Pairs of Convex Bodies with Centrally Symmetric Intersections of Translates

Valeriu Soltan
Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444, USA
vsoltan@gmu.edu

Abstract

For a pair of convex bodies K and K^{\prime} in E^{d}, the d-dimensional intersections $K \cap\left(x+K^{\prime}\right), x \in E^{d}$, are centrally symmetric if and only if K and K^{\prime} are represented as direct sums $K=R \oplus P$ and $K^{\prime}=R^{\prime} \oplus P^{\prime}$ such that: (i) R is a compact convex set of some dimension $m, 0 \leq m \leq d$, and $R^{\prime}=z-R$ for a suitable vector $z \in E^{d}$, (ii) P and P^{\prime} are isothetic parallelotopes, both of dimension $d-m$.

1. Introduction and Main Result

Several results of convex geometry characterize pairs of convex bodies whose intersections of translates satisfy given geometric properties. Thus, convex bodies K and K^{\prime} in the Euclidean space E^{d} are homothetic ellipsoids if and only if for any translate $x+K^{\prime}$, $x \in E^{d}$, the intersection of the boundaries of K and $x+K^{\prime}$ lies in a hyperplane (see [1]). Similarly, convex bodies K and K^{\prime} in E^{d} are homothetic simplexes if and only if the d-dimensional intersections $K \cap\left(x+K^{\prime}\right), x \in E^{d}$, belong to a unique homothety class (more generally, to at most countably many homothety classes) of convex bodies (see [5]).

We study below the following problem of a similar spirit, related to centrally symmetric convex bodies.

Problem. Describe the pairs of convex bodies K and K^{\prime} in E^{d} such that all d dimensional intersections $K \cap\left(x+K^{\prime}\right), x \in E^{d}$, are centrally symmetric.

In what follows we need some definitions. A convex body is a compact convex set with nonempty interior in E^{d}. A set $X \subset E^{d}$ is called centrally symmetric if and only if there is a point $z \in E^{d}$ such that $X-z=z-X$; in this case X is symmetric about z.

We say that sets X and X^{\prime} in E^{d} are similarly represented as direct sums

$$
X=X_{1} \oplus \cdots \oplus X_{k}, \quad X^{\prime}=X_{1}^{\prime} \oplus \cdots \oplus X_{k}^{\prime}
$$

if there are subspaces $L_{1}, \ldots, L_{k} \subset E^{d}$ forming a direct sum such that both X_{i} and X_{i}^{\prime} lie in L_{i} for all $i=1, \ldots, k$.

A parallelotope is a compact convex set in E^{d} that is a direct sum of finitely many line segments. Two parallelotopes P and P^{\prime} of the same dimension $k(1 \leq k \leq d)$ are called isothetic provided they can be similarly represented as direct sums

$$
P=P_{1} \oplus \cdots \oplus P_{k}, \quad P^{\prime}=P_{1}^{\prime} \oplus \cdots \oplus P_{k}^{\prime}
$$

where P_{i} and P_{i}^{\prime} are parallel line segments for all $i=1, \ldots, k$.
Our main result is given in the following theorem.

Theorem 1. For a pair of convex bodies K and K^{\prime} in E^{d}, the following three conditions are equivalent:
(1) All nonempty intersections $K \cap\left(x+K^{\prime}\right), x \in E^{d}$, are centrally symmetric.
(2) All d-dimensional intersections $K \cap\left(x+K^{\prime}\right), x \in E^{d}$, are centrally symmetric.
(3) K and K^{\prime} are similarly represented as direct sums

$$
K=R \oplus P \quad \text { and } \quad K^{\prime}=R^{\prime} \oplus P^{\prime}
$$

such that conditions (i) and (ii) below are satisfied:
(i) R is a compact convex set of some dimension $m, 0 \leq m \leq d$, and $R^{\prime}=z-R$ for a suitable vector $z \in E^{d}$,
(ii) P and P^{\prime} are isothetic parallelotopes, both of dimension $d-m$.

Observation 1. The cases $m=d$ and $m=0$ in condition (3) of Theorem 1 are interpreted as follows: $m=d$ means that $K^{\prime}=z-K$ for a suitable vector $z \in E^{d}$, while $m=0$ means that K and K^{\prime} are isothetic parallelotopes, both of dimension d.

Corollary 1 [3]. A convex body $K \subset E^{d}$ is a parallelotope if and only if there is a real number $\lambda \in] 0,1\left[\right.$ such that all nonempty intersections $K \cap(x+\lambda K), x \in E^{d}$, are centrally symmetric.

2. Auxiliary Theorems

The proof of Theorem 1 is organized by induction on $d=\operatorname{dim} E^{d}$ and uses Theorems 2 and 3 below. Recall that a subset F of a convex body $M \subset E^{d}$ is called an exposed face of M provided there is a hyperplane H supporting M such that $F=M \cap H$. In what follows, $\mathcal{F}(M)$ denotes the family of exposed faces of M.

If an exposed face F of M consists of a single point (respectively, of a line segment), then it is called an exposed point (respectively, an exposed line segment). Throughout this paper we denote by $\mathcal{F}_{0}(M)$ and $\mathcal{F}_{1}(M)$ the family of exposed points and the family
of exposed line segments of M, respectively. Generally, the endpoints of an exposed line segment of M are not exposed points themselves, but they are extreme points of the body. Recall that a point $x \in M$ is extreme if no open line segment $] y, z[, y \neq z$, with the property $x \in] y, z[\subset M$ exists. In a standard way, the set of extreme points of M is denoted ext M.

Let M and M^{\prime} be a given pair of convex bodies in E^{d}. For any hyperplane H supporting M, denote by H^{\prime} the hyperplane parallel to H and supporting M^{\prime} such that M^{\prime} lies on the same side from H^{\prime} as M does with respect to H. In this case the exposed face $F^{\prime}=M^{\prime} \cap H^{\prime}$ of M^{\prime} will be called associate to the exposed face $F=M \cap H$. Generally, the relation "is associate to" is not a one-to-one correspondence between the families $\mathcal{F}(M)$ and $\mathcal{F}\left(M^{\prime}\right)$.

The following theorems are auxiliary for the proof of Theorem 1. (To distinguish similarly looking elements, we use θ for the zero vector of E^{d}.)

