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Abstract. A hierarchical decomposition of a simple polygon is introduced. The hierarchy
has logarithmic depth, linear size, and its regions have at most three neighbors. Using this
hierarchy, circular ray shooting queries in a simple polygon on n vertices can be answered
in O(log2 n) query time and O(n log n) space. If the radius of the circle is fixed, the query
time can be improved to O(log n) and the space to O(n).

1. Introduction

Geometric problems lend themselves naturally to solution by divide-and-conquer algo-
rithms. Subproblems can be identified by partitioning space into regions, and the problem
can be solved in each region separately. Recursively continuing the partition leads to a
hierarchical decomposition of a geometric space or object. Many such decompositions
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have been introduced to solve a variety of problems [6], [15]. Most data structures for
geometric search problems are in fact hierarchical decompositions.

Guibas and Hershberger [13] introduced a hierarchical decomposition of a simple
polygon to answer efficiently shortest-path queries within the polygon. Their structure
is a hierarchy of regions, the root corresponding to the whole polygon, the leaves corre-
sponding to triangles of a fixed triangulation of the polygon, and every non-leaf region
being split into two children using a diagonal. Every region is thus an area of the polygon,
connected to the remainder of the polygon through a number of “doors.” In Guibas and
Hershberger’s structure, a region can have �(log n) doors, where n is the number of
edges of the polygon.

We give a new hierarchical decomposition of a simple polygon where regions have
at most three doors. In other words, we make sure that when we split a region with
three doors, both subregions contain at least one of the original three doors. Our tech-
nique for achieving this is inspired by the topology tree hierarchy of Frederickson [11],
[12]. The decomposition can be based either on a fixed triangulation or on the vertical
decomposition (trapezoidal map) of the polygon.

We believe that this decomposition will prove useful in a number of applications in
computational geometry that deal with problems involving paths in simple polygons.
In this paper we concentrate on circular ray shooting, and use the decomposition based
on the trapezoidal map. Circular ray shooting is used, for example, to find shortest
curvature-constrained paths [1].

A data structure for the circular ray shooting problem in a simple polygon was given
by Agarwal and Sharir [2], achieving O(log4 n) query time with O(n log3 n) space and
preprocessing time. We improve this result to O(log2 n) query time with O(n log n)
space and O(n log2 n) preprocessing time. If the radius of the query arc is fixed, that is,
given at preprocessing time, the query time can be improved to O(log n), the space to
O(n), and the preprocessing time to O(n log n). This matches the best known result for
linear ray shooting in a simple polygon [6], [14]. Fixed-radius circular ray shooting is
used, for instance, in algorithms for finding paths of bounded curvature.

The hierarchical decomposition has other applications as well. Based on a triangula-
tion, it can be used to replace the decomposition in Guibas and Hershberger’s structure
(this does not lead to an improvement of the asymptotic complexity). In a forthcoming
paper we describe how to find the largest empty lune determined by two points, or to
compute on-line the circular visibility region in a simple polygon [8]. Our technique also
applies to ray shooting along parabolic and hyperbolic arcs.

2. The Hierarchical Vertical Decomposition

The hierarchical vertical decomposition of a simple polygon P is based on its vertical
decomposition (or trapezoidal map) [3], [7], [10]. Recall that the trapezoidal map is
obtained by drawing a vertical line segment through every vertex of P , cutting the interior
of P into two parts. The result is a partition of P into trapezoids (which can degenerate
into triangles) separated by vertical sides. We call these vertical sides separating two
trapezoids doors. We assume general position, that is no two distinct endpoints have the
same x-coordinate. This can be easily simulated [3, Chapter 6]. Therefore a trapezoid
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has at most four doors. We split trapezoids with four doors into two trapezoids using a
vertical door in the middle. The result is a vertical decomposition T of O(n) trapezoids
with at most three doors each. Its dual graph is a tree with maximum degree three.

The hierarchical vertical decompositionH is a rooted binary tree. The nodes of the tree
are called regions, and are connected sets of trapezoids of T . The doors of a region are the
doors of trapezoids of the region that are shared with trapezoids outside the region. A re-
markable property of our decomposition is that every region has at most three doors. Two
regions consisting of disjoint sets of trapezoids are called adjacent if they share a door.

