant
practical improvements. Our contribution in this article is to study such projections in the
presence of non-compact connected components. From this geometric study, we deduce
a new algorithm for the computation of a finite set of points that meets each connected
component of a real algebraic set. Our first experiments show a promising behavior.

The Set of Properness of a Dominant Map. We use the notion of properness of a map,
which we now introduce, together with the notion of a dominant map. Let f : V → W
be a map of topological spaces. The map f is proper atw ∈ W if there is a neighborhood
B of w such that f −1(B) is compact, where B denotes the closure of B. In this article
we consider maps between complex or real algebraic varieties. The notion of properness
will be relative to the topologies induced by the metric topologies of C or R.

Next, a map of irreducible complex varieties f : V → W is dominant if its image
is dense in W , i.e. if the dimension of f (V ) as a complex constructible set equals the
dimension of W . We extend this definition to the case of a map V → W , where V is
not necessarily irreducible. Then we require that the restriction of f to each irreducible
component of V be dominant.

Let now V ⊂ Cn be an algebraic variety of dimension d and let � : V → Cd be a
dominant projection. Then by the theorem of dimension of fibers [52, Chapter 1.6], �
has generically finite fibers. In this situation the set of points of Cd at which f is not
proper is a hypersurface [30]; we denote by P� a square-free polynomial defining it.
Our first result shows how P� can be used to obtain at least one point on each connected
component of V ∩ Rn .

Theorem 1. Let V ⊂ Cn be an equidimensional algebraic variety of dimension d . Let
� be the projection:

� : Cn → Cd ,

(x1, . . . , xn) �→ (x1, . . . , xd).

Suppose that the restriction of � to V is dominant and let P� be as above. Let D be a
connected component of V ∩ Rn , such that D contains no singular point of V , and no
critical point for �. Then there exists a connected component of the semi-algebraic set
defined by P� �= 0 which is contained in �(D).
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As a consequence, given a variety V ⊂ Cn and a projection� satisfying the assump-
tions of Theorem 1, the connected components of V ∩Rn can be reached by (i) detecting
the connected components which contain either singular points or critical points for �;
(ii) for all other connected components, computing at least one point in each connected
component of P� �= 0; and, given such a point y, studying the fiber V ∩�−1(y).

To implement this idea, we use an adapted representation of algebraic sets, the trian-
gular set representation.

Triangular Sets. The following definitions come from [3], [2], [38] and [37]; for a
detailed survey of such notions, refer to [29]. This representation was already used in
the article [4], in a similar context of real algebraic geometry.

Consider a lexicographic order on some variables X1, . . . , Xn . Given a non-constant
polynomial P in Q[X1, . . . , Xn], we call main variable of P and denote by mvar(P)
the greatest variable appearing in P with respect to this order. With these notations, a
family T = (td+1, . . . , tn) of non-constant polynomials inQ[X1, . . . , Xn] is a triangular
set iff mvar(ti ) �= mvar(tj ) for ti �= tj . The algebraic variables are the main variables
of the polynomials in T ; the other variables are called transcendental. The initial of a
polynomial P is its leading coefficient, when P is considered as univariate in its main
variable. The separant of P is the polynomial ∂P/∂mvar(P).

Let T be a triangular set and let h be the product of its initials. The saturated ideal
of T is the saturation of T with respect to h:

sat(T ) = 〈T 〉 : h∞ = {P ∈ Q[X1, . . . , Xn] | ∃n ∈ N, hn P ∈ 〈T 〉}.
The quasi-component of T is the constructible set W (T ) = V (T )\V (h). Thus the
zero-set of sat(T ) is the Zariski closure of W (T ), denoted by W (T ).

A triangular set T is regular if, for i in {d + 1, . . . , n}, the initial hi of ti does
not divide zero in Q[X1, . . . ,mvar(ti−1)]/sat(td+1, . . . , ti−1). A regular triangular set
T is separable if, for i in {d + 1, . . . , n}, the separant si does not divide zero in
Q[X1, . . . ,mvar(ti )]/sat(td+1, . . . , ti ). A regular and separable triangular setT is strong-
ly normalized if for i in {d + 1, . . . , n}, hi depends only on the transcendental variables
of T .

