Betti Numbers of Semialgebraic Sets Defined by Quantifier-Free Formulae*

Andrei Gabrielov ${ }^{1}$ and Nicolai Vorobjov ${ }^{2}$
${ }^{1}$ Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
agabriel@math.purdue.edu
${ }^{2}$ Department of Computer Science, University of Bath, Bath BA2 7AY, England
nnv@cs.bath.ac.uk

Abstract

Let X be a semialgebraic set in \mathbb{R}^{n} defined by a Boolean combination of atomic formulae of the kind $h * 0$ where $* \in\{>, \geq,=\}, \operatorname{deg}(h)<d$, and the number of distinct polynomials h is k. We prove that the sum of Betti numbers of X is less than $O\left(k^{2} d\right)^{n}$.

Let an algebraic set $X \subset \mathbb{R}^{n}$ be defined by polynomial equations of degrees less than d. The well-known results of Oleinik, Petrovskii [8], [9], Milnor [6], and Thom [12] provide the upper bound

$$
\mathrm{b}(X) \leq d(2 d-1)^{n-1}
$$

for the sum of Betti numbers $\mathrm{b}(X)$ of X (with respect to the singular homology). In a more general case of a set X defined by a system of k non-strict polynomial inequalities of degrees less than d, the sum of Betti numbers does not exceed $O(k d)^{n}$.

These results were later extended and refined. Basu [1] proved that if a semialgebraic set X is basic (i.e., X is defined by a system of equations and strict inequalities), or is defined by a Boolean combination (with no negations) of only non-strict or of only strict inequalities, then

$$
\mathrm{b}(X) \leq O(k d)^{n}
$$

[^0]where k is the number of distinct polynomials in the defining formula (this is a relaxed form of Basu's bound, for a more precise description see [1], [2].) Papers [7] and [13] imply that if X is compact and is defined by an arbitrary Boolean combination of equations or inequalities, then
$$
\mathrm{b}(X) \leq O(k d)^{2 n}
$$

The purpose of this note is to prove a bound for an arbitrary semialgebraic set defined by an arbitrary Boolean formula. More precisely, let X be a semialgebraic set in \mathbb{R}^{n} defined by a Boolean combination of atomic formulae of the kind $h * 0$ where $* \in\{>$, $\geq,=\}, \operatorname{deg}(h)<d$, and the number of distinct polynomials h is k.

Theorem 1. The sum of Betti numbers of X is less than $O\left(k^{2} d\right)^{n}$.

We deduce Theorem 1 from the following result.

Proposition 2 [1]. Let the Boolean combination which defines X contain only nonstrict inequalities and no negations. Then the sum of Betti numbers of X is less than $O(k d)^{n}$.

Since sums of Betti numbers of sets X and $X \cap\left\{x_{1}^{2}+\cdots+x_{n}^{2}<\Omega\right\}$ coincide for a large enough $\Omega \in \mathbb{R}$ (see Lemma 1 of [1]), we assume in what follows that X is bounded.

Definition 3. For a given finite set $\left\{h_{1}, \ldots, h_{k}\right\}$ of polynomials h_{i} define its $\left(h_{1}, \ldots\right.$, h_{k})-cell (or just cell) as a semialgebraic set in \mathbb{R}^{n} of the kind

$$
\begin{equation*}
\left\{h_{i_{1}}=\cdots=h_{i_{k_{1}}}=0, h_{i_{k_{1}+1}}>0, \ldots, h_{i_{k_{2}}}>0, h_{i_{k_{2}+1}}<0, \ldots, h_{i_{k}}<0\right\} \tag{1}
\end{equation*}
$$

where $i_{1}, \ldots, i_{k_{1}}, \ldots, i_{k_{2}}, \ldots, i_{k}$ is a permutation of $1, \ldots, k$.