Theorem 2. Let M and M^{\prime} be convex bodies in E^{d} such that all nonempty intersections $M \cap\left(x+M^{\prime}\right), x \in E^{d}$, are centrally symmetric. Then M and $-M^{\prime}$ satisfy the following two conditions:
(4) Any exposed point a of M has an associate exposed point a^{\prime} of $-M^{\prime}$ such that $\left(-M^{\prime}\right) \cap\left(a^{\prime}+W\right)$ is a translate of $M \cap(a+W)$ for a suitable neighborhood W of θ.
(5) Any exposed line segment $[a, b]$ of M has an associate exposed line segment $\left[a^{\prime}, b^{\prime}\right]$ of $-M^{\prime}$ parallel to $[a, b]$ and such that for a suitable neighborhood W of θ the sets $\left(-M^{\prime}\right) \cap\left(a^{\prime}+W\right)$ and $\left(-M^{\prime}\right) \cap\left(b^{\prime}+W\right)$ are translates of $M \cap(a+W)$ and $M \cap(b+W)$, respectively, provided $a-b$ and $a^{\prime}-b^{\prime}$ have the same direction.

Theorem 3. Let M and M^{\prime} be convex bodies in E^{d}. Then M^{\prime} is a translate of M if and only if the following two conditions are satisfied:
(6) Any exposed point a of M has an associate exposed point a^{\prime} of M^{\prime} such that $M^{\prime} \cap\left(a^{\prime}+W\right)$ is a translate of $M \cap(a+W)$ for a suitable neighborhood W of θ.
(7) Any exposed line segment $[a, b]$ of M has an associate exposed line segment $\left[a^{\prime}, b^{\prime}\right]$ of M^{\prime} that is a translate of $[a, b]$ and such that for a suitable neighborhood W of θ the sets $M^{\prime} \cap\left(a^{\prime}+W\right)$ and $M^{\prime} \cap\left(b^{\prime}+W\right)$ are translates of $M \cap(a+W)$ and $M \cap(b+W)$, respectively, provided $a-b$ and $a^{\prime}-b^{\prime}$ have the same direction.

In a standard way, bd M and int M denote, respectively, the boundary and the interior of a convex body $M \subset E^{d}$. A boundary point x of M is called regular if there is a unique hyperplane supporting M at x. Denote by $N(M)$ the family of outward unit normals to M at its regular points. In particular, M is a polytope if and only if the set $N(M)$ is finite. Finally, $B_{r}(a)=\left\{x \in E^{d}:\|x-a\| \leq r\right\}$ stands for the closed ball with center a and radius r, and $S=\left\{x \in E^{d}:\|x\|=1\right\}$ denotes the unit sphere of E^{d}.

3. Proof of Theorem 2

We prove condition (5) only, since the proof of (4) may be considered as a limit case of (5), by taking $a=b$ and $a^{\prime}=b^{\prime}$.

Let $[a, b]$ be an exposed line segment of M. Translating M, if necessary, we may assume that $a=\theta$. Denote by H a hyperplane with the property $M \cap H=[\theta, b]$, and let e be the unit vector orthogonal to H such that M and e belong to the same closed half-space P determined by H. Let G be the hyperplane through θ orthogonal to the line segment $[\theta, b]$, and let Q be the closed half-space determined by G and disjoint to b. Next, put $R=b / 2+Q$. In other words, R is the closed half-space determined by the hyperplane $b / 2+G$ and containing θ.

Choose a real number $\lambda>0$ so small that the hyperplane $H_{\lambda}=\lambda e+H$ intersects int M. Denote by D_{λ} the part of R that lies between H and H_{λ}, and let M_{λ} be the set of regular points of M which lie in D_{λ}. Now let $N\left(M_{\lambda}\right)$ be the set of outward unit normals to M at points from M_{λ}. Since $M \cap H=[\theta, b]$ and R excludes the segment $] b / 2, b]$, by a compactness argument we obtain the existence of a number δ such that $0<\delta<\min \{\lambda,\|b\| / 2\}$ and the closure of $N\left(M_{\delta}\right)$ belongs to an open half-sphere of the unit sphere S. Indeed, otherwise we would obtain the existence of two parallel hyperplanes through θ and a point from $] \theta, b[$, respectively, both supporting M.

Translating M^{\prime}, if necessary, we may assume that M^{\prime} is disjoint to int P and is supported by H at θ such that $M^{\prime} \cap H$ lies in Q. By a continuity argument, we may choose a vector $x \in D_{\delta}$ such that $\theta \in \operatorname{int}\left(x+M^{\prime}\right)$ and $P \cap\left(x+M^{\prime}\right)$ lies in D_{λ}. From the above it follows that the intersection $K=M \cap\left(x+M^{\prime}\right)$ is a convex body situated in D_{δ} and that $K \cap H=[\theta, w]$ for a point $\left.\left.w \in\right] \theta, b / 2\right]$. By the hypothesis, K is centrally symmetric.

Let F be the hyperplane supporting K and parallel to $H, F \neq H$. Obviously, F lies in the closed slab between H and $x+H$. Because K is centrally symmetric, there is an exposed line segment $[z, z-w]$ of K with the property $K \cap F=[z, z-w]$. Moreover, K is symmetric about the middle point of the line segment $[\theta, z]$.

We claim that $z \in \operatorname{int} M$. Indeed, assume, for contradiction, that $z \in \operatorname{bd} M$. Since $z \in K \subset D_{\delta}$ and F intersects the interior of M, the boundary of K in any neighborhood of z should contain a $(d-1)$-dimensional piece of bd M. Hence any neighborhood of z contains a regular point p of K that belongs to M_{δ}. Let e_{p} be the outward unit normal of K (also of M) at p. By the symmetry of K about $z / 2$, the point $q=z-p$ is a regular point of K and the outward unit normal e_{q} to K at q is opposite to $e_{p}: e_{q}=-e_{p}$. Since $\theta \in \operatorname{int}\left(x+M^{\prime}\right)$, we can choose p so close to z that the respective point q belongs to $\operatorname{int}\left(x+M^{\prime}\right)$. As a result, q lies in the boundary of M, and whence $q \in M_{\delta}$. Thus we have two distinct points $p, q \in M_{\delta}$ with $e_{p}=-e_{q}$, which is in contradiction with the choice of δ. Hence $z \in \operatorname{int} M$.