The following two results show that such triangular sets provide a useful tool for our
initial question. The first fundamental fact is proved in [37]: if (P1, . . . , Pk) is any family
of polynomials, there exists strongly normalized triangular sets T1, . . . , T	 such that the
equality V (P1, . . . , Pk) =

⋃	
i=1 W (Ti ) holds. Thus, we can concentrate on the case of a

variety given as the closure of the quasi-component of a strongly normalized triangular
set. Then the second important fact is the translation of Theorem 1 to this context.

Theorem 2. Let T ⊂ Q[X1, . . . , Xn] be a strongly normalized triangular set with
transcendental variables X1, . . . , Xd . Let � be the projection:

� : Cn → Cd ,

(x1, . . . , xn) �→ (x1, . . . , xd),

and let s and h be the product of respectively the separants and the initials of T . Let
W (T ) be the Zariski closure of W (T ) and let D be a connected component of W (T )∩Rn .
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If D ∩ V (s) is empty, then there exists a connected component of the semi-algebraic set
defined in Rd by h �= 0 which is contained in �(D).

This theorem is the key to our algorithm; given P1, . . . , Pk in Q[X1, . . . , Xn], this al-
gorithm returns zero-dimensional systems whose set of real roots intersects each con-
nected component of V (P1, . . . , Pk)∩Rn . We first compute a decomposition in strongly
normalized triangular sets of the complex variety V (P1, . . . , Pk). Then we apply The-
orem 2 to each of these triangular sets: the connected components of the closure of its
quasi-component are reached by studying both the intersection with the zero-set of the
separants, and the hypersurface defined by the initials.

Complexity Issues and Practical Performances. In this paper we do not give complexity
results. The crucial problem is to bound the geometric degree of the intermediate varieties
appearing in the algorithm. Indeed, these varieties describe nested singular loci; the
crudest upper bound on their degrees is doubly exponential in the number of variables.
On the other hand, we are not aware of any lower bound for this question. Thus, the
complexity of our algorithm in terms of size of the output is still a largely open problem,
which should be solved before estimating its arithmetic complexity.

Our algorithm requires treating a semi-algebraic problem: computing at least one
point in each connected component of a real semi-algebraic set defined by P �= 0,
with P in Q[X1, . . . , Xd ]. There exist algorithms with single exponential complexity
for this task, see [25]–[27] and [9]–[11]. Yet, it is far from obvious to obtain an efficient
implementation of such algorithms. For our first experiments, we found it better to use
the projection step of the Cylindrical Algebraic Decomposition algorithm [14].

On the practical side, we compared our algorithm with the ones from [4] and [44],
as well as with an implementation of the Cylindrical Algebraic Decomposition. These
problems come mostly from academic or industrial applications of the FRISCO test-
suite [12]. On almost all these tests, our algorithm ran faster than all other ones; we can
also solve problems that were out of the reach of those algorithms.

Finally, we mention that an implementation of the algorithm presented here is available
in the RAGLib library [49].

2. Proof of Theorem 1

Let V ⊂ Cn be an equidimensional variety and let � be the projection:

� : Cn → Cd ,

(x1, . . . , xn) �→ (x1, . . . , xd).

Suppose that the restriction of� to V is dominant. Let D be a connected component of
V ∩ Rn without singular point nor critical point for� and let P� be a polynomial defining
the set at which � is not proper. Then Theorem 1 states that there exists a connected
component S of the semi-algebraic set defined by P� �= 0 contained in �(D).

We denote by U the image�(D). The proof of Theorem 1 uses the following classical
result on the properness defects of a continuous map.
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Lemma 1. For all α in U\U , � restricted to D is not proper at α.

Proof. Let α be in U\U , and suppose that � is proper at α. Then there exists an open
set B ⊂ Rd containing α such that �−1(B) is compact, where B is the closure of B
for the metric topology. This implies that U ∩ B = �(�−1(B) ∩ D) is compact, hence
closed. This contradicts the fact that α is in U\U .

We can now prove Theorem 1. Let y be in U and let x be in D, such that �(x) = y.
By assumption, x is neither a critical point of� restricted to V nor a singular point of V .
Thus, from the implicit function theorem, there exists a neighborhood B of y included
in U = �(D), so U is open. We then deduce that there exists a connected component
S of P� �= 0, such that U ∩ S �= ∅. Let us show that S ⊂ U , which will conclude the
proof.