The root of H is the region consisting of the whole polygon P . The leaves of H are
regions consisting of a single trapezoid of T . All non-leaf regions r have two daughter
regions, obtained by splitting the set of trapezoids of r into two connected subsets. We
can visualize this as splitting the region along an interior door.

The regions on each level ofH form a decomposition of P . The adjacency relationship
induces a tree of maximum degree three on these regions. Figure 1 shows an example of
a hierarchical vertical decomposition for a polygon with 15 vertices.

Before we can prove that such a decomposition exists, we need a small lemma.

Lemma 1. Let T be a tree of m nodes of maximum degree three. There is a matching
M of T of size at least m/4 that does not match two nodes both of degree three.

Proof. The statement is clearly true if T is a path, so assume there is at least one node
of degree three. Let this be the root of T , inducing a parent–child relationship on T .
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Fig. 1. A hierarchical decomposition H for a simple polygon P . Inner nodes of H are annotated with the
door splitting them, leaves with the trapezoid.
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Consider now a maximal chain of nodes of degree less than three. Its bottom node
(that is, the node furthest from the root) is either a node of degree one (a leaf) or degree
two (whose child is a node of degree three); the remaining nodes on the chain are of
degree two. The parent of the highest node in the chain is of degree three. If the total
number of nodes on the chain is even, we can match them to each other in pairs. If their
total number is odd, we match them starting from the bottom, and match the highest node
with its parent, unless this parent (a node of degree three) has already been matched. We
do this for every such maximal chain.

We analyze the size of the matching. Let h be the number of nodes of degree three.
Then the sum of node degrees is at least 3h + (m − h) = 2h + m, and since T is a tree
it follows that 2h + m ≤ 2m − 2 and therefore h ≤ m/2 − 1. We now charge every
unmatched node of T to a node of degree three in the following way. An unmatched
node of degree three is charged to itself. An unmatched node of degree less than three
is charged to its parent, necessarily a matched node of degree three. Except for the root,
every node of degree three has two children, and can therefore be charged at most once.
The root has three children and can be charged at most twice. The total charge is therefore
at most h + 1 ≤ m/2, and the bound follows.

Theorem 2. Let P be a simple polygon with n vertices. Then there exists a hierarchical
vertical decompositionH of P with the following properties:

• Every region has at most three doors.
• The depth of the hierarchy is O(log n).
• The number of regions inH is O(n).
• The total size of all regions inH is O(n log n).
• H can be computed in time O(n log n).

Proof. We give an algorithm to constructH in time O(n log n). The properties will fol-
low from the construction. We start out withT , constructed in time O(n log n) from P [7],
[10]. We create the leaves ofH from T .

The construction now proceeds in phases. In every phase we merge some pairs of
adjacent regions. Note that such a merge is admissible unless both regions have three
doors (because that would result in a region with four doors).

Assume we have m regions at the beginning of a phase. They partition P , and the
adjacency relationship between them induces a tree T with m nodes and maximum
degree three. By Lemma 1, there is a matching M of size at least m/4. We merge regions
according to the matching M , resulting in at most 3m/4 regions at the end of the phase.

Finding the matching and merging the regions can be done in time O(m). Since the
number of regions decreases geometrically, the total merging time is O(n). The number
of regions generated is O(n), and the depth of the hierarchy is O(log n). Clearly, every
region created has at most three doors.

Since the regions on a level of H form a partition of the trapezoids of T , the total
size of all regions on this level is O(n). Since the depth of the hierarchy is O(log n), the
total size of all regions is bounded by O(n log n).
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The dual graph of T is a tree of degree at most three. For every pair of trapezoids there
is a unique sequence of trapezoids that connects them. The hierarchical decompositionH
can be used to retrieve this sequence in a compact form, as the following lemma shows.

We first introduce a bit of notation. A non-leaf region r ∈ H has two daughter regions
separated by a door that we denote as dr . The level of a region is its distance from the
root—the root has level zero, its daughters have level one, and so on.

For each trapezoid � of the trapezoidal T , we store a pointer to the leaf of H repre-
senting�. For each door d in T , we store a pointer to the node r inH such that d = dr .
Furthermore, we perform a single DFS traversal of H to label the nodes in DFS order.
This allows us to answer the following query in constant time: given a leaf� and a node
r of H, determine whether r is an ancestor of �. This is equivalent to asking whether
the region r contains the trapezoid �.