Obviously, for a given set of polynomials any two distinct cells are disjoint. According to [4] and [5], the number of all non-empty $\left(h_{1}, \ldots, h_{k}\right)$-cells is at most $(k d)^{O(n)}$, but $\underset{\sim}{\mathrm{x}} \mathrm{e}$ do not need this bound in what follows. Observe that both X and the complement $\widetilde{X}=\mathbb{R}^{n} \backslash X$ are disjoint unions of some non-empty $\left(h_{1}, \ldots, h_{k}\right)$-cells.

Example 4. Let $X:=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2} y^{2}>0 \vee x^{2}+y^{2}=0\right\}$, i.e., X is the plane \mathbb{R}^{2} minus the union of the coordinate axes plus the origin. There are nine $\left(x^{2} y^{2}, x^{2}+y^{2}\right)$-cells among which exactly three,

$$
\left\{x^{2} y^{2}=x^{2}+y^{2}=0\right\},\left\{x^{2} y^{2}>0, x^{2}+y^{2}>0\right\}, \text { and }\left\{x^{2} y^{2}=0, x^{2}+y^{2}>0\right\}
$$

are non-empty. The union of the first two of these cells is X.
Introduce the following partial order on the set of all cells. Let $\Gamma \prec \Gamma^{\prime}$ iff the cell Γ^{\prime} is obtained from the cell Γ by replacing at least one of the equalities $h_{j}=0$ in Γ by either $h_{j}>0$ or $h_{j}<0$. Thus the minimal cell with respect to \prec is $\Gamma_{\min }:=\left\{h_{1}=\cdots=h_{k}=\right.$ $0\}$. Clearly, the cells having the same number p of equations are not pairwise comparable
with respect to \prec, we say that these cells are on the level $k-p+1$. In particular, $\Gamma_{\text {min }}$ is the only cell on level 1.

Let

$$
1 \gg \varepsilon_{1} \gg \delta_{1} \gg \varepsilon_{2} \gg \delta_{2} \gg \cdots \gg \varepsilon_{k} \gg \delta_{k}>0
$$

where \gg stands for "sufficiently greater than". The set X_{1} is the result of the following inductive construction.

Let $\Sigma_{\ell, 1}, \ldots, \Sigma_{\ell, t_{\ell}}$ be all cells on the level ℓ which lie in X. Let $\Delta_{\ell, 1}, \ldots, \Delta_{\ell, r_{\ell}}$ be all cells on the level ℓ which have the empty intersection with X. For any cell

$$
\Sigma_{\ell, j}:=\left\{h_{i_{1}}=\cdots=h_{i_{k-\ell+1}}=0, h_{i_{k-\ell+2}}>0, \ldots, h_{i_{k_{1}}}>0, h_{i_{k_{1}+1}}<0, \ldots, h_{i_{k}}<0\right\}
$$

on the level $\ell \leq k$ introduce the set

$$
\begin{aligned}
\widehat{\Sigma}_{\ell, j}:= & \left\{h_{i_{1}}^{2} \leq \varepsilon_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2} \leq \varepsilon_{\ell}\right. \\
& \left.h_{i_{k-\ell+2}} \geq 0, \ldots, h_{i_{k_{1}}} \geq 0, h_{i_{k_{1}+1}} \leq 0, \ldots, h_{i_{k}} \leq 0\right\}
\end{aligned}
$$

Additionally, for any cell

$$
\Sigma_{k+1, j}:=\left\{h_{i_{1}}>0, \ldots, h_{i_{k_{1}}}>0, h_{i_{k_{1}+1}}<0, \ldots, h_{i_{k}}<0\right\}
$$

on the level $k+1$ let

$$
\widehat{\Sigma}_{k+1, j}:=\left\{h_{i_{1}} \geq 0, \ldots, h_{i_{k_{1}}} \geq 0, h_{i_{k_{1}+1}} \leq 0, \ldots, h_{i_{k}} \leq 0\right\}
$$

