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Abstract. We give subquadratic bounds on the maximum length of an x-monotone path
in an arrangement of n lines with at most C log log n directions, where C is a suitable
constant. For instance, the maximum length of an x-monotone path in an arrangement of n
lines having at most ten slopes is O(n67/34). In particular, we get tight estimates for the case
of lines having at most five directions, by showing that previous constructions—�(n3/2)

for arrangements with four slopes and �(n5/3) for arrangements with five slopes—due to
Sharir and Matoušek, respectively, are (asymptotically) best possible.

1. Introduction

Consider a set L of n lines in the plane. The lines of L induce a cell complex, A(L),
called the arrangement of L, whose vertices are the intersection points of the lines,
whose edges are the maximal portions of lines containing no vertices and whose two-
dimensional cells are the connected components of R2\⋃�∈L �. It is further assumed
that none of the lines is parallel to the y-axis. Other than that, parallel or concurrent lines
are permitted. One of the properties of a line arrangement with n lines is the maximum
possible length, denoted by λn , of an x-monotone polygonal line (path) composed of
edges of the arrangement. The length is defined as the number of turns of the polygonal
line plus one (i.e., the number of segments of the polygonal path). See [6] for other
properties of line arrangements.

The problem of estimating λn was posed in [4]. An interesting application of this
problem can be found in [11]. Sharir established an �(n3/2) lower bound (see [3] and
[4]), which was later improved to�(n5/3) by Matoušek [5]. Recently Radoičić and Tóth
[9] have raised it to �(n7/4), and very recently, Balogh et al. [1] have brought it up to

�(n2/C
√

log n) for some suitable constant C > 1.
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Clearly the maximum number of vertices in an arrangement of n lines is
(n

2

)
, so

λn ≤
(n

2

)+ 1 = O(n2). A very slight improvement of this bound, which only concerns
the constant factor was mentioned in [9]: λn < 5n2/12. This was later improved by Pór
to λn < 3n2/10 [8].

As a—perhaps intimately—related problem, Matoušek [5] has also considered ar-
rangements of pseudolines, and longest monotone paths in such arrangements.1 For this
case, a lower bound of �(n2/log n) was given (and obviously the O(n2) upper bound
still holds).

Another related problem is the k-level (or its dual, the k-set) problem in the plane. The
k-level of an arrangement of n lines is the closure of the set of points on the lines with
the property that there are exactly k lines below them (k = 0, . . . , n − 1). The k-level
of a line arrangement is also a x-monotone polygonal path, which turns at each vertex
of the arrangement that lies on the path. The k-level problem asks for the maximum
complexity of the k-level in an arrangement of lines. The best upper and lower bounds
are both quite recent [2], [10].

In this note we give subquadratic bounds on the maximum length of x-monotone
paths in arrangements of n lines with at most C log log n directions, where C is a suitable
constant. In particular, we obtain tight estimates for the case of lines having at most five
directions. Theorem 1 below gives a partial answer to the open problem of determining
the maximum length of a monotone path in an n-line arrangement whose lines have at
most k distinct slopes, posed in [1].

Our bounds depend on the well-known Fibonacci numbers, defined by the following
recurrence:

F0 = 1, F1 = 1, Fi = Fi−1 + Fi−2, for i ≥ 2.

Theorem 1. Let Lk(n) be the maximum length of a monotone path in an n-line ar-
rangement whose lines have at most k distinct slopes. Then:

(i) L1(n) = 1.
(ii) L2(n) = n.

(iii) L3(n) = 2n − 3 for n ≥ 4.
(iv) L4(n) = �(n3/2).
(v) L5(n) = �(n5/3).

(vi) L6(n) = O(n9/5).
(vii) L7(n) = O(n15/8).

(viii) For any k ≥ 4, Lk(n) ≤ 25 ·k ·n2−1/Fk−2 , where Fk is the kth Fibonacci number.

Remark. The upper bounds in (iv), (v), (vi), and (vii) are special cases of (viii), as is
also the example mentioned in the abstract. Note that (viii) also yields (ii) and (iii) up to
multiplicative constant factors.

1 A pseudoline is a continuous x-monotone curve, and an arrangement of pseudolines is a finite collection
of such curves, such that any two meet at at most one point where they cross.
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Fig. 1. Arrangement of lines with three slopes which admits a monotone path of length 2n − 3.