The inclusions $z \in \operatorname{bd} K$ and $z \in \operatorname{int} M$ obviously imply that $z \in \operatorname{bd}\left(x+M^{\prime}\right)$, otherwise z would lie in the interior of K. Moreover, the hyperplane F should coincide with $x+H$. Indeed, assume for a moment that F is different from $x+H$. In this case, one can find a point $u \in\left[x, z\left[\right.\right.$, which belongs to $M \cap\left(x+M^{\prime}\right)$ and lies between $x+H$ and F. The last is in contradiction with the choice of F.

Next we show that $z=x$. Indeed, since $z \in \operatorname{bd}\left(x+M^{\prime}\right)$ and since $x+H$ supports K along the line segment $[z, z-w]$, the hyperplane $x+H$ supports $x+M^{\prime}$ along a
line segment $[z, s]$ that contains $[z, z-w]$. Hence $M^{\prime} \cap H=[z-x, s-x]$. From the inclusion $M^{\prime} \cap H \subset Q$ and the fact that G supports $M^{\prime} \cap H$ at θ, we conclude that $z-x=\theta$, i. e., $z=x$. As a result, $M^{\prime} \cap H=[\theta, s-x]$, whence $[\theta, x-s]$ is an exposed line segment of $-M^{\prime}$ associate to $[\theta, b]$.

Since $\theta \in \operatorname{int}\left(x+M^{\prime}\right)$ and $x=z \in \operatorname{int} M$, there is a neighborhood $W_{1} \subset E^{d}$ of θ such that $W_{1} \subset \operatorname{int}\left(x+M^{\prime}\right)$ and $x-W_{1}$ is a neighborhood of x that lies in int M. Because K is symmetric about $x / 2$, we have
$M \cap W_{1}=K \cap W_{1}=x-K \cap\left(x-W_{1}\right)=x-\left(x+M^{\prime}\right) \cap\left(x-W_{1}\right)=\left(-M^{\prime}\right) \cap W_{1}$.
Repeating the consideration above for the points b and $x-s$, we obtain the existence of a neighborhood $W_{2} \subset E^{d}$ of θ such that $(M-b) \cap W_{2}=\left(-M^{\prime}-x+s\right) \cap W_{2}$. Obviously, the set $W=W_{1} \cap W_{2}$ is a required neighborhood of θ.

4. Proof of Theorem 3

If a convex body M^{\prime} is a translate of a convex body M, then conditions (6) and (7) are trivially satisfied.

Conversely, let M and M^{\prime} be a pair of convex bodies in E^{d} that satisfy conditions (6) and (7). We show that M^{\prime} is a translate of M. This part of the proof is organized by induction on $d=\operatorname{dim} E^{d}$.

The case $d=1$ is trivial, and the case $d=2$ is based on the following statement.
Claim 1. Let M and M^{\prime} be convex bodies in the plane E^{2} that satisfy conditions (6) and (7). Then the relation "is associate to" gives one-to-one correspondences $\mathcal{F}_{0}(M) \leftrightarrow$ $\mathcal{F}_{0}\left(M^{\prime}\right)$ and $\mathcal{F}_{1}(M) \leftrightarrow \mathcal{F}_{1}\left(M^{\prime}\right)$.

Proof of Claim 1. Choose a point $x \in \mathcal{F}_{0}(M)$, and let $x^{\prime} \in \mathcal{F}_{0}\left(M^{\prime}\right)$ be associate to x such that $M^{\prime} \cap\left(x^{\prime}+W\right)$ is a translate of $M \cap(x+W)$ for a suitable neighborhood W of θ. Let H be a line with $M \cap H=\{x\}$, and let H^{\prime} be the line parallel to H with $M^{\prime} \cap H^{\prime}=\left\{x^{\prime}\right\}$. Assume for a moment that x has another associate point $x_{1}^{\prime} \in \mathcal{F}_{0}\left(M^{\prime}\right)$, that is, assume the existence of a line H_{1} distinct from H such that $M \cap H_{1}=\{x\}$ and of the line H_{1}^{\prime} parallel to H_{1} and supporting M^{\prime} at x_{1}^{\prime} only. Since $M^{\prime} \cap\left(x^{\prime}+W\right)=\left(x^{\prime}-x\right)+M \cap(x+W)$, the line $H^{\prime \prime}=x^{\prime}-x+H_{1}$ supports M^{\prime} at x^{\prime}. Thus H_{1}^{\prime} and $H^{\prime \prime}$ are parallel lines both supporting M^{\prime} from the same side. As a result, $H_{1}^{\prime}=H^{\prime \prime}$ and H_{1}^{\prime} supports M^{\prime} along the line segment $\left[x^{\prime}, x_{1}^{\prime}\right]$, contradicting the condition $M^{\prime} \cap H_{1}^{\prime}=\left\{x_{1}^{\prime}\right\}$. Hence any exposed point x of M has a unique associate exposed point x^{\prime} of M^{\prime}.

Next we prove that distinct exposed points x_{1} and x_{2} of M have distinct associate exposed points x_{1}^{\prime} and x_{2}^{\prime} of M^{\prime}. Indeed, assume, for contradiction, that $x_{1}^{\prime}=x_{2}^{\prime}$. Let H_{1}, H_{1}^{\prime} and H_{2}, H_{2}^{\prime} be the respective pairs of parallel lines with the properties

$$
M \cap H_{1}=\left\{x_{1}\right\}, \quad M \cap H_{2}=\left\{x_{2}\right\}, \quad M^{\prime} \cap H_{1}^{\prime}=M^{\prime} \cap H_{2}^{\prime}=\left\{x_{1}^{\prime}\right\} .
$$

Let also W_{1} and W_{2} be some neighborhoods of θ that satisfy condition (6) for the pairs x_{1}, x_{1}^{\prime} and x_{2}, x_{1}^{\prime}, respectively. Then the neighborhood $W=W_{1} \cap W_{2}$ of θ satisfies condition (6) for each of the pairs x_{1}, x_{1}^{\prime} and x_{2}, x_{1}^{\prime}. As a result, both lines $H_{1}=x_{1}-$
$x_{1}^{\prime}+H_{1}^{\prime}$ and $H^{\prime}=x_{2}-x_{1}^{\prime}+H_{1}^{\prime}$ support M such that $M \cap H_{1}=\left\{x_{1}\right\}$ and $M \cap H^{\prime}=\left\{x_{2}\right\}$. Since the lines H_{1} and H^{\prime} are parallel and support M from the same side, they should coincide. The last is in contradiction with $x_{1} \neq x_{2}$.