For any cell
$\Delta_{\ell, j}:=\left\{h_{i_{1}}=\cdots=h_{i_{k-\ell+1}}=0, h_{i_{k-\ell+2}}>0, \ldots, h_{i_{k_{1}}}>0, h_{i_{k_{1}+1}}<0, \ldots, h_{i_{k}}<0\right\}$
on the level $\ell \leq k$ introduce the set

$$
\begin{aligned}
\widehat{\Delta}_{\ell, j}:=\{ & h_{i_{1}}^{2}<\delta_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2}<\delta_{\ell}, \\
& \left.h_{i_{k-\ell+2}}>0, \ldots, h_{i_{k_{1}}}>0, h_{i_{k_{1}+1}}<0, \ldots, h_{i_{k}}<0\right\} .
\end{aligned}
$$

Let

$$
X_{k+1}:=X \cup \bigcup_{j} \widehat{\Sigma}_{k+1, j}
$$

Assume that $X_{\ell+1}$ is constructed. Let

$$
X_{\ell}:=\left(X_{\ell+1} \backslash \bigcup_{j} \widehat{\Delta}_{\ell, j}\right) \cup \bigcup_{j} \widehat{\Sigma}_{\ell, j}
$$

On the last step of the induction we obtain set X_{1}.
Example 4 (continued). In Example 4 we have

$$
\Gamma_{\min }=\Sigma_{1,1}=\Sigma_{1, t_{1}}=\left\{x^{2} y^{2}=x^{2}+y^{2}=0\right\}
$$

Choose the following sub-indices for the non-empty cells:

$$
\begin{aligned}
\Delta_{2,1} & :=\left\{x^{2} y^{2}=0, x^{2}+y^{2}>0\right\}, \\
\Sigma_{3,1} & :=\left\{x^{2} y^{2}>0, x^{2}+y^{2}>0\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \widehat{\Sigma}_{1,1}=\left\{\left(x^{2} y^{2}\right)^{2} \leq \varepsilon_{1},\left(x^{2}+y^{2}\right)^{2} \leq \varepsilon_{1}\right\} \\
& \widehat{\Delta}_{2,1}=\left\{\left(x^{2} y^{2}\right)^{2}<\delta_{2}, x^{2}+y^{2}>0\right\} \\
& \widehat{\Sigma}_{3,1}=\left\{x^{2} y^{2} \geq 0, x^{2}+y^{2} \geq 0\right\}
\end{aligned}
$$

The inductive construction proceeds as follows. Since $\Sigma_{3,1}$ is the only non-empty cell on level 3, we get $X_{3}=X \cup \widehat{\Sigma}_{3,1}=X$. Next, since $\Delta_{2,1}$ is the only non-empty cell on level 2, we get $X_{2}=X_{3} \backslash \widehat{\Delta}_{2,1}$ (i.e., X_{2} is \mathbb{R}^{2} minus an open δ_{2}-neighbourhood of the union of the coordinate axes). Finally, $X_{1}=X_{2} \cup \widehat{\Sigma}_{1,1}$, or, in terms of polynomial inequalities,

$$
\begin{equation*}
X_{1}=\left(X \backslash\left\{\left(x^{2} y^{2}\right)^{2}<\delta_{2}, x^{2}+y^{2}>0\right\}\right) \cup\left\{\left(x^{2} y^{2}\right)^{2} \leq \varepsilon_{1},\left(x^{2}+y^{2}\right)^{2} \leq \varepsilon_{1}\right\} \tag{2}
\end{equation*}
$$

Thus, X_{1} is the plane \mathbb{R}^{2} minus an open neighbourhood of the union of the coordinate axes plus a larger closed neighbourhood of the origin. Obviously, X_{1} can be defined by a Boolean formula without negations, involving the same polynomials as in (2), and having only non-strict inequalities. It is easy to see that X and X_{1} are homotopy equivalent.

Returning to the general case, one can prove that X and X_{1} are weakly homotopy equivalent. For our purposes the following weaker statement will be sufficient.

Lemma 5. The sum of Betti numbers of X coincides with the sum of Betti numbers of X_{1}.