2. Proof of the Theorem

The lower bounds in (i) and (ii) are immediate. For (iii), the following construction due
to Pálvölgyi [7] gives an exact bound. If n is even, use a bundle of m horizontal lines, a
bundle of m near vertical parallel lines of positive slope, so that they form a regular grid-
like structure and two (diagonal) lines of slope 1; an example with m = 5 is illustrated
in Fig. 1. If n is odd, add one more horizontal line, see Fig. 1. The path outlined in the
figure has length 2n − 3.

For (iv), we note that the�(n3/2) construction of Sharir mentioned in the Introduction
(see [3] and [4]) uses only four slopes. For illustration, we reproduce it here (Fig. 2). For
(v), we note that the �(n5/3) construction of Matoušek [5] uses only five slopes. Both
constructions can in fact be realized by arrangements of lines in which no two lines are
parallel, but they are most easily described in terms of four or five directions.

Now we show the upper bounds. First we introduce some general notation. Consider
a set L of n lines in the plane, with k distinct slopes s1 < · · · < sk , and write ni

for the number of lines having slope si , i = 1, . . . , k. Denote by A the corresponding
arrangement. For convenience we identify the slopes with their indices. For any subset
of slopes I ⊆ [n], consider the subset of lines LI which consists of all the lines in L
whose slopes are in I . Denote byAI the corresponding arrangement (a sub-arrangement
of A).

Fig. 2. Arrangement of lines with four slopes which admits a monotone path of length �(n3/2). It consists
of: m bundles of m horizontal lines each; m bundles of m lines each at (say) 60◦; m(m − 1) near vertical
parallel lines of positive slope, and m− 1 near vertical parallel lines of negative slope; m = 3 in this example.
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The following argument will be used repeatedly. Consider the arrangement A =
A1,...,k , and fix a monotone path p inA. Shortcut p to get p′ a monotone shortcut path in
A1,k in the following way. Replace the portion of p in the interior of each cell ofA1,k by
one edge (segment, or half-line for unbounded cells), namely, the segment determined
by the endpoints of the portion of p in each cell. Clearly, p′ is also an x-monotone
polygonal path (however, it is not a monotone path in A1,k). Put l(p′) for its length. It
is easy to see that l(p′) = O(n), see Lemma 1 below. A cell ofA1,k is said to be visited
by p if p intersects its interior. Put l(p) for the length of p, and let Q(A1,k, p) be the
set of cells of A1,k which are visited by p and in which p turns. Denote by lc the length
of the portion of p inside a cell c ∈ Q(A1,k). Then

l(p) ≤ l(p′)+
∑

c∈Q(A1,k ,p)

(lc − 1). (1)

A similar inequality holds if one considers instead a monotone shortcut path in A1 (or
Ak). In the former case, denote by Q(A1, p) the set of cells of A1 which are visited by
p and in which p turns. Then

l(p) ≤ l(p′)+
∑

c∈Q(A1,p)

(lc − 1). (2)

Lemma 1. Let p′ and p′′ be shortcut monotone paths in the arrangements A1 and
A1,k , respectively. Put q ′ = |Q(A1, p′)| and q ′′ = |Q(A1,k, p′′)|. Then:

(i) l(p′) ≤ 2n1 + 1 and q ′ ≤ n1 + 1.
(ii) l(p′′) ≤ 2n1 + 2nk + 1 and q ′′ ≤ n1 + nk + 1.

Proof. (i) p′ cannot revisit any of the lines with slope 1, since the slope of each shortcut
edge lies in the open interval (s1,∞). By the slope condition, p′ can have at most two
turns on each of the n1 lines of minimum slope, which implies the bound on l(p′). The
number of cells of A1 is n1 + 1, thus q ′ ≤ n1 + 1.

(ii) p′′ cannot revisit any of the lines with slopes 1 or k, since the slope of each shortcut
edge lies in the open interval (s1, sk). By the slope condition, p′′ can have at most two
turns on each of the n1 + nk lines of minimum and maximum slope, which implies the
bound on l(p′′). The number of cells of A1,k visited by p′′ is at most n1 + nk + 1, since
none of the n1 + nk lines of minimum and maximum slope can be revisited by p′′.