Finally, we compute a planar-point location structure [3] for T , using O(n) addi-
tional space and O(n log n) additional preprocessing time. This allows us to answer the
following query in time O(log n): given a point p, find the leaf of H representing the
trapezoid containing p.

Lemma 3. Let P be a simple polygon with n vertices with hierarchical vertical decom-
positionH. Given two query trapezoids�1 and�2, Algorithm FindSequence computes
in time O(log n) a sequence π = r1, . . . , rk of regions ofH such that r1 = �1, rk = �2,
the regions ri and ri+1 are adjacent for 1 ≤ i < k, and k = O(log n).

Proof. The region r∗ can be found (in line 2) by following the path from the root ofH
towards�1 and�2. This takes time O(log n) (as we can determine which daughter of a
region contains a given leaf in constant time). We observe that the loop in line 2 maintains
the following invariant: region r is adjacent to the first region in π , and the common
door is d . Furthermore, the level of r increases by one in each iteration. Similarly, the
loop of line 2 maintains the invariant that region r is adjacent to the last region of π , the
common door is d , and again the level of r increases in each iteration. It follows that
consecutive regions in π are disjoint and adjacent along a common door, implying the
correctness of the result. The running time and the length of the returned sequence is
linear in the depth ofH, and therefore O(log n).

As an immediate application, we can precompute a set of O(n) subsequences of trape-
zoids, and then express the sequence connecting two given trapezoids using O(log n)
precomputed subsequences.

Corollary 4. Let P be a simple polygon with n vertices. There is a data structure of size
O(n log n) that can be computed in O(n log n) time and that outputs, in O(log n) time,
the sequence of trapezoids connecting two query trapezoids �1 and �2 as a sequence
of O(log n) precomputed subsequences.

Proof. The data structure consists of the hierarchical vertical decomposition H. A
region r of H has at most three doors. For each of the at most three pairs (d1, d2) of
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Algorithm FindSequence(�1,�2)

Input: Two trapezoids �1, �2 of T .
Output: A sequence π = r1, . . . , rk of regions ofH.

1. Let r∗ be the the lowest common ancestor of �1,�2 inH.
2. Let r be the daughter of r∗ containing �1.
3. d←dr∗ .
4. Let π be the empty sequence.
5. while r 	= �1

6. do Let r ′ be the daughter of r containing �1.
7. Let r ′′ be the other daughter of r .
8. if d is a door of r ′′

9. then prepend r ′′ to π
10. d←dr .
11. r←r ′

12. Prepend �1 to π .
13. Let r be the daughter of r∗ containing �2.
14. d←dr∗ .
15. while r 	= �2

16. do Let r ′ be the daughter of r containing �2.
17. Let r ′′ be the other daughter of r .
18. if d is a door of r ′′

19. then append r ′′ to π .
20. d←dr .
21. r←r ′.
22. Append �2 to π .
23. return π

doors of r , we precompute the sequence of trapezoids of r connecting d1 and d2. There
are O(n) such precomputed sequences, and by Theorem 2 their total size is O(n log n).
To answer a query, we apply Algorithm FindSequence to obtain a sequence of O(log n)
regions �1 = r1, . . . , rk = �2. For each region ri , 1 < i < k, we have a precomputed
sequence connecting the doors that ri shares with ri−1 and ri+1.

We have based our description of the hierarchical decomposition on the trapezoidal
map of P because this version will be needed for our application to ray shooting in the fol-
lowing sections. However, the decomposition can be built based on a fixed triangulation
of P in exactly the same way.

3. Ray Shooting with the Hierarchical Vertical Decomposition

Given a simple polygon P , we would like to build a data structure that stores P in such
a way that certain ray shooting queries can be answered quickly. A query consists of an
x-monotone curve γ with endpoints p and q, with p inside P , and the goal is to find
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the first intersection of γ with the boundary of P , or to determine that there is no such
intersection. Semi-infinite rays can be simulated by choosing q far away outside P . The
curve γ should be such that intersections between γ and a line segment can be computed
in constant time. (A data structure for queries with the starting point outside the polygon
can be built in the same way by interpreting the exterior of P as a “generalized” polygon.)