Indeed, suppose on the contrary that there exist y1 ∈ U ∩ S and y2 ∈ S\U and let
γ ⊂ S be a continuous path linking y1 and y2. Since U is open, there exists y0 ∈ γ such
that y0 ∈ U\U . From Lemma 1,� restricted to V is not proper at y0. Thus P�(y0) = 0,
which contradicts the fact that y0 is in S.

3. Proof of Theorem 2

Let T ⊂ Q[X1, . . . , Xn] be a strongly normalized triangular set, with transcendental
variables X1, . . . , Xd . Let � be the projection:

� : Cn → Cd ,

(x1, . . . , xn) �→ (x1, . . . , xd),

and let s and h be the product of respectively the separants and the initials of T . Let W (T )
be the Zariski closure of W (T ) and let D be a connected component of W (T ) ∩ Rn . If
D ∩ V (s) is empty, then Theorem 2 asserts that there exists a connected component S
of the semi-algebraic set defined by h �= 0 such that S is contained in �(D).

Proving Theorem 2 requires us to relate the singular points of W (T ), the critical
points of � on W (T ) and the set of non-properness of � to respectively the separants
and the initials of T . We use a series of intermediate results; the first of them is proved
in [3] and [40].

Lemma 2. W (T ) is equidimensional of dimension d , and W (T )∩V (s) has dimension
less than d . The restriction of � to W (T ) is dominant.

Lemma 3. The singular points of W (T ) and the critical points of � on W (T ) are
included in W (T ) ∩ V (s).

Proof. Let S be a finite family generating sat(T ), so that {T ,S} also generates sat(T ).
From Lemma 2, this ideal is radical and equidimensional of dimension d [3], so the
singular locus of W (T ) is contained in the zero-set of the n − d × n − d minors of the
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jacobian of {T ,S}. The product s of the separants of T appears as one of these minors,
which proves the first part of the lemma.

Now, suppose that y is a critical point of the restriction of � to the regular part of
W (T ). If the rank of the jacobian of T in y is less than n− d, then y ∈ V (s), and we are
done. Suppose now that the rank of the jacobian of T in y equals n−d. Then the tangent
space Ty W (T ) is the zero-set of grady(td+1), . . . , grady(tn). Then y being critical for
� yields the inequality

dim(Span(u1, . . . ,ud , grady(td+1), . . . , grady(tn))) < n,

where u1, . . . ,ud are unitary vectors on the axes corresponding to the transcendental
variables of T . In particular, the jacobian determinant of T with respect to the algebraic
variables vanishes at y; i.e. y is in V (s).

Lemma 4. Let 
 ⊂ Cd be the set where the restriction of � to W (T ) is not proper.
Then 
 is contained in the zero-set of h.

Proof. Let the primary decomposition of sat(T ) in C[X1, . . . , Xn] be sat(T ) =⋂
	≤L A	. Since sat(T ) is radical, all ideals A	 are prime. Correspondingly, we write

the decomposition of W (T ) into C-irreducible components W (T ) = ⋃
	≤L V	, where

V	 is the zero-set of A	.
We use this decomposition to apply a characterization from [30] of the set of non-

properness, which is valid in the irreducible case. Let K = C(X1, . . . , Xd) denote the
rational function field on the set of transcendental variables, let sat(T )K , TK and A	,K be
the extensions of the ideals sat(T ), T and A	 in the ring K [Xd+1, . . . , Xn]. Then the fol-
lowing assertions come from a routine check: (i) for all 	, A	,K is prime of dimension zero;
(ii) two distinct ideals A	,K and A	′,K generate the unit ideal; (iii) K [Xd+1, . . . , Xn]/A	,K
is isomorphic to the function field C(V	) of V	; (iv) sat(T )K equals TK .

Thus using the Chinese Remainder Theorem, we deduce the isomorphism K [Xd+1,

. . . , Xn]/TK �
∏
	≤L C(V	). For i in d + 1, . . . , n and 	 ≤ L , let mi,	 ∈ K [T ] be the

monic minimal polynomial of Xi in the extension K → C(V	). We also let Mi be the
monic minimal polynomial of Xi in K → K [Xd+1, . . . , Xn]/TK . Then Mi is the LCM
of the polynomials mi,	, for 	 ≤ L .