Lemma 2. Consider an arrangement A = A1,...,k of n lines having k distinct slopes
(k ≥ 4), and let p be a monotone path in A. Let c be a convex cell c ∈ Q(A1,k, p), and
let pc be the portion of p which lies in the interior of c. Assume that �i and �j are two
lines of minimum and maximum slope, respectively, which intersect pc. Then �i and �j

intersect in the interior of c.

Proof. Clearly pc is the contiguous portion of a monotone path in A2,...,k−1 which lies
in c. Since pc turns in the interior of c, i �= j , thus 2 ≤ i < j ≤ k − 1. Suppose that the
two lines intersect on the boundary of c or outside c. We have three cases:
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Fig. 3. Proof of Lemma 2. A cell c ∈ Q(A1,...,k , p), and the portion pc of p which lies in the interior of c.

Case 1: �i and �j intersect before entering c—see Fig. 3(a). Assume without loss of
generality (flipping the figure gives the other case) that pc intersects �j at some point
A, before intersecting �i at some point B. Draw a line � parallel to �i passing through
A. Since �i is a line of minimum slope which intersects pc, the portion of pc right of A
must lie on or above � and thus cannot intersect �i inside c, which is a contradiction.

Case 2: �i and �j intersect after leaving c—see Fig. 3(b). Assume without loss of
generality that pc intersects �i at some point A, before intersecting �j at some point B.
Since �i is a line of minimum slope which intersects pc, the portion of pc right of A
must lie on or above �i and thus cannot intersect �j inside c, which is a contradiction.

Case 3: The point of intersection of �i and �j lies on the portion of �i left of its intersection
with c, and on the portion of �j right of its intersection with c. The argument is similar
to that in the previous two cases. (The case when the intersection point lies on the portion
of �i right of its intersection with c, and on the portion of �j left of its intersection with
c is symmetric).

The argument remains the same for unbounded cells. See also Fig. 4 for an illustration
of the case k = 4.

We return to the proof of Theorem 1.
(i) Trivially, since all lines are parallel, each monotone path follows exactly one line

and the number of turns on any such path is 0.
(ii) The bound follows from the next lemma.

Lemma 3. Let m ≥ 1 be the number of vertices in a line arrangementA of n lines hav-
ing two distinct slopes, and let p be a monotone path inA. Then l(p) ≤ min(n, 2

√
m+1).

Furthermore, consider an arrangement of n lines having four distinct slopes, a convex
cell c ∈ Q(A1,4, p), and the portion pc of p which lies in the interior of c. Then
l(pc) ≤ 2

√
mc + 1 ≤ 3

√
mc, where mc is the number of vertices of A2,3 in the interior

of c.
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Fig. 4. A cell c ∈ Q(A1,4, p), and the portion pc of p which lies in the interior of c. All the 3 × 4 = 12
vertices of the arrangement of the lines in L2 ∪ L3 are in the interior of c.

Proof. Write n = n1 + n2, where n1 and n2 are the two slope multiplicities. Assume
that n1 ≤ n2. Then n ≥ 2n1 and m = n1n2 ≥ n2

1. Clearly there are at most two turns
per line, as no line can be revisited by the path once the path has left that line. Since
each turn must involve one of the n1 lines, the number of turns is at most 2n1. This gives
l(p) ≤ 2n1 + 1 ≤ n + 1. In fact, by charging each turn of the path to the line on which
the path goes before the turn, we get that the number of turns is at most n − 1 (no turn
is charged to the line containing the last edge on the path), thus l(p) ≤ n. We also have
n1 ≤

√
m, which implies l(p) ≤ 2n1 + 1 ≤ 2

√
m + 1.

For the second part, let L2 (resp. L3) be the set lines of slope 2 (resp. slope 3)
which intersect pc. Note that pc is the contiguous portion of a monotone path in A2,3

which lies in c. Since c ∈ Q(A1,4, p), |L2|, |L3| ≥ 1. By Lemma 2 for k = 4, all the
|L2| · |L3| vertices of the arrangement of the lines in L2 ∪ L3 are in the interior of c.
See Fig. 4. Hence mc ≥ |L2| · |L3|. Assuming |L2| ≤ |L3|, we have mc ≥ |L2|2. Thus
l(pc) ≤ 2|L2| + 1 ≤ 2

√
mc + 1 ≤ 3

√
mc.

(iii) The bound follows from the next lemma.