Our data structure is based on the hierarchical vertical decomposition H of P . A
region r ∈ H has at most three doors, and therefore at most two pairs of doors through
which an x-monotone path could traverse r . Let d1, d2 be such a pair of doors. Let �
be the set of trapezoids connecting d1 and d2. We suppose for the moment that we have
constructed a data structure that allows us to test, in time Q(|�|), whether a given query
curve known to intersect the doors d1 and d2 passes through all the trapezoids in �
without intersecting any of their bounding edges. That is equivalent to testing whether
the curve, if it passes through d1, also passes through d2 without intersecting the boundary
of P in between.

Our approach is to walk along γ through regions of H. When γ enters a region r ,
we use the auxiliary data structure to test if it passes through r without intersecting the
boundary of P . If so, we continue walking in the neighboring region. Otherwise, we
know that the first point of intersection between γ and P can be found in r .

Note that even if p and q both lie in P , but γ does not completely lie in P , then
the first intersection may occur in a trapezoid not in the sequence computed by Algo-
rithm FindSequence. See Fig. 2. This makes the search somewhat more complex.

Lemma 5. Let P be a simple polygon with n vertices and hierarchical vertical de-
composition H. Suppose that for each pair of doors of a region in H consisting of m
trapezoids, a data structure of size S(m) can be constructed in time P(m) that tests, in
time Q(m), whether an x-monotone query curve passes through the two doors without
intersecting any edge of P in between. Then a data structure of size O(S(n) log n) can be
constructed in time O(P(n) log n) that answers ray-shooting queries along x-monotone
curves in time O(Q(n) log n).

Proof. The data structure consists of the hierarchical decomposition H, where each
region r has been augmented with at most two auxiliary structures to test the pairs of

d1

d2

d3
p

q

γ

Fig. 2. The first intersection of γ does not occur in a trapezoid in the sequence computed for p and q by
Algorithm FindSequence.
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Algorithm ShootRay(γ )

Input: An x-monotone curve γ with endpoints p and q.
Output: The first intersection between γ and P .

1. Search for the trapezoid � containing p using the point location structure
associated with T .

2. if γ intersects the top or bottom edge of � then return the intersection point.
3. if q ∈ � then return nil.
4. Let d be the door through which γ exits �.
5. flag←true.
6. while flag
7. do Let r∗ be the region with separating door d, that is, dr∗ = d.
8. Let r ′ be the daughter of r∗ not containing �.
9. Let d ′ be the first of the other doors of r ′ intersected by γ .

10. if d ′ exists and γ passes through r ′ from d to d ′

11. then d←d ′

12. else flag← false.
13. Let r∗ be the region with separating door d, that is, dr∗ = d.
14. Let r ′ be the daughter of r∗ not containing �.
15. while r is not a trapezoid
16. do d ′←dr

17. Let r ′, r ′′ be the daughters of r , such that r ′ has the door d.
18. if γ intersects d ′ and γ passes through r ′ from d to d ′

19. then d←d ′, r←r ′′.
20. else r←r ′

21. if γ intersects the top or bottom edge of r then return the intersection point.
22. return nill

doors that can be connected by an x-monotone path. Since we can assume P(m) and
S(m) to be at least linear, the total size is O(S(n) log n), and the total preprocessing time
is O(P(n) log n).

The query procedure is given by Algorithm ShootRay. The loop in line 6 maintains
the invariant that the curve γ does not intersect P before it reaches the door d. The
level of the door d decreases in each iteration of the loop, and therefore it is executed at
most O(log n) times. The test in line 10 takes Q(m) = O(Q(n)) time, and so the loop
takes time O(Q(n) log n).

The loop in line 15 has the following invariant: the curve γ does not intersect P before
reaching the door d where it enters the region r , and γ either ends or has an intersection
with P in r . The level of r increases by one in each iteration, so the loop is executed
O(log n) times. Its running time is dominated by the query of the auxiliary data structure
in line 18, and so the total time for this loop is O(Q(n) log n).

The loop invariant guarantees that in line 21 the region r is in fact a trapezoid con-
taining either q or the intersection point we are searching for, and so the algorithm is
correct.
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p

q

a b

cd

π/4

Fig. 3. The query arc pq is split into five pieces pa, ab, bc, cd , and dq, so that each lies on a quarter-
circle.