Let now y be in Cd , and suppose that the restriction of � to W (T ) is not proper
at y. Then there exists 	0 ≤ L such that the restriction of � to V	0 is not proper at
y. Lemma 3.10 in [30] shows that there exists i0 in d + 1, . . . , n such that y cancels
the denominator of one of the coefficients of mi0,	0 . By Gauss’ lemma, y cancels the
denominator of one of the coefficients of Mi0 .

On the other hand, after dividing the polynomials in T by h, we obtain polynomials
in K [Xd+1, . . . , Xn] that are monic in their main variable. The possible necessary re-
ductions to obtain a reduced Gröbner basis for TK do not introduce new denominators.
Thus, all denominators that appear in Mi0 divide h. Thus y cancels h, which concludes
the proof.

We can now prove Theorem 2. Let D be a connected component of W (T )∩Rn such
that W (T ) ∩ V (s) = ∅. Then, from Lemma 3, D does not contain any critical point of
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� restricted to the regular part of W (T ) nor any singular point of W (T ). Moreover, the
restriction of � to W (T ) is dominant.

We then apply Theorem 1 to W (T ) and �. Let 
 be the set of points at which
the restriction of � to W (T ) is not proper. From Lemma 4, 
 ⊂ V (h). Then, for
all connected component S of Rd\ (
 ∩ Rd

)
, there exists a connected component S′ of

Rd\ (V (h) ∩ Rd
)

such that S′ ⊂ S. We are done.

4. Main Algorithm

We now describe our main algorithm, which computes at least one point in each connected
component of a real algebraic variety. Given a family (P1, . . . , Pk) ⊂ Q[X1, . . . , Xn], we
first decompose the zero-set of (P1, . . . , Pk) by means of strongly normalized triangular
sets (T1, . . . , T	).

For each of these triangular sets T we do the following: (i) find a dominant projection
� by reading the transcendental variables of T ; (ii) compute a set of generators of
W (T ) ∩ V (s), where s is the product of the separants of T , and recursively call the
algorithm for this new algebraic variety; (iii) compute at least one point in each connected
component of the semi-algebraic set defined by h �= 0, where h is the product of the
initials of T , and recursively call the algorithms for the fibers of � above these points.

Note that computing one point in the connected components of the open set h �= 0
can be done using the projection step of the cylindrical algebraic decomposition algo-
rithm [14].

Theorem 3. The above algorithm halts. It returns a family of zero-dimensional poly-
nomial systems whose real solutions intersect each connected component of the real
algebraic set V (P1, . . . , Pk) ∩ Rn .

Proving that our algorithm halts requires the following result.

Lemma 5. Let T ⊂ Q[X1, . . . , Xn] be a regular separable triangular set, let � be
the projection on the affine subspace containing the axes of the transcendental variables
of T and let y be a point in this subspace. Then the dimension of W (T )∩�−1(y) is less
than the dimension of W (T ).

Proof. Suppose on the contrary that W (T ) ∩ �−1(y) has the same dimension as
W (T ). This implies that there exists an irreducible component V ′ of W (T ) such that
dim(�−1(y) ∩ V ′) = dim(V ′). Thus, since V ′ is irreducible, for all x ∈ V ′, �(x) = y.
This contradicts the fact that the restriction of � to V ′ is dominant.

Proof of Theorem 3. We proceed by induction on the dimension d of V (P1, . . . , Pk).
If d = 0, then halting and correctness are readily verified. So we may consider that
this is also the case for 0, . . . , d − 1, and prove that halting and correctness hold in
dimension d .

By Lemmas 2 and 5, all recursive calls are done on systems of dimension less than d.
Thus, the algorithm ends, so we conclude by proving correctness. Let D be a connected
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component of V (P1, . . . , Pk) ∩ Rn . D contains a connected component D′ of an equi-
dimensional componentV ′ ⊂ Cn of V (P1, . . . , Pk) represented by a strongly normalized
triangular set T . If W (T ) is zero-dimensional, then the conclusion obviously holds.

Else, suppose D′ ∩ V (s) (where s is the product of the separants of T ) is not empty,
let I be the set of indices of transcendental variables of T , and let � be the projection
on these variables. Then there exists a connected component of the real algebraic variety
defined by a set of generators of W (T ) ∩ V (s), which has dimension less than W (T ).