Lemma 4. Let m ≥ 1 be the number of vertices in a line arrangement A of n lines
having three distinct slopes, and let p be a monotone path inA. Then l(p) ≤ min(2n1+
2n3 + 1, 6m2/3). Furthermore, consider an arrangement of n lines having five distinct
slopes, a convex cell c ∈ Q(A1,5, p), and the portion pc of p which lies in the interior of
c. Then l(pc) ≤ 6m2/3

c , where mc is the number of vertices of A2,3,4 in the interior of c.

Proof. Let A = A1,2,3. The lines with minimum and maximum slope (1 and 3) can
contribute at most one edge to the path, and thus can contribute at most two turns. On
the other hand, each turn on the path must involve either a line of slope 1 or one of slope
3. Consequently,

l(p) ≤ 2n1 + 2n3 + 1 ≤ 2n + 1. (3)

A more careful calculation gives l(p) ≤ 2n−3, for n ≥ 4 (i.e., the bound in Theorem 1):
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If n2 = 0, l(p) ≤ n ≤ 2n − 3, for n ≥ 4. If n2 = 1, when the path returns to the
diagonal line, it has to go from a “vertical” line to a horizontal line (or the other away
around), so instead of l(p) ≤ 2n1+2n3+1, we get l(p) ≤ 3(n1+n3)/2+1 = (3n−1)/2.
It follows that l(p) ≤ 2n − 3, for n ≥ 4. Finally, if n2 ≥ 2, l(p) ≤ 2n1 + 2n3 + 1 ≤
2(n − 2)+ 1 = 2n − 3.

Continuing with the proof of the lemma, observe that (3) is a special case of (1).
Without loss of generality, we can assume that n1 ≤ n3. Consider the arrangement A1

and use (2) and the bound in Lemma 3. By Lemma 1(i), l(p′) ≤ 2n1 + 1 ≤ 2n + 1, and
q = |Q(A1, p)| ≤ n1 + 1 ≤ n + 1. We have

l(p) ≤ 2n1 + 1+
∑

c∈Q(A1,p)

(lc − 1) ≤ 2n1 + 1+ 2
∑

c∈Q(A1,p)

√
mc.

Consequently, by Jensen’s inequality,

l(p) ≤ 2n1 + 1+ 2q

√
m

q
≤ 2n1 + 1+ 2

√
n1 + 1

√
m. (4)

We distinguish two cases.

Case 1: n1 ≤ m1/3. Inequality (4) implies that

l(p) ≤ 2m1/3 + 1+ 2(m1/3 + 1)1/2m1/2 ≤ 6m2/3.

Case 2: n1 ≥ m1/3. Clearly m ≥ n1n3. This implies n3 ≤ m/m1/3 = m2/3. Now (3)
gives

l(p) ≤ 4m2/3 + 1 ≤ 6m2/3.

This proves the first inequality.
The second part follows from a similar argument to that in the proof of Lemma 3.

Let A = A1,2,3,4,5. Note that pc is the contiguous portion of a monotone path in A2,3,4

which lies in c. Assume that Li and L j are the set of lines of minimum and maximum
slope, respectively, which intersect pc. Since pc turns in the interior of c, i �= j and
|Li |, |L j | ≥ 1. By Lemma 2 for k = 5, all the vertices of the arrangement of the lines
in Li ∪ L j are in the interior of c. Thus mc ≥ |Li | · |L j |, and assume without loss of
generality that |Li | ≤ |L j |. Two inequalities, similar to (3) and (4) bound the length
of pc:

l(pc) ≤ 2|Li | + 1+ 2
√
|Li | + 1

√
mc,

l(pc) ≤ 2|Li | + 2|L j | + 1.

Since mc ≥ |Li | · |L j |, a two-case analysis as in the first part of the proof (|Li | ≤ m1/3
c ,

and |Li | ≥ m1/3
c ) yields the claimed bound.
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(viii)

Lemma 5. Let k ≥ 2. Let m ≥ 1 be the number of vertices in a line arrangementA of
n lines having k distinct slopes, and let p be a monotone path in A. Then

l(p) ≤ ck · m1−1/Fk ,

where

ck = 5 · k · 3
∑k−1

i=2 (1/Fi ),

and Fk is the kth Fibonacci number. Furthermore, consider an arrangement of n lines
having k + 2 distinct slopes, a convex cell c ∈ Q(A1,k+2, p), and the portion pc of p
which lies in the interior of c. Then

l(pc) ≤ ck · m1−1/Fk
c ,

where mc is the number of vertices of A2,...,k+1 in the interior of c.