Proof. For every $m, 1 \leq m \leq k+1$, define a set Y^{m} using the inductive procedure similar to the one used for defining X_{1}. The difference is that the base step of the induction starts at some level m rather than specifically at the level $k+1$. More precisely, let $Y^{k+1}:=X_{1}$. For any $m \leq k$, let

$$
Z_{m}^{m, 1}:=X \backslash \bigcup_{j} \widehat{\Delta}_{m, j} \quad \text { and } \quad Z_{m}^{m, 2}:=Z_{m}^{m, 1} \cup \bigcup_{j} \widehat{\Sigma}_{m, j}
$$

This concludes the base of the induction.
On the induction step, suppose that $Z_{\ell+1}^{m, s}$ is defined, where $m-1 \geq \ell \geq 1, s=1,2$. Define

$$
Z_{\ell}^{m, s}:=\left(Z_{\ell+1}^{m, s} \backslash \bigcup_{j} \widehat{\Delta}_{\ell, j}\right) \cup \bigcup_{j} \widehat{\Sigma}_{\ell, j}
$$

Let $Y^{m}:=Z_{1}^{m, 2}$.
For every $m, 1 \leq m \leq k+1$, define the set $Y^{\prime m}$ by the procedure similar to the definition of Y^{m}, replacing in each $\widehat{\Sigma}_{\ell, j}$ the inequalities $h_{i_{1}}^{2} \leq \varepsilon_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2} \leq \varepsilon_{\ell}$ by $h_{i_{1}}^{2}<\varepsilon_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2}<\varepsilon_{\ell}$, respectively, and in each $\widehat{\Delta}_{\ell, j}$ the inequalities $h_{i_{1}}^{2}<$
$\delta_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2}<\delta_{\ell}$ by $h_{i_{1}}^{2} \leq \delta_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2} \leq \delta_{\ell}$, respectively. Denote the results of the replacements by $\widehat{\Sigma}_{\ell, j}^{\prime}$ and $\widehat{\Delta}_{\ell, j}^{\prime}$, respectively.

We show by induction on m that $\mathrm{b}\left(Y^{m}\right)=\mathrm{b}\left(Y^{\prime m}\right)$ and that $\mathrm{b}(X)=\mathrm{b}\left(Y^{m}\right)=\mathrm{b}\left(Y^{\prime m}\right)$. It will follow, in particular, that the sum of Betti numbers of X does not exceed the sum of Betti numbers of $X_{1}=Y^{k+1}$.

For the base case of $m=1$, let first $\Gamma_{\min } \neq \emptyset$ and $\Gamma_{\min } \cap X=\emptyset$ (i.e., $\Gamma_{\min }=\Delta_{1,1}=$ $\Delta_{1, r_{1}}$), then

$$
Y^{1}=X \backslash \widehat{\Delta}_{1,1}=X \backslash\left\{h_{1}^{2}<\delta_{1}, \ldots, h_{k}^{2}<\delta_{1}\right\}
$$

Introduce the following directed system of sets. First replace δ_{1} in the definition of Y^{1} by a parameter and then consider the family of sets as the parameter tends to 0 . Denote this directed system by $\left\{Y^{1}\right\}_{\delta_{1} \rightarrow 0}$. Observe that $\left\{Y^{1}\right\}_{\delta_{1} \rightarrow 0}$ is a fundamental covering of X. Indeed, since any point $x \in X$ does not belong to the closed set $\left\{h_{1}=\cdots=h_{k}=\right.$ $0\}$, there is a neighbourhood U of x in Y^{1} for all small enough δ_{1}, which is also a neighbourhood of x in X, such that $U \cap\left\{h_{1}=\cdots=h_{k}=0\right\}=\emptyset$. Thus, if for a subset $A \subset X$ the intersection $A \cap Y^{1}$ is open in Y^{1} for any small enough δ_{1}, then A is open in X. Therefore (see Section 1.2.4.7 of [10]), X is a direct limit of $\left\{Y^{1}\right\}_{\delta_{1} \rightarrow 0}$. It follows (see Theorem 4.1.7 on p. 162 of [11]) that $H_{*}(X)$ is the direct limit of $\left\{H_{*}\left(Y^{1}\right)\right\}_{\delta_{1} \rightarrow 0}$. On the other hand, by Hardt's triviality theorem [3, p. 62, Theorem 5.22] for a small enough positive δ_{1} all Y^{1} are pairwise homeomorphic. Thus, for a small enough δ_{1} we have $\mathrm{b}(X) \leq \mathrm{b}\left(Y^{1}\right)$. Moreover, we have $H_{*}(X) \simeq H_{*}\left(Y^{1}\right)$ and therefore $\mathrm{b}(X)=\mathrm{b}\left(Y^{1}\right)$. Indeed, due again to Hardt's triviality theorem, for all small enough positive values of δ_{1} the inclusion maps in the filtration of spaces Y^{1} are homotopic to homeomorphisms and therefore induce isomorphisms in the corresponding direct system of groups $H_{*}\left(Y^{1}\right)$. It follows that the direct limit of groups $\left\{H_{*}\left(Y^{1}\right)\right\}_{\delta_{1} \rightarrow 0}$ is isomorphic to any of these groups for a fixed small enough positive δ_{1}.