4. Circular Ray Shooting

We will now see how to use our technique from the previous section to perform ray
shooting along circular arcs. Our data structure relies on the curve γ being x-monotone.
We therefore partition a query arc into at most five pieces, each of which lies on a quarter-
circle. See Fig. 3. In the following we explain how to perform a query with a query arc
on the upper quarter-circle (where the slope of the arc is between 1 and −1). The other
cases are handled symmetrically.

By Lemma 5 we only have to provide a data structure that can store a sequence of
m trapezoids � connecting two doors d1, d2 in such a way that we can quickly decide
whether a query arc that intersects d1 and d2 passes through the trapezoids.

Let�∗ be the parts of polygon edges bounding� from above. Let�∗ be the parts of
polygon edges bounding � from below. �∗ and �∗ lie in the vertical strip bounded by
the vertical lines through d1 and d2. Since γ is x-monotone, γ passes through � if and
only if γ lies completely below �∗, and completely above �∗.

To test whether γ lies below �∗, we build a point-location data structure for the
Voronoi diagram of the line segments in �∗, and we also store the point m(�∗) ∈
�∗ with the smallest y-coordinate. The Voronoi diagram of �∗ can be computed in
O(|�∗| log|�∗|) time [16]. One can then break up the curved edges into x-monotone
pieces and compute a vertical decomposition using plane-sweep in O(|�∗| log|�∗|)
time. Afterwards, we build a point-location structure for monotone subdivisions with
curved edges [9]. To perform the query, we first test whether γ lies below m(�∗). If that
is the case, we then locate the center x of our query arc in the Voronoi diagram, and
thus obtain the segment s ∈ �∗ closest to x . If and only if γ lies below m(�∗) and the
distance of s to x is larger than the radius of the query circle, then γ lies below �∗.

To test whether γ lies above �∗, we make use of the furthest-point Voronoi diagram
of the vertices in �∗. The idea is to check that γ is further away from x than the
furthest segment. Notice that this does not quite work since the furthest segment from
x may lie far away but below γ as is the case in Fig. 4. Consequently, we compute
the furthest-point Voronoi diagram of only a subset of the vertices of �∗; this subset
includes all the vertices that may lie above γ . Let w be the width of the vertical strip
bounding �∗. Let v(�∗) be the highest vertex of �∗. Pass a horizontal line through
v(�∗) and insert another horizontal line at distance w below. See Fig. 4. Let S be the
square enclosed between these two horizontal lines within the vertical strip bounding�∗.
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v(Λ∗)
d1

d2

γ

x

Fig. 4. �∗ is shown in solid segments. The curve γ is shown in bold and γ intersects d1 and d2. The part of
the square S lying below γ is the same as the part of S lying inside the circle supporting the query arc.

Notice that, since γ is at most a quarter-circle that enters � through door d1 and leaves
through d2, the only part of S lying outside the query circle lies above γ . We construct
the furthest-point Voronoi diagram for the subset of the vertices of �∗ that lie inside
S and a point-location data structure for the diagram. To perform the query, we first test
whether γ lies above v(�∗). If that is not the case, then γ intersects �∗. Otherwise,
we check whether γ lies completely above the square S. If so, then γ lies above �∗. In
the remaining case we locate the center x of our query arc in the furthest-point Voronoi
diagram. Let s be the furthest vertex reported. We claim that γ lies completely above�∗
if and only if the distance between s and x is smaller than the radius of γ . This follows
from the fact that, since γ is on the upper quarter-circle and contains points both in and
above S, a point of �∗ lies above γ if and only if it lies in S outside the disk supporting
the query arc.

We have thus shown how to implement the auxiliary data structure for a region
of size m using S(m) = O(m) space, P(m) = O(m log m) preprocessing time, and
Q(m) = O(log m) query time. We have the following theorem.