Proof. The argument is similar to the one used in proving Lemmas 3 and 4. We proceed
by induction on k. For k = 2 and k = 3, the statements follow from Lemmas 3 and 4:
c2 = 5 · 2 = 10 ≥ 3 and c3 = 5 · 2 · 31/2 ≥ 6. Assume now that k ≥ 4, and the lemma
holds for all smaller values of k ′, k ′ = 2, . . . , k − 1. Let A = A1,...,k . Without loss of
generality, n1 ≤ nk .

Consider the arrangement A1 and use (2). By Lemma 1(i), l(p′) ≤ 2n1 + 1, and
|Q(A1, p)| ≤ n1 + 1. The induction hypothesis for k ′ = k − 1 implies that

l(p) ≤ 2n1 + 1+
∑

c∈Q(A1,p)

(lc − 1) ≤ 2n1 + 1+ ck−1

∑
c∈Q(A1,p)

m1−1/Fk−1
c .

By Jensen’s inequality,

l(p) ≤ (2n1 + 1)+ ck−1 · (n1 + 1)1/Fk−1 · m1−1/Fk−1 . (5)

Consider also the arrangement A1,k and use (1). By Lemma 1(ii), l(p′′) ≤ 2n1 +
2nk + 1, and |Q(A1,k, p)| ≤ n1 + nk + 1. The induction hypothesis for k ′ = k − 2
implies that

l(p) ≤ (2n1 + 2nk + 1)+ ck−2

∑
c∈Q(A1,k ,p)

m1−1/Fk−2
c .

By Jensen’s inequality,

l(p) ≤ (2n1 + 2nk + 1)+ ck−2 · (n1 + nk + 1)1/Fk−2 · m1−1/Fk−2 . (6)

We distinguish two cases:

Case 1: n1 ≤ m Fk−2/Fk . This implies using (5) that

l(p) ≤ (2m Fk−2/Fk + 1)+ ck−1 · (m Fk−2/Fk + 1)1/Fk−1 · m1−1/Fk−1 . (7)
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Note that

(m Fk−2/Fk + 1)1/Fk−1 ≤ 31/Fk−1 · m Fk−2/(Fk ·Fk−1), (8)

since (8) is equivalent to

m Fk−2/Fk + 1 ≤ 3 · m Fk−2/Fk , (9)

which is clearly satisfied. So (7) implies that

l(p) ≤ (2m Fk−2/Fk + 1)+ ck−1 · 31/Fk−1 · m Fk−2/(Fk ·Fk−1) · m1−1/Fk−1

≤ 3 · m Fk−2/Fk + 5 · (k − 1) · 3
∑k−2

i=2 (1/Fi ) · 31/Fk−1 · m1/Fk−1−1/Fk · m1−1/Fk−1

= 3 · m Fk−2/Fk + 5 · (k − 1) · 3
∑k−1

i=2 (1/Fi ) · m1−1/Fk

≤ 5 · k · 3
∑k−1

i=2 (1/Fi ) · m1−1/Fk

= ck · m1−1/Fk .

Case 2: n1 ≥ m Fk−2/Fk . Clearly m ≥ n1nk . This implies nk ≤ m/m Fk−2/Fk = m Fk−1/Fk .
Using (6) we have

l(p) ≤ (4m Fk−1/Fk + 1)+ ck−2 · (2m Fk−1/Fk + 1)1/Fk−2 · m1−1/Fk−2 . (10)

Note that

(2m Fk−1/Fk + 1)1/Fk−2 ≤ 31/Fk−2 · m Fk−1/(Fk ·Fk−2), (11)

since (11) is equivalent to

2m Fk−1/Fk + 1 ≤ 3 · m Fk−1/Fk , (12)

which clearly holds. So (10) implies that

l(p) ≤ (4m Fk−1/Fk + 1)+ ck−2 · 31/Fk−2 · m Fk−1/(Fk ·Fk−2) · m1−1/Fk−2

≤ 5 · m Fk−1/Fk + 5 · (k − 2) · 3
∑k−3

i=2 (1/Fi ) · 31/Fk−2 · m1/Fk−2−1/Fk · m1−1/Fk−2

= 5 · m Fk−1/Fk + 5 · (k − 2) · 3
∑k−2

i=2 (1/Fi ) · m1−1/Fk .