Observe that a similar argument is applicable to $Y^{\prime 1}=X \backslash\left\{h_{1}^{2} \leq \delta_{1}, \ldots, h_{k}^{2} \leq \delta_{1}\right\}$, therefore $H_{*}(X) \simeq H_{*}\left(Y^{\prime 1}\right)$.

Suppose now that $\Gamma_{\min } \neq \emptyset$ and $\Gamma_{\min } \subset X$ (i.e., $\Gamma_{\min }=\Sigma_{1,1}=\Sigma_{1, t_{1}}$). Then $\Gamma_{\min } \cap \widetilde{X}=\emptyset$, where \widetilde{X} is the complement of X. Replacing in the above proof the set X by \widetilde{X}, and δ_{1} by ε_{1}, we get $H_{*}(\widetilde{X}) \simeq H_{*}\left(\widetilde{Y^{\prime 1}}\right)$. Since X is bounded, by Alexander's duality, $\mathrm{b}(\widetilde{X})=\mathrm{b}(X)+1$ and $\mathrm{b}\left(\widetilde{Y^{\prime 1}}\right)=\mathrm{b}\left(Y^{\prime 1}\right)+1$, hence $\mathrm{b}(X)=\mathrm{b}\left(Y^{\prime 1}\right)$.

Similar argument shows that $\mathrm{b}(X)=\mathrm{b}\left(Y^{1}\right)$.
The case when $\Gamma_{\min }=\emptyset$ is trivial. This concludes the base induction step.
Assume that $\mathrm{b}(X)=\mathrm{b}\left(Y^{m}\right)=\mathrm{b}\left(Y^{\prime m}\right)$. First let $\bigcup_{j} \Delta_{m+1, j} \neq \emptyset$, then the family of sets $\left\{Z_{1}^{\prime m+1,1}\right\}_{\delta_{m+1} \rightarrow 0}$ is a fundamental covering of $Y^{\prime m}$. Indeed, by the definition we have

$$
Z_{m+1}^{m+1,1}=X \backslash \bigcup_{j} \widehat{\Delta}_{m+1, j}^{\prime}
$$

Take any point $x \in Z_{1}^{\prime m+1,1}$. Then x belongs either to

$$
\bigcap_{j}\left(\left\{h_{i_{1}}^{2}>\delta_{m+1}\right\} \cup \cdots \cup\left\{h_{i_{k-m}}^{2}>\delta_{m+1}\right\}\right)
$$

for all non-empty cells

$$
\Delta_{m+1, j}=\left\{h_{i_{1}}=\cdots=h_{i_{k-m}}=0, h_{i_{k-m+1}}>0, \ldots, h_{i_{k}}<0\right\}
$$

and all sufficiently small δ_{m+1}, or to a set of the kind

$$
\begin{gathered}
\left\{h_{i_{1}}=\cdots=h_{i_{k-m}}=0, h_{i_{k-m+1}}^{2}<\varepsilon_{t}, \ldots, h_{i_{k-t+1}}^{2}<\varepsilon_{t}\right. \\
\left.h_{i_{k-t+2}}>0, \ldots, h_{i_{k_{1}}}>0, h_{i_{k_{1}+1}}<0, \ldots, h_{i_{k}}<0\right\}
\end{gathered}
$$

for some $t \leq m$ and a non-empty cell

$$
\Sigma_{t, j}=\left\{h_{i_{1}}=\cdots=h_{i_{k-t+1}}=0, h_{i_{k-t+2}}>0, \ldots, h_{i_{k}}<0\right\} \subset X
$$