Theorem 6. Given a simple polygon P with n vertices. There is a data structure of size
O(n log n) that can be computed in time O(n log2 n) that allows us to perform circular
ray shooting queries with origin inside P in time O(log2 n).
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5. Fixed-Radius Circular Ray Shooting

We now consider the problem of ray shooting along circular arcs with fixed radius (that is,
the radius is known at preprocessing time). This is also a case study: the same technique
works for linear ray shooting, and ray shooting along parabolic or otherwise algebraic
arcs, as long as the actual arcs are parts of translates of a curve given at preprocessing
time. The data structure we obtain in this section does not improve on the more general
structure of Theorem 6. It does, however, replace the use of a two-dimensional point
location structure with a simple binary search, and that will allow us to obtain a data
structure with optimal query time and storage in the following section.

We partition a circular ray-shooting query into at most three queries, each of which
lies on an x-monotone semi-circle. In the following we describe how to perform a query
when the query arc lies on an upper semi-circle. The other case is handled symmetrically.
By scaling, we also assume that the query arc lies on a unit circle.

Again we use the basic approach from Section 3. Given a sequence� of m trapezoids
connecting two doors d1 and d2, we want to build a data structure that allows us to test
whether a circular arc γ (known to lie on an upper quarter-circle, to enter at d1, and
to leave at d2) passes through all the trapezoids. As we saw in the last section, this is
equivalent to testing whether γ lies completely below �∗ and completely above �∗.

We precompute the set L of points x such that an upper semi-circle of unit radius and
center x touches�∗ from below. This is done by computing the Minkowski sum of a unit
circle with each segment in�∗, and taking L as the lower envelope of these Minkowski
sums. See Fig. 5.

Lemma 7. Let s1, s2, . . . , sk be the segments of �∗ in order from left to right. When
walking along L from left to right, we encounter pieces induced by the segments in this
order.

Proof. Let pi and pj be points on L induced by si and sj , with pi left of pj . We need to
show that i < j . Let Ci (resp. Cj ) be the region consisting of the unit circle centered at
pi (resp. pj ) and all points below it. If Ci and Cj do not intersect, then clearly i < j . If
they do intersect, their boundaries intersect in a single point q. The part of the boundary
of Ci ∪ Cj left of q belongs to Ci , the part right of q to Cj . Since si touches Ci ∪ Cj

outside of Cj , and sj touches Ci ∪ Cj outside of Ci , we have i < j .

d1 d2

Fig. 5. The dashed line segments show the sequence � of trapezoids connecting the doors d1 and d2.
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Lemma 7 implies that each segment of �∗ induces at most one piece of the lower
envelope L , so L can be stored as a sorted array of the at most m − 1 breakpoints,
with a pointer to the inducing segment of �∗ for each interval. If the segments �∗ are
given in left-to-right order, L can be constructed incrementally in linear time. To add
the next segment s, we compute the lower envelope l of the Minkowski sum of s and
a unit disk. There is at most one intersection point x between the current envelope L
and l. We update L by removing the part of L lying to the right of x , and then append
the breakpoint x and a pointer to the segment s.

To determine whether a query arc γ lies completely below �∗, we look up the x-
coordinate of the center p of the query arc in L using binary search in time O(log m).
This returns the segment s of �∗ inducing the part of L intersected by the vertical
line through p. We then test whether γ lies below s in O(1) time. The query arc lies
completely below �∗ if and only if this is the case.

We build a symmetric structure for �∗ that allows us to decide in O(log m) time
whether γ lies completely above �∗.

Applying Lemma 5 with P(m) = S(m) = O(m) and Q(m) = O(log m) gives us
the following result.

Lemma 8. Given a simple polygon P with n vertices, and a radius r > 0. There is
a data structure of size O(n log n) that can be computed in time O(n log n) such that
circular ray shooting queries of radius r with origin inside P can be performed in time
O(log2 n).

6. An Optimal Data Structure for Fixed-Radius Ray Shooting

The query time and the space needed by the data structure of Lemma 8 is suboptimal
by a log n-factor. We can obtain an optimal data structure by avoiding duplication in the
storage of lower envelopes, and by using fractional cascading [4], [5].

Consider a region r with three doors d1, d2, and d3. If two of the three possible pairs of
doors permit an x-monotone path, we observe that the two paths must share a number of
trapezoids (in Fig. 6, for instance, there are paths connecting d1 to d2, and d1 to d3, and they
share the leftmost three trapezoids). Instead of building two auxiliary data structures for
each relevant pair of doors, we build three auxiliary data structures for (sub-)paths that do
not share any trapezoids. (In Fig. 6 we build data structures for the three paths�1,�2, and
�3). A query for two doors can be composed from queries in two auxiliary data structures
(for instance, a query for the doors d1 and d2 queries the data structures for�1 and�2).