Finally, let $x^{\prime} \in \mathcal{F}_{0}\left(M^{\prime}\right)$ and let H^{\prime} be a line with the property $M^{\prime} \cap H^{\prime}=\left\{x^{\prime}\right\}$. Denote by H the line parallel to H^{\prime} and supporting M such that M lies on the same side from H as M^{\prime} does with respect to H^{\prime}. If H supported M along a line segment $[v, w]$, then $[v, w]$ would be an exposed line segment of M with no associate in $\mathcal{F}_{1}\left(M^{\prime}\right)$. Hence the intersection $M \cap H$ is an exposed point x of M. As a result, any exposed point of M^{\prime} is associate to an exposed point of M. Summing up, we obtain that the relation "is associate to" gives a one-to-one correspondence $\mathcal{F}_{0}(M) \leftrightarrow \mathcal{F}_{0}\left(M^{\prime}\right)$.

Let $[x, z] \in \mathcal{F}_{1}(M)$, and let $\left[x^{\prime}, z^{\prime}\right] \in \mathcal{F}_{1}\left(M^{\prime}\right)$ be associate to $[x, z]$. Since the line supporting M along $[x, z]$ is uniquely defined, $\left[x^{\prime}, z^{\prime}\right]$ is a unique associate to $[x, z]$. Obviously, distinct line segments from $\mathcal{F}_{1}(M)$ have distinct associate line segments from $\mathcal{F}_{1}\left(M^{\prime}\right)$.

Conversely, let $\left[x^{\prime}, z^{\prime}\right] \in \mathcal{F}_{1}\left(M^{\prime}\right)$ and let H^{\prime} be the line with the property $M^{\prime} \cap H^{\prime}=$ [$\left.x^{\prime}, z^{\prime}\right]$. Denote by H the line parallel to H^{\prime} and supporting M such that M lies on the same side from H as M^{\prime} does with respect to H^{\prime}. Assume for a moment that $M \cap H$ consists of a single point v, and let $v^{\prime} \in \mathcal{F}_{0}\left(M^{\prime}\right)$ be associate to v. As is easily seen, v^{\prime} should coincide with one of x^{\prime}, z^{\prime}. Since any neighborhood of x^{\prime} or z^{\prime} contains a part of the line segment $\left[x^{\prime}, z^{\prime}\right]$, from (7) it follows that $M \cap H$ should contain a line segment parallel to $\left[x^{\prime}, z^{\prime}\right]$, contradicting the assumption $M \cap H=\{v\}$. Hence $\left[x^{\prime}, z^{\prime}\right]$ is associate to a line segment $[x, z] \in \mathcal{F}_{1}(M)$. Summing up, we obtain that the relation "is associate to" gives a one-to-one correspondence $\mathcal{F}_{1}(M) \leftrightarrow \mathcal{F}_{1}\left(M^{\prime}\right)$.

We continue the proof of the inductive statement for $d=2$. As is easily seen, any extreme point of a planar convex body is either an exposed point or an endpoint of an exposed line segment of the body. From Claim 1 and conditions (6) and (7) we obtain that for any extreme point x of M there is a unique extreme point x^{\prime} of M^{\prime} such that $M^{\prime} \cap\left(x^{\prime}+W_{x}\right)$ is a translate of $M \cap\left(x+W_{x}\right)$ for a suitable neighborhood W_{x} of θ

Denote by $\mathcal{O}(M)$ the family of open line segments $] v, z\left[\right.$ such that $[v, z] \in \mathcal{F}_{1}(M)$. Obviously, the family

$$
\mathcal{C}=\mathcal{O}(M) \cup\left\{\operatorname{bd} M \cap W_{x}: x \in \operatorname{ext} M\right\}
$$

is an open cover for bd M. Hence bd M is the union of finitely many open arcs V_{1}, \ldots, $V_{m} \in \mathcal{C}$. From Claim 1 we conclude that the respective translates $V_{1}^{\prime}, \ldots, V_{m}^{\prime}$ of these arcs cover bd M^{\prime}. The last obviously implies that M^{\prime} is a translate of M.

Assume that the inductive statement (" M^{\prime} is a translate of M ") is true for all $d \leq n-1$, $n \geq 3$, and let M and M^{\prime} be convex bodies in E^{n} that satisfy conditions (6) and (7). Choose a point $a \in \mathcal{F}_{0}(M)$, and let $a^{\prime} \in \mathcal{F}_{0}\left(M^{\prime}\right)$ be associate to a. Translating, if necessary, we may assume that $a=a^{\prime}=\theta$, and that $L \subset E^{n}$ is an ($n-1$)-dimensional subspace with the property $M \cap L=M^{\prime} \cap L=\{\theta\}$ and such that both M and M^{\prime} lie in the same half-space of E^{n} determined by L. Denote by H and H^{\prime} the hyperplanes parallel to L that support M and M^{\prime}, respectively ($H \neq L \neq H^{\prime}$). Our goal is to show that $M=M^{\prime}$.

Let S_{L} be the unit sphere of L, and let G be the set of vectors in S_{L} such that each $e \in G$ is parallel to a line segment from the set ($\left.\mathrm{bd} M \cup \mathrm{bd} M^{\prime}\right) \backslash\left(H \cup H^{\prime}\right)$. As follows
from [4], the $(n-2)$-dimensional measure of G equals 0 . Hence the complementary set $F=S_{L} \backslash G$ is dense in S_{L}.

For any vector $e \in F$, denote by T_{e} the ($n-1$)-dimensional subspace of E^{n} orthogonal to e. Let M_{e} (respectively, M_{e}^{\prime}) be the orthogonal projection of M (respectively, of M^{\prime}) on T_{e}. Due to the choice of F, any boundary point of M_{e} (respectively, of M_{e}^{\prime}) is the orthogonal projection of a unique boundary point of M (respectively, of M^{\prime}).