Since for k ≥ 4, Fk−1 ≤ Fk − 1, we have

l(p) ≤ (5+ 5(k − 2)) · 3
∑k−2

i=2 (1/Fi ) · m1−1/Fk

≤ 5 · (k − 1) · 3
∑k−1

i=2 (1/Fi ) · m1−1/Fk

≤ 5 · k · 3
∑k−1

i=2 (1/Fi ) · m1−1/Fk

= ck · m1−1/Fk .

This proves the first inequality.
The second part follows from an argument similar to that in the proof of Lemma 3.

LetA = A1,...,k+2. Note that pc is the contiguous portion of a monotone path inA2,...,k+1

which lies in c. Assume that Li and L j are the set lines of minimum and maximum
slope, respectively, which intersect pc. Since pc turns in the interior of c, i �= j (so
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2 ≤ i < j ≤ k+ 1) and |Li |, |L j | ≥ 1. By Lemma 2, all the vertices of the arrangement
of the lines in Li ∪ L j are in the interior of c. Thus mc ≥ |Li | · |L j |. Assuming without
loss of generality that |Li | ≤ |L j |, one can write two inequalities similar to (5) and (6),
since by definition, none of the lines in Li or L j can be revisited by pc:

l(pc) ≤ (2|Li | + 1)+ ck−1 · (|Li | + 1)1/Fk−1 · m1−1/Fk−1
c , (13)

l(pc) ≤ (2|Li | + 2|L j | + 1)+ ck−2 · (|Li | + |L j | + 1)1/Fk−2 · m1−1/Fk−2
c . (14)

Since mc ≥ |Li |·|L j |, a two-case analysis as above (|Li | ≤ m Fk−2/Fk
c , and |Li | ≥ m Fk−2/Fk

c )
yields the claimed bound.

Corollary 1. For any k ≥ 4, Lk(n) ≤ 25 · k · n2−1/Fk−2 , where Fk is the kth Fibonacci
number.

Proof. Let m ≤ (n
2

)
be the number of vertices of the arrangement A, and let p be a

monotone path in A. By (6),

l(p) ≤ (2n + 1)+ 5 · 3
∑∞

i=2(1/Fi ) · (k − 2) · (n + 1)1/Fk−2 ·
(

n2

2

)1−1/Fk−2

. (15)

Using well-known bounds on the Fibonacci numbers (or by induction), we have

Fk ≥
(

3

2

)k

for k ≥ 5.

Thus

∞∑
i=2

1

Fi
≤ 1

2
+ 1

3
+ 1

5
+
(

2

3

)5

·
∞∑

i=0

(
2

3

)i

≤ 1.43.

Plugging this bound into (15) yields (using the inequality Fk−2 ≥ 2, for k ≥ 4)

l(p) ≤ 3n + 25 · (k − 2) · 21/Fk−2

21−1/Fk−2
· n1/Fk−2 · n2−2/Fk−2 ≤ 25 · k · n2−1/Fk−2 .

Corollary 2. There exists an absolute constant C > 0, so that if k ≤ C log log n, then
Lk(n) = o(n2).

Proof. From well-known bounds on the Fibonacci numbers (or by induction), we
have

Fk ≤
(

5

3

)k

for k ≥ 1,

and the corollary follows.
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3. Concluding Remarks

Possibly, the factor k in Theorem 1(viii) could be removed by a more careful calculation.
However, this would not extend the range of k—in terms of n—for which Corollary 2
gives a subquadratic bound.

Most likely, the Fibonacci numbers present in the exponents of our bounds have
little to do with the right order of magnitude of Lk(n) for small values of k, and their
presence is probably only an artifact of our proofs. For example, one can check that the
�(n7/4) construction of Radoičić and Tóth can be realized using only six slopes—thus
L6(n) = �(n7/4)—while our upper bound is O(n9/5). This is a possible start point if
one wants to establish better bounds for small values of k. Similarly, for fixed k, the
recent construction due to Balogh et al. gives Lk(n) = �(n2−2/k).

Of course, the most interesting question is to give a subquadratic upper bound for an
arbitrary number of directions (as is generally believed to hold). Which of the ideas from
our note (if any) may be useful for this purpose, remains to be seen.
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