As a consequence, at every level of the hierarchyH, a trapezoid� appears in at most
one path. More precisely, consider the ancestors of � in H. In the leaf representing �,
� obviously appears in a path of length 1. When going up in H, this path may extend
on both sides, becoming longer and longer, until finally it disappears completely.

We will build the auxiliary data structures recursively, starting in the root. Consider a
node r , which is being split along a door dr into two daughters r1 and r2. There are two
possible events.

If the door dr does not intersect an already existing path, then up to three new paths
may be created in a daughter. We compute the auxiliary data structures for these paths
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d1

dr

d2

d3

Λ1

Λ2

Λ3

r

Fig. 6. The region r has two pairs of doors permitting an x-monotone path. We build three auxiliary data
structures for the (sub-)paths �1, �2, �3. When r is split along dr , the path �1 has to be split into two paths.

from scratch, and store them in the nodes r1 and r2. Note that any trapezoid can appear
at most once in such a new path, so the space required for these new paths, over the total
hierarchyH, is O(n).

If the door dr intersects an existing path�, this path has to be split into two paths�1

and �2, which are stored at the two daughters r1 and r2. (For instance, in Fig. 6, the
door dr splits �1.) Let �∗1 be the segments bounding the trapezoids of �1 from above,
and let �∗2 be the segments for the trapezoids of �2. Let �∗ := �∗1 ∪�∗2, and let L , L1,
and L2 be the lower envelopes of �∗, �∗1, and �∗2, respectively. Since �∗1 and �∗2 are
separated by the vertical line through dr , Lemma 7 implies that L contains a breakpoint x
such that the part of L left of x is a prefix of L1, and the part of L right of x is a suffix
of L2. Note that we have already computed and stored L in some ancestor of r , as the
auxiliary data structure for�. In r1 we therefore only store the breakpoint x and the suffix
of L1 not in L . Symmetrically, in r2 we store x and the prefix of L2 not in L . The space
required in r1 is linear in the number of trapezoids that appear on the envelope L1, but
do not appear in L . While this quantity could be linear in some region, any trapezoid �
can appear only once on the lower envelope. Indeed, since the path containing � in
any descendent of r1 is a subpath of �1, Lemma 7 implies that � must appear there. It
follows that the total space required is O(n). We proceed in the same way to store the
upper envelope of �∗.

Our auxiliary data structures are essentially lists of breakpoints, sorted by x-coor-
dinate. All the lists being searched during a query are searched with the same search
key, namely the x-coordinate of the query arc center. We can therefore apply fractional
cascading [4], [5]. This adds additional keys to the lists, as well as cross pointers between
the list stored in a node and the one stored in the parent node. As this is a standard
application of fractional cascading on a tree, we do not discuss the details, and observe
only that the space requirement increases by a constant. The effect of fractional cascading
is the following: once we have performed a search in the list stored at a node, we can
perform the search in a daughter node in constant time.

It remains to describe how to perform circular ray shooting queries in the modified
structure. We first locate the trapezoid� containing the starting point of the ray. We then
follow the path from the root ofH to�. In each node, we search all the lists stored at that
node, using the x-coordinate of the query arc as the key. First, we test whether the key
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lies in the prefix or suffix stored higher up in the tree—if so, we reuse the search result
obtained there earlier. Otherwise, we search the list stored at the node. Using fractional
cascading, all this takes time O(log n).

We now proceed with the “ascending phase” of Algorithm ShootRay. The region r ′

tested in line 10 is a daughter of r∗, which is an ancestor of �. As we already have
the search results for r∗, the auxiliary data structure for r ′ can be queried in constant
time.

Finally, we descend inH until we find the leaf containing the answer to the ray shooting
query. As this descent follows a path inH, we can perform each step in constant time.

It follows that the total query time is O(log n). We summarize the result in the
following theorem.

Theorem 9. Given a simple polygon P with n vertices, and a radius r > 0. There
is a data structure of size O(n) that can be computed in time O(n log n) such that
circular ray shooting queries of radius r with origin inside P can be performed in time
O(log n).
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