Claim 2. For any $e \in F$, the orthogonal projections M_{e} and M_{e}^{\prime} satisfy conditions (6) and (7).

Proof of Claim 2. Let z be an exposed point of M_{e}, and let R be an ($n-2$)-dimensional affine set in T_{e} with the property $M_{e} \cap R=\{z\}$. If $l(e)$ is the one-dimensional subspace of L containing e, then $R+l(e)$ is a hyperplane in E^{n} that supports M at a single point, say x. Hence, x is an exposed point of M. By condition (6), M^{\prime} has an exposed point x^{\prime} associate to x, and there is a neighborhood $W \subset E^{n}$ of θ such that $M^{\prime} \cap\left(x^{\prime}+W\right)$ is a translate of $M \cap(x+W)$. Denote by z^{\prime} and V, respectively, the orthogonal projections of x^{\prime} and W on T_{e}. Then V is a neighborhood of θ in T_{e} such that $M_{e}^{\prime} \cap\left(z^{\prime}+V\right)$ is a translate of $M_{e} \cap(z+V)$.

Similarly, by condition (7), for any exposed line segment $[u, z]$ of M_{e}, the set M_{e}^{\prime} contains an exposed line segment $\left[u^{\prime}, z^{\prime}\right]$ that is associate to $[u, z]$ and is a translate of $[u, z]$. If $u-z$ and $u^{\prime}-z^{\prime}$ have the same direction, then, as above, there exists a neighborhood V of θ in T_{e} such that $M_{e}^{\prime} \cap\left(u^{\prime}+V\right)$ is a translate of $M_{e} \cap(u+V)$ and $M_{e}^{\prime} \cap\left(z^{\prime}+V\right)$ is a translate of $M_{e} \cap(z+V)$.

By the inductive assumption, from Claim 2 it follows that M_{e}^{\prime} is a translate of M_{e} for any $e \in F$. Since

$$
M_{e} \cap\left(L \cap T_{e}\right)=M_{e}^{\prime} \cap\left(L \cap T_{e}\right)=\{\theta\}
$$

and both M_{e} and M_{e}^{\prime} lie in the same half-space of T_{e} determined by its ($n-2$)-dimensional subspace $L \cap T_{e}$, we have that $M_{e}=M_{e}^{\prime}$.

Obviously, $M \subset M_{e}+l(e)$ for any $e \in F$. If $x \notin M$, then, using the density of F in S_{L}, we can find a vector $e \in F$ such that the line $x+l(e)$ through x is disjoint to M. Then the orthogonal projection of x on T_{e} does not belong to M_{e}, whence $x \notin M_{e}+l(e)$. Summing up, we obtain that $M=\cap\left\{M_{e}+l(e): e \in F\right\}$.

Similarly, $M^{\prime}=\bigcap\left\{M_{e}^{\prime}+l(e): e \in F\right\}$. Since $M_{e}=M_{e}^{\prime}$ for all $e \in F$, we finally have $M^{\prime}=M$.

5. Auxiliary Lemmas

This section contains some more auxiliary statements necessary for the proof of Theorem 1.

Lemma 1. Let X be a nonempty set in E^{d}, and put $Y=z-X$ for some $z \in E^{d}$. Then any nonempty intersection $X \cap(x+Y), x \in E^{d}$, is symmetric about $(x+z) / 2$.

Proof. Obviously, a set $T \subset E^{d}$ is symmetric about a point $v \in E^{d}$ if and only if $T-v$ is symmetric about θ. Also, the intersection $T \cap(-T)$, if nonempty, is symmetric about θ. These two observations and the equality
$X \cap(x+Y)-\frac{x+z}{2}=X \cap(x+z-X)-\frac{x+z}{2}=\left(X-\frac{x+z}{2}\right) \cap\left(\frac{x+z}{2}-X\right)$
imply that $X \cap(x+Y)$, if nonempty, is symmetric about $(x+z) / 2$.

Lemma 2. Let subspaces $L_{1}, \ldots, L_{k} \subset E^{d}$ form a direct sum, and let $S_{i}, T_{i} \subset L_{i}$ and $x_{i} \in L_{i}$ be such that $S_{i} \cap\left(x_{i}+T_{i}\right) \neq \emptyset$ for all $i=1, \ldots, k$. Put

$$
S=S_{1} \oplus \cdots \oplus S_{k}, \quad T=T_{1} \oplus \cdots \oplus T_{k}, \quad x=x_{1}+\cdots+x_{k}
$$

Then the intersection $S \cap(x+T)$ is centrally symmetric if and only if all intersections $S_{i} \cap\left(x_{i}+T_{i}\right), i=1, \ldots, k$, are centrally symmetric.

Proof. Obviously,

$$
S \cap(x+T)=\left[S_{1} \cap\left(x_{1}+T_{1}\right)\right] \oplus \cdots \oplus\left[S_{k} \cap\left(x_{k}+T_{k}\right)\right] .
$$

If each set $S_{i} \cap\left(x_{i}+T_{i}\right)$ is symmetric about $z_{i} \in L_{i}, i=1, \ldots, k$, and $z=z_{1}+\cdots+z_{k}$, then the equality

$$
\begin{aligned}
S \cap(x+T)-z & =\left[S_{1} \cap\left(x_{1}+T_{1}\right)-z_{1}\right] \oplus \cdots \oplus\left[S_{k} \cap\left(x_{k}+T_{k}\right)-z_{k}\right] \\
& =\left[z_{1}-S_{1} \cap\left(x_{1}+T_{1}\right)\right] \oplus \cdots \oplus\left[z_{k}-S_{k} \cap\left(x_{k}+T_{k}\right)\right] \\
& =z-S \cap(x+T)
\end{aligned}
$$

implies that $S \cap(x+T)$ is symmetric about z.
Conversely, let the intersection $S \cap(x+T)$ be symmetric about a point $z \in E^{d}$. Clearly, $z \in L_{1} \oplus \cdots \oplus L_{k}$. Denote by φ_{i} the parallel projection of $L_{1} \oplus \cdots \oplus L_{k}$ onto L_{i} along $L_{1} \oplus \cdots \oplus L_{i-1} \oplus L_{i+1} \oplus \cdots \oplus L_{k}$, and let $z_{i}=\varphi_{i}(z), i=1, \ldots, k$. Then
$z_{i}-S_{i} \cap\left(x_{i}+T_{i}\right)=\varphi_{i}(z-S \cap(x+T))=\varphi_{i}(S \cap(x+T)-z)=S_{i} \cap\left(x_{i}+T_{i}\right)-z_{i}$.
Hence each set $S_{i} \cap\left(x_{i}+T_{i}\right)$ is symmetric about $z_{i}, i=1, \ldots, k$.
Lemma 3. Let X_{1}, X_{2}, \ldots be a sequence of centrally symmetric compact sets in E^{d} convergent in the Hausdorff metric to a bounded set X. Then the limit set X is also centrally symmetric.