In both cases there is a set U which is a neighbourhood of x in $Z_{1}^{m+1,1}$ for all sufficiently small δ_{m+1}, and also a neighbourhood of x in $Y^{\prime m}$.

Thus, for a small enough δ_{m+1} we have $H_{*}\left(Y^{\prime m}\right) \simeq H_{*}\left(Z_{1}^{\prime m+1,1}\right)$. Introduce a set $Z_{1}^{\prime m+1,1}(\gamma)$, where $0<\gamma \ll \delta_{m+1}$, defined by a formula $\varphi(\gamma)$ which is constructed as follows. In the formula φ defining $Z_{1}^{\prime m+1,1}$ replace all occurrences of the systems of inequalities of the kind $h_{i_{1}}^{2}<\varepsilon_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2}<\varepsilon_{\ell}$ by $h_{i_{1}}^{2} \leq \varepsilon_{\ell}-\gamma, \ldots, h_{i_{k-\ell+1}}^{2} \leq \varepsilon_{\ell}-\gamma$ and all occurrences of the systems inequalities of the kind $h_{i_{1}}^{2} \leq \delta_{\ell}, \ldots, h_{i_{k-\ell+1}}^{2} \leq \delta_{\ell}$ by $h_{i_{1}}^{2}<\delta_{\ell}+\gamma, \ldots, h_{i_{k-\ell+1}}^{2}<\delta_{\ell}+\gamma$. The family of sets $\left\{Z_{1}^{\prime m+1,1}(\gamma)\right\}_{\gamma \rightarrow 0}$ is a fundamental covering of $Z_{1}^{\prime m+1,1}$, thus for a small enough γ we have

$$
H_{*}\left(Z_{1}^{\prime m+1,1}\right) \simeq H_{*}\left(Z_{1}^{\prime m+1,1}(\gamma)\right)
$$

However, the sets $Z_{1}^{\prime m+1,1}(\gamma)$ and $Z_{1}^{m+1,1}$ are homeomorphic due to Hardt's triviality theorem, therefore $H_{*}\left(Z_{1}^{\prime m+1,1}\right) \simeq H_{*}\left(Z_{1}^{m+1,1}\right)$. It follows that

$$
\mathrm{b}(X)=\mathrm{b}\left(Y^{\prime m}\right)=\mathrm{b}\left(Z_{1}^{m+1,1}\right)=\mathrm{b}\left(Z_{1}^{m+1,1}\right)
$$

Now let $\bigcup_{j} \Sigma_{m+1, j} \neq \emptyset$. Note that $\tilde{X} \cap \bigcup_{j} \Sigma_{m+1, j}=\emptyset$. As above (but using ε_{m+1} in place of δ_{m+1}), we get

$$
\mathrm{b}(\tilde{X})=\mathrm{b}\left(\widetilde{Z}_{1}^{m+1,2}\right)=\mathrm{b}\left(\widetilde{Z}_{1}^{m+1,2}\right)
$$