Now, suppose D′ ∩ V (s) = ∅. Then, from Theorem 2, there exists a connected
component S of the semi-algebraic set defined by h �= 0 (where h is the product of the
initials of T ) contained in �(D′). Then there exists a connected component S of the
semi-algebraic set defined by h �= 0 such that S ⊂ �(D). Thus, V (G) ∩ V (�−1(y))
meets D′. This proves the theorem.

5. Experimental Results

We now present the experimental results of a first implementation of our algorithm. We
compared this implementation with our implementation of the algorithms of [4] and [44],
and the implementation of Cylindrical Algebraic Decomposition in QEPCAD [28]. The
algorithm of [4] is based on the computation of the critical points of a distance function
and treats the singular case by the iterated study of the nested singular loci. That of [44]
only treats hypersurfaces, to which case we reduce by performing a sum of squares; then
the critical points of a distance function are computed and singular cases are dealt with
by performing an infinitesimal deformation.

As explained in the Introduction, algorithms computing one point in each connected
component of a real algebraic set are basic tools to decide the emptiness of semi-algebraic
sets. This motivates the fact that we will not only focus on the computation times but also
on the quality of the output, expressed as the sum of the degrees of the zero-dimensional
systems we obtain, and the maximum of these degrees. The polynomial systems used
to perform these experiments come from academic or industrial applications. Most of
them can be found in the FRISCO test-suite, see [12]. For the study of further examples,
refer to [36].

Software. Implementing the algorithm of [4] and ours requires two subroutines. The
first one performs radical and equi-dimensional decomposition by splitting lexicographic
Gröbner bases using the techniques of [2] as described in [48] . The Gröbner bases
computations are done using the software AGb, implemented in C++ by Faugère [18].
The second subroutine takes a Gröbner base generating a zero-dimensional ideal and
computes a Rational Univariate Representation via the algorithm proposed in [42] from
which the isolation of real roots is performed. The software used to perform these
computations is RS [43], which is implemented in C by Rouillier.

The layout of both algorithms is implemented in Maple. For the algorithm proposed
in [4], it manages the computation of the minors of a jacobian matrix characterizing
the critical points of a distance function. For our algorithm, it manages the subresultant
computations required to implement the projection step of the Cylindrical Algebraic
Decomposition algorithm. Maple is linked to AGb and RS via the Gb/Maple interface
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Table 1. Computation times (in seconds).

System n/d/D/δ Distance Projections

Neural 4/1/3/24 8 10
Wang 10/1/9/114 10 17
Buchberger 8/4/3/6 10 6
Butcher 8/3/4/3 9 6
Vermeer 5/1/3/26 3 6
Donati 4/1/31/10 3 3
Euler 10/3/2/2 12 15
DiscPb 4/2/6/4 940 45
Prodecco 4/2/4/2 137 137
Hairer-2 13/2/4/25 ∞ 32
F633 10/2/2/32 ∞ 91
F744 12/1/3/40 ∞ 80
F855 14/1/4/52 ∞ 1020

package provided by Faugère. This implementation of our algorithm, together with
further developments, is available in the RAGLib library [49].

The implementation of Cylindrical Algebraic Decomposition we use is the one pro-
vided in QEPCAD [28] which is implemented in C by Hong and his collaborators. Our
implementation of the algorithm of [44] is based on the Magma Kronecker package by
Lecerf [35] which implements the algorithm of [24]. On this basis, we implemented the
algorithm of [51] to solve polynomial systems with infinitesimal coefficients.

Results. The computations have been performed on a Bi-Pentium III 800 MHz with
1 Go of RAM. In Table 1 we give the computation times of the algorithm proposed
in [4], named Distance in the tables, and our algorithm, named Projections. The
timings are given in seconds, and they include the isolation of the real solutions of the
zero-dimensional systems. We specify the number n of variables, the dimension d of
the variety they define, the maximal degree D of their polynomials and the degree δ
of the generated ideal. The sign ∞ means that no result was obtained after 2 days of
computation.