Proof. Let X_{i} be symmetric about a point $z_{i}, i=1,2, \ldots$ Since $X_{i} \rightarrow X$, all the sets X_{i} are situated in a neighborhood of X, and, as a result, the sequence z_{1}, z_{2}, \ldots is bounded. If $z_{i_{1}}, z_{i_{2}}, \ldots$ is a subsequence of z_{1}, z_{2}, \ldots that converges to a point z, then

$$
X-z=\lim _{j \rightarrow \infty}\left(X_{i_{j}}-z_{i_{j}}\right)=\lim _{j \rightarrow \infty}\left(z_{i_{j}}-X_{i_{j}}\right)=z-X
$$

i.e., X is symmetric about z.

6. Proof of Theorem 1

First we prove the equivalence of conditions (1) and (2).
Since (1) obviously implies (2), it is sufficient to show that (2) \Rightarrow (1). Let $X=$ $K \cap\left(x+K^{\prime}\right), x \in E^{d}$, be nonempty, and choose a point $y \in X$. Then there is a sequence y_{1}, y_{2}, \ldots of points from int K that converges to y. Consider the intersections $X_{i}=K \cap\left(x+y_{i}-y+K^{\prime}\right), i=1,2, \ldots$ Since $y_{i} \in($ int $K) \cap\left(x+y_{i}-y+K\right)$, each set X_{i} has dimension d. By (2), all X_{i} are centrally symmetric. Since $X_{i} \rightarrow X$ in the Hausdorff metric when $i \rightarrow \infty, X$ is centrally symmetric itself (see Lemma 3).

The remaining part of the proof is devoted to the equivalence of conditions (1) and (3). Lemmas 1 and 2 above obviously imply that (3) \Rightarrow (1). Hence, it remains to show that $(1) \Rightarrow(3)$. Since the case $d=1$ is trivial, we assume that $d \geq 2$. If $K^{\prime}=z-K$ for a suitable vector $z \in E^{d}$, we have finished the proof. Assume that $K^{\prime} \neq z-K$ for any $z \in E^{d}$. Then Theorems 2 and 3 imply the existence of an exposed line segment $[a, b]$ of K that has an associate exposed line segment $\left[a^{\prime}, b^{\prime}\right]$ of $-K^{\prime}$ such that $\left[a^{\prime}, b^{\prime}\right]$ is not a translate of $[a, b]$. By a symmetry argument, we may assume that $\left\|a^{\prime}-b^{\prime}\right\|<\|a-b\|$.

Translating K and $-K^{\prime}$, if necessary, we may assume that $a=a^{\prime}=\theta$. Condition (1) implies the existence of a hyperplane H supporting both K and $-K^{\prime}$ such that K and $-K^{\prime}$ lie in the same closed half-space P determined by H, with $K \cap H=[\theta, b]$ and $\left(-K^{\prime}\right) \cap H=\left[\theta, b^{\prime}\right]$, where $\left.b^{\prime} \in\right] \theta, b[$. Moreover, there is a neighborhood W of the origin θ such that $K \cap W=\left(-K^{\prime}\right) \cap W$. Hence for any point $x \in$ int $K \cap W$, the intersection $K \cap\left(x+K^{\prime}\right)$ is a convex body, centrally symmetric about $x / 2$ (see Lemma 2). In particular, H supports $K \cap\left(x+K^{\prime}\right)$ along a line segment $\left.\left.[\theta, c], c \in\right] \theta, b\right]$, and the hyperplane $x+H$ supports $K \cap\left(x+K^{\prime}\right)$ along the line segment $[x, x-c]$. Moreover, $\theta \in \operatorname{int}\left(x+K^{\prime}\right)$, as shown in the proof of Theorem 2.

Denote by l the line containing the segment $[\theta, b]$, and let l_{x} be the line through x parallel to l. By a continuity argument, the point x above can be chosen so close to θ that the line segment $l_{x} \cap K$ becomes arbitrarily close to $[\theta, b]$; in particular, $l_{x} \cap K$ becomes longer than $\left[\theta, b^{\prime}\right]$. Thus we can translate $x+K^{\prime}$ along the line l_{x} into a position $x+w+K^{\prime}, w \in l$, such that the exposed line segment $\left[x+w, x+w-b^{\prime}\right]$ of the body $x+w+K^{\prime}$ lies in int K.

Claim 3. For any points $z \in] \theta, b\left[\right.$ and $\left.z^{\prime} \in\right] \theta, b^{\prime}[$, there is a neighborhood W of θ such that $\left(-K^{\prime}\right) \cap\left(z^{\prime}+W\right)$ is a translate of $K \cap(z+W)$.

Proof of Claim 3. First we choose z^{\prime} to be the middle point of $\left[x+w, x+w-b^{\prime}\right]$. Since $K \cap\left(x+w+K^{\prime}\right)$ is centrally symmetric, we obtain that the point $z \in[\theta, b]$ symmetric to z^{\prime} satisfies the conclusion of Claim 3. Shifting the body $x+w+K^{\prime}$ both ways along the line l_{x} such that $\left[x+w, x+w-b^{\prime}\right]$ remains in K, and using the symmetry of intersections $K \cap\left(x+w+K^{\prime}\right)$, we obtain that any point $u \in[\theta, b]$ from a small neighborhood of z satisfies, together with z^{\prime}, the conclusion of Claim 3. Coming back to z^{\prime}, we obtain that any point $u \in\left[x+w, x+w-b^{\prime}\right]$ from a small neighborhood of z^{\prime}, satisfies, together with z, the conclusion of Claim 3. Continuing along this way, we get the proof of Claim 3.

Claim 3 implies the following corollary.