By Alexander's duality we have $\mathrm{b}(\tilde{X})=\mathrm{b}(X)+1, \mathrm{~b}\left(\widetilde{Z}_{1}^{m+1,2}\right)=\mathrm{b}\left(Z_{1}^{m+1,2}\right)+1$, and $\mathrm{b}\left(\widetilde{Z}_{1}^{\prime m+1,2}\right)=\mathrm{b}\left(Z_{1}^{\prime m+1,2}\right)+1$, hence in this case the condition

$$
\mathrm{b}(X)=\mathrm{b}\left(Z_{1}^{m+1,2}\right)=\mathrm{b}\left(Z_{1}^{m+1,2}\right)
$$

is also true.
The case when $\bigcup_{j}\left(\Delta_{m+1, j} \cup \Sigma_{m+1, j}\right)=\emptyset$ is trivial.
Recalling that $Z_{1}^{m+1,2}=Y^{m+1}$ and $Z_{1}^{\prime m+1,2}=Y^{m+1}$, we get the required $\mathrm{b}(X)=$ $\mathrm{b}\left(Y^{m+1}\right)=\mathrm{b}\left(Y^{m+1}\right)$.

Proof of Theorem 1. According to Lemma 5, it is sufficient to prove the bound for the set X_{1} which is defined by a Boolean combination (with no negations) of non-strict inequalities. The atomic polynomials are either of the kind h_{i} or of the kind $h_{i}^{2}-\delta_{j}$ or of the kind $h_{i}^{2}-\varepsilon_{j}, 1 \leq i, j \leq k$, hence there is at most $O\left(k^{2}\right)$ pairwise distinct among them. Now the theorem follows from Proposition 2.

Remark 6. Employing some additional technicalities one can prove that in the construction of set X_{1} it is sufficient to use just one sort of constants, i.e., keep $\varepsilon_{1}, \ldots, \varepsilon_{k}$ in their positions and replace $\delta_{1}, \ldots, \delta_{k}$ by $\varepsilon_{1}, \ldots, \varepsilon_{k}$, respectively. This reduces the number of polynomials involved in the description of X_{1} and therefore the O-symbol constant in the upper bound of Theorem 1.

Acknowledgements

The authors thank S. Basu for useful discussions.

References

1. S. Basu, On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets, Discrete Comput. Geom. 22 (1999), 1-18.
2. S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Springer-Verlag, Berlin, 2003.
3. M. Coste, An Introduction to o-Minimal Geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriale e Poligrafici Internazionali, Pisa, 2000.
4. D. Grigoriev, Complexity of deciding Tarski algebra, J. Symbolic Comput. 5 (1988), 65-108.
5. J. Heintz, Definability and fast quantifier elimination in algebraically closed fields, Theoret. Comput. Sci. 24 (1983), 239-277.
6. J. Milnor, On the Betti numbers of real varieties, Proc. Amer. Math. Soc. 15 (1964), 275-280.
7. J. L. Montaña, J. E. Morais, and L. M. Pardo, Lower bounds for arithmetic networks, II: sum of Betti numbers, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 41-51.
8. O. A. Oleinik, Estimates of the Betti numbers of real algebraic hypersurfaces (Russian), Mat. Sb. 28 (1951), 635-640.
9. O. A. Oleinik and I. G. Petrovskii, On the topology of real algebraic hypersurfaces (Russian), Izv. Acad. Nauk SSSR 13 (1949), 389-402. English transl.: Amer. Math. Soc. Transl. 7 (1962) 399-417.
10. V. A. Rokhlin and D. B. Fuks, Beginners Course in Topology. Geometric Chapters, Springer-Verlag, New York, 1984.
11. E. Spanier, Algebraic Topology, Springer-Verlag, New York, 1981.
12. R. Thom, Sur l'homologie des variétés algebriques réelles, in: S. S. Cairns (ed.), Differential and Combinatorial Topology, pp. 255-265, Princeton University Press, Princeton, NJ, 1965.
13. A. C. C. Yao, Decision tree complexity and Betti numbers, in: Proc. of 26 th ACM Symp. on Theory of Computing, Montreal, Canada, pp. 615-624, ACM Press, New York, 1994.

Received July 24, 2003, and in revised form January 15, 2004. Online publication May 28, 2004.

[^0]: * The first author was supported by NSF Grant \# DMS-0070666 and by the James S. McDonnell Foundation. The second author was supported by the European RTN Network RAAG 2002-2006 (Contract HPRN-CT-2001-00271).