For these systems, our algorithm solves more problems than the one proposed in [4],
with computation times that are almost always better. Our implementation of the al-
gorithm of [44] failed to give an answer in less than 2 days for all systems except for
the Donati system, which was solved in 8652 seconds; the output consists of 186 so-
lutions. The software QEPCAD only solved the systems Vermeer in 49 seconds, Neural
and Donati in 1 second, for which it respectively returns 65,976, 205 and 10 real alge-
braic points. This shows the relevance of our approach compared with the Cylindrical
Algebraic Decomposition.

Now, we discuss the comparison with the algorithm of [4]. The critical locus of a
regular application is characterized by the vanishing of minors in a jacobian matrix.
For our algorithm, this jacobian matrix is triangular, thus no linear algebra is required
and a factorization of such minors is immediately obtained. For the algorithm proposed
in [4], the jacobian matrix is not triangular. The computation of the required minors is
not a limiting step, but their size does not allow their exploitation in an elimination algo-
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rithm. For example, for the system F744, the minors have about 10,000 monomials and
degree 54.

We next comment on the algorithm of [44] and its behavior. Following [51], its com-
plexity is in LnO(1)M((2D)n)2 operations inQ, where L is the complexity of evaluation
of the input system, n is the number of variables, D is an upper bound on the degrees of
the input polynomials and M is the complexity of univariate polynomial multiplication.
Taking into account the coefficient growth gives a complexity of LhnO(1)M((2D)n)3 bit
operations, where we also denote by M(D) the bit complexity of integer multiplication
in size D, and h is a bound of the bit-size of the coefficients of the input polynomials.
Up to logarithmic factors, we have M(D) ∈ O(D); further, we always have L ∈ d O(n).

Recall that applying the algorithm of [44] requires performing a sum of squares,
and infinitesimal deformation, and computing the critical points of an arbitrary distance
function. We observed that, due to this preparation of the input, solving these systems
often required a time close to the above worst-case estimate. This is the main justification
of the computation times we observed for the algorithm of [44].

On the other hand, on these examples, the runtime of the algorithm is far from show-
ing a doubly exponential behavior; an explanation is that we benefit from and make use
of favorable geometric conditions. For instance, the time necessary to study the com-
plementary of the hypersurfaces defined by the initials of the triangular sets was always
negligible before the rest of the execution time, as they always had a low number of
variables or also low degrees.

Now, we compare the size of the output of the algorithms we consider. In Tables 2
and 3 we give respectively the degrees of the zero-dimensional systems we obtain, and
the number of real solutions.

For both algorithms, the first number given in Table 2 is the sum of the degrees of
the zero-dimensional systems. It is followed by the list of the degrees of these systems
in decreasing order. In this list, a notation such as δn indicates the presence of n systems
of degree δ.

On these examples, our algorithm returns a set of zero-dimensional systems whose
sum of degrees is always less than the one returned by the algorithm proposed in [4].

Table 2. Size of the output.

System Distance Projections

Neural 225 [54, 44, 36, 21, 153, 13, 62] 222 [54, 122, 36, 21, 152, 82, 64, 42, 33]
Wang 168 [48, 24, 128] 144 [322, 82, 416]
Buchberger 53 [12, 10, 62, 5, 42, 2, 14] 13 [26, 1]
Butcher 14 [3, 2, 19] 6 [3, 2, 1]
Vermeer 84 [382, 8] 56 [85, 62, 4]
Donati 175 [175] 119 [41, 20, 105, 8]
Euler 29 [72, 4, 2, 19] 11 [111]
DiscPb 1235 [477, 371, 170, 119, 51, 15, 74, 3, 1] 74 [15, 82, 47, 27, 1]
Prodecco 58 [36, 18, 14] 55 [36, 18, 1]
Hairer-2 44 [144]
F633 220 [63, 49, 32, 275, 110]
F744 216 [24, 16, 126, 92, 420, 32]
F855 298 [24, 16, 127, 92, 6, 436, 32]
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Table 3. Number of real solutions.

System Distance Projections

Neural 59 56
Wang 16 16
Buchberger 21 7
Butcher 12 4
Vermeer 24 20
Donati 8 11
Euler 19 11
DiscPb 54 24
Prodecco 28 25
Hairer-2 44
F633 162
F744 52
F855 192

Moreover, the same remark holds for the maximum degree of the zero-dimensional
systems returned by both algorithms, up to one example. Thus, the output of our algorithm
seems to be more exploitable than that of the algorithm proposed in [4].
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