Corollary 2. For any points $z \in] \theta, b\left[\right.$ and $\left.z^{\prime} \in\right] \theta, b^{\prime}[$, the generated cones
$C_{z}(K)=\{z+\lambda(x-z): x \in K, \lambda \geq 0\}, \quad C_{z^{\prime}}\left(K^{\prime}\right)=\left\{z^{\prime}+\lambda\left(x-z^{\prime}\right): x \in K^{\prime}, \lambda \geq 0\right\}$
satisfy the relation $C_{z^{\prime}}\left(K^{\prime}\right)+z^{\prime}=z-C_{z}(K)$, and each of these cones contains the line l.

Claim 4. The line segment $\left[\theta,-b^{\prime}\right]$ is an affine diameter of K^{\prime}, i.e., there are distinct parallel hyperplanes through θ and $-b^{\prime}$, respectively, both supporting K^{\prime}.

Proof of Claim 4. Equivalently, $\left[x+w, x+w-b^{\prime}\right]$ is stated to be an affine diameter of $x+w+K^{\prime}$. It is known (see, e.g., [2]) that a chord $[r, s]$ of a convex body $C \subset E^{d}$ is an affine diameter of C if and only if $[r, s]$ is a longest chord of C in the direction parallel to $[r, s]$.

Assume, for contradiction, that $\left[x+w, x+w-b^{\prime}\right]$ is not an affine diameter of $x+w+K^{\prime}$. Then there exists a line segment $[p, q] \subset\left(x+w+K^{\prime}\right)$ parallel to l and longer than $\left[x+w, x+w-b^{\prime}\right]$. By a continuity argument, we may consider that $] p, q\left[\subset \operatorname{int}\left(x+w+K^{\prime}\right)\right.$. Then the relative interior of the trapezoid A with bases $\left[x+w, x+w-b^{\prime}\right]$ and $[p, q]$ lies in the interior of $x+w+K^{\prime}$. Due to Corollary 2, we may choose the point $x \in$ int $K \cap W$ and the respective point $w \in l$ such that A intersects l along a line segment $\left[p_{1}, q_{1}\right]$ that lies inside $[\theta, b]$. Obviously, the hyperplanes $x+H$ and H support the symmetric convex body $K \cap\left(x+w+K^{\prime}\right)$ along the line segments $\left[x+w, x+w-b^{\prime}\right]$ and $\left[p_{1}, q_{1}\right]$, respectively, a contradiction with the fact that [p_{1}, q_{1}] is longer than $\left[x+w, x+w-b^{\prime}\right]$. Thus $\left[x+w, x+w-b^{\prime}\right]$ is a longest chord of $x+w+K^{\prime}$ in the direction l, whence it is an affine diameter of $x+w+K^{\prime}$.

Claim 5. There is a hyperplane T through θ and not containing l such that K^{\prime} has a pair of $(d-1)$-dimensional exposed faces parallel to T and containing the points θ and $-b^{\prime}$, respectively.

Proof of Claim 5. Since $\left[\theta,-b^{\prime}\right]$ is an affine diameter of K^{\prime}, there is a hyperplane T supporting K^{\prime} that passes through θ and does not contain l such that the hyperplane $T-b^{\prime}$ also supports K^{\prime}. We prove that the sets $K^{\prime} \cap T$ and $K^{\prime} \cap\left(T-b^{\prime}\right)$ are the required $(d-1)$-dimensional exposed faces of K^{\prime}.

First we show the existence of a neighborhood V of the point $t=-b^{\prime} / 2$ such that the line segment $(z+l) \cap K^{\prime}$ is of length at least $\left\|b^{\prime}\right\|$ for any point $z \in K^{\prime} \cap V$. An obvious modification of the considerations preceding Claim 3 implies the existence of a point $x \in K$ close to $-t$ and of a point $w \in l$ such that $\left[w+x, w+x-b^{\prime}\right]$ lies in K. Moreover, Claim 3 implies the existence of a neighborhood U of $-t$ such that $\left[w+x, w+x-b^{\prime}\right] \subset K$ for all $x \in K \cap U$. Furthermore, U can be chosen such that $\left(-K^{\prime}\right) \cap U=K \cap U$. Then each intersection $K \cap\left(x+w+K^{\prime}\right), x \in K \cap U$, is centrally symmetric and is supported by the hyperplane $x+H$ along the line segment $\left[x+w, x+w-b^{\prime}\right]$. Hence each $K \cap\left(x+w+K^{\prime}\right), x \in K \cap U$, is supported by H along a line segment $\left[r, r-b^{\prime}\right]$ that lies in l and is a translate of $\left[x+w, x+w-b^{\prime}\right]$. Obviously, the line segment $\left[r-x-w, r-x-w-b^{\prime}\right]$ is of length $\left\|b^{\prime}\right\|$ and lies in
$K^{\prime} \cap(l-x-w)=K^{\prime} \cap(l-x)$. Therefore, the segment $K^{\prime} \cap(l-x)$ is of length at least $\left\|b^{\prime}\right\|$. Finally, put $V=-U$.

On the other hand, $\left[\theta,-b^{\prime}\right]$ is a longest chord of K^{\prime} in the direction l. Hence the line segment $(z+l) \cap K^{\prime}$ is exactly of length $\left\|b^{\prime}\right\|$ for any point $z \in K^{\prime} \cap V$. Since each such segment lies between the parallel hyperplanes T and $T-b^{\prime}$, its endpoints lie on T and $T-b^{\prime}$, respectively. Obviously, these endpoints fill some $(d-1)$-dimensional sets in T and $T-b^{\prime}$, respectively. Thus both sets $K^{\prime} \cap T$ and $K^{\prime} \cap\left(T-b^{\prime}\right)$ are ($d-1$)dimensional.

Claim 6. K and K^{\prime} are similarly represented as direct sums $K=Q \oplus[\theta, b]$ and $K^{\prime}=Q^{\prime} \oplus\left[\theta, b^{\prime}\right]$, where Q and Q^{\prime} are $(d-1)$-dimensional compact convex sets in T.

Proof of Claim 6. In view of Corollary 2 and Claim 5, it is sufficient to prove that for any two-dimensional plane L through l, both intersections $P=K \cap L$ and $P^{\prime}=K^{\prime} \cap L$, if two-dimensional, are isothetic parallelograms.

According to the consideration above, P is supported by the line l along the segment [$\theta, b]$, and P^{\prime} is supported by l along the line segment $\left[\theta,-b^{\prime}\right]$. Moreover, P^{\prime} is supported by the lines $R=L \cap T$ and $R-b^{\prime}$ along some segments $\left[\theta, v^{\prime}\right]$ and $\left[-b^{\prime}, w^{\prime}\right]$, respectively, where T is the hyperplane defined in Claim 5.

Since any nonempty intersection $K \cap\left(x+K^{\prime}\right)$ is supported by the hyperplanes H and $x+H$ along the line segments $[\theta, w] \subset l$ and $[x, x-w]$, respectively, and since both these segments lie in L, we conclude that for any point $x \in L$ the set $P \cap\left(x+P^{\prime}\right)$ equals $L \cap K \cap\left(x+K^{\prime}\right)$. Hence $P \cap\left(x+P^{\prime}\right), x \in L$, is centrally symmetric if and only if $K \cap\left(x+K^{\prime}\right)$ is centrally symmetric.

To show that P and P^{\prime} are isothetic parallelograms, we consider only those intersections $P \cap\left(x+P^{\prime}\right), x \in L$, which are parallelograms, and, as a consequence, derive the respective properties of the boundaries of P and P^{\prime}. For simplicity, our considerations are performed in the plane L, such that both P and P^{\prime} have nonempty interior.

Choose a point $x \in \operatorname{int} P$ such that $\left[x, x-v^{\prime}\right]$ intersects $[\theta, b]$ and $\left[x, x-b^{\prime}\right]$ intersects the boundary of P. From the central symmetry of $P \cap\left(x+P^{\prime}\right)$ we conclude that $P \cap\left(x+P^{\prime}\right)$ has to be a parallelogram. Then bd P contains a line segment $[\theta, v]$ that lies in R. By a similar argument, bd P contains a line segment $[b, w] \subset b+R$.

Considering the possible cases $\|v\|<\left\|v^{\prime}\right\|,\|v\|>\left\|v^{\prime}\right\|,\|v\|=\left\|v^{\prime}\right\|$, we first assume that $\|v\|<\left\|v^{\prime}\right\|$. Then there is a scalar $\lambda>0$ such that $\lambda v+x+P^{\prime}$ entirely contains $[\theta, v]$ and $\left[\lambda v+x, \lambda v+x-v^{\prime}\right]$ still intersects $[\theta, b]$. Since $P \cap\left(\lambda v+x+P^{\prime}\right)$ is a parallelogram, bd P contains a line segment $[v, u]$ parallel to l. Moving $\lambda v+x+P^{\prime}$ further along the ray $\{\lambda v: \lambda>0\}$ and looking for the intersection of P and $\lambda v+x+P^{\prime}$, we obtain that bd P^{\prime} contains a line segment $\left[v^{\prime}, u^{\prime}\right]$ parallel to l. Now moving $v+P^{\prime}$ along the ray $\{\lambda b: \lambda>0\}$ and, if necessary, again along the ray $\{\lambda v: \lambda>0\}$, we obtain that $\|u-v\|$ is at least $\left\|b^{\prime}\right\|$, and P^{\prime} is a parallelogram. Further movement of $v+P^{\prime}$ along the ray $\{\lambda v: \lambda>0\}$ gives us that P is also a parallelogram isothetic to P^{\prime}.

In a similar way, any of the cases $\|v\|>\left\|v^{\prime}\right\|,\|w\|>\left\|w^{\prime}\right\|,\|w\|<\left\|w^{\prime}\right\|$ gives us that P and P^{\prime} are isothetic parallelograms. It remains to assume that $\|v\|=\left\|v^{\prime}\right\|$ and $\|w\|=\left\|w^{\prime}\right\|$. Then moving $b^{\prime}+P^{\prime}$ along the ray $\{\lambda v: \lambda>0\}$ we get that $w=v$ and $w^{\prime}=v^{\prime}$, i.e., that P and P^{\prime} are isothetic parallelograms.

We finalize the proof of Theorem 1 by induction on d. The case $d=2$ is confirmed in the proof of Claim 6. Assume that (1) \Rightarrow (3) is true for all $d \leq n-1, n \geq 2$, and let convex bodies $K, K^{\prime} \subset E^{n}$ satisfy condition (1). By Claim $6, K$ and K^{\prime} are similarly represented as direct sums $K=Q \oplus[\theta, b]$ and $K^{\prime}=Q^{\prime} \oplus\left[\theta, b^{\prime}\right]$, where Q and Q^{\prime} are ($n-1$)-dimensional compact convex sets in the $(n-1)$-dimensional subspace T of E^{n}. Obviously, $Q \cap\left(x+Q^{\prime}\right), x \in T$, is nonempty if and only if $K \cap\left(x+K^{\prime}\right)$ is nonempty. By condition (1), every nonempty intersection $Q \cap\left(x+Q^{\prime}\right), x \in T$, is centrally symmetric, and, by the inductive assumption, Q and Q^{\prime} satisfy condition (3), with $n-1$ instead of d. From $K=Q \oplus[\theta, b]$ and $K^{\prime}=Q^{\prime} \oplus\left[\theta, b^{\prime}\right]$ we obviously conclude that K and K^{\prime} satisfy condition (3), with n instead of d.

Acknowledgment

The author thanks the referee for many helpful comments on an earlier draft of this paper.

References

1. P. R. Goodey, Homothetic ellipsoids, Math. Proc. Cambridge Philos. Soc. 93 (1983), 25-34.
2. P. C. Hammer, Convex curves of constant Minkowski breadth, in Convexity (V. Klee, ed.), pp. 291-304, American. Mathematical. Society., Providence, RI, 1963.
3. A. B. Kharazishvili, Characterization properties of a parallelepiped, Soobshch. Akad. Nauk. Gruzin. SSR 72 (1973), 17-19.
4. D. G. Larman and C. A. Rogers, Increasing paths on the one-skeleton of a convex body and the directions of line segments on the boundary of a convex body, Proc. London Math. Soc. 23 (1971), 683-694.
5. V. Soltan, A characterization of homothetic simplices, Discrete Comput. Geom. 22 (1999), 193-200.
