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Abstract. For a pair of convex bodies K and K ′ in Ed , the d-dimensional intersections
K ∩ (x + K ′), x ∈ Ed , are centrally symmetric if and only if K and K ′ are represented
as direct sums K = R ⊕ P and K ′ = R′ ⊕ P ′ such that: (i) R is a compact convex set of
some dimension m, 0 ≤ m ≤ d, and R′ = z − R for a suitable vector z ∈ Ed , (ii) P and
P ′ are isothetic parallelotopes, both of dimension d − m.

1. Introduction and Main Result

Several results of convex geometry characterize pairs of convex bodies whose intersec-
tions of translates satisfy given geometric properties. Thus, convex bodies K and K ′ in
the Euclidean space Ed are homothetic ellipsoids if and only if for any translate x + K ′,
x ∈ Ed , the intersection of the boundaries of K and x + K ′ lies in a hyperplane (see
[1]). Similarly, convex bodies K and K ′ in Ed are homothetic simplexes if and only if
the d-dimensional intersections K ∩ (x + K ′), x ∈ Ed , belong to a unique homothety
class (more generally, to at most countably many homothety classes) of convex bodies
(see [5]).

We study below the following problem of a similar spirit, related to centrally sym-
metric convex bodies.

Problem. Describe the pairs of convex bodies K and K ′ in Ed such that all d-
dimensional intersections K ∩ (x + K ′), x ∈ Ed , are centrally symmetric.

In what follows we need some definitions. A convex body is a compact convex set
with nonempty interior in Ed . A set X ⊂ Ed is called centrally symmetric if and only if
there is a point z ∈ Ed such that X − z = z − X ; in this case X is symmetric about z.
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We say that sets X and X ′ in Ed are similarly represented as direct sums

X = X1 ⊕ · · · ⊕ Xk, X ′ = X ′1 ⊕ · · · ⊕ X ′k

if there are subspaces L1, . . . , Lk ⊂ Ed forming a direct sum such that both Xi and X ′i
lie in Li for all i = 1, . . . , k.

A parallelotope is a compact convex set in Ed that is a direct sum of finitely many
line segments. Two parallelotopes P and P ′ of the same dimension k (1 ≤ k ≤ d) are
called isothetic provided they can be similarly represented as direct sums

P = P1 ⊕ · · · ⊕ Pk, P ′ = P ′1 ⊕ · · · ⊕ P ′k,

where Pi and P ′i are parallel line segments for all i = 1, . . . , k.
Our main result is given in the following theorem.

Theorem 1. For a pair of convex bodies K and K ′ in Ed , the following three conditions
are equivalent:

(1) All nonempty intersections K ∩ (x + K ′), x ∈ Ed , are centrally symmetric.
(2) All d-dimensional intersections K ∩ (x + K ′), x ∈ Ed , are centrally symmetric.
(3) K and K ′ are similarly represented as direct sums

K = R ⊕ P and K ′ = R′ ⊕ P ′

such that conditions (i) and (ii) below are satisfied:
(i) R is a compact convex set of some dimension m, 0 ≤ m ≤ d, and R′ = z− R

for a suitable vector z ∈ Ed ,
(ii) P and P ′ are isothetic parallelotopes, both of dimension d − m.

Observation 1. The cases m = d and m = 0 in condition (3) of Theorem 1 are
interpreted as follows: m = d means that K ′ = z − K for a suitable vector z ∈ Ed ,
while m = 0 means that K and K ′ are isothetic parallelotopes, both of dimension d .

Corollary 1 [3]. A convex body K ⊂ Ed is a parallelotope if and only if there is a
real number λ ∈ ]0, 1[ such that all nonempty intersections K ∩ (x + λK ), x ∈ Ed , are
centrally symmetric.

2. Auxiliary Theorems

The proof of Theorem 1 is organized by induction on d = dim Ed and uses Theorems 2
and 3 below. Recall that a subset F of a convex body M ⊂ Ed is called an exposed face
of M provided there is a hyperplane H supporting M such that F = M ∩ H . In what
follows, F(M) denotes the family of exposed faces of M .

If an exposed face F of M consists of a single point (respectively, of a line segment),
then it is called an exposed point (respectively, an exposed line segment). Throughout
this paper we denote by F0(M) and F1(M) the family of exposed points and the family
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of exposed line segments of M , respectively. Generally, the endpoints of an exposed
line segment of M are not exposed points themselves, but they are extreme points of the
body. Recall that a point x ∈ M is extreme if no open line segment ]y, z[, y �= z, with
the property x ∈ ]y, z[ ⊂ M exists. In a standard way, the set of extreme points of M is
denoted ext M .

Let M and M ′ be a given pair of convex bodies in Ed . For any hyperplane H supporting
M , denote by H ′ the hyperplane parallel to H and supporting M ′ such that M ′ lies on
the same side from H ′ as M does with respect to H . In this case the exposed face
F ′ = M ′ ∩H ′ of M ′ will be called associate to the exposed face F = M ∩H.Generally,
the relation “is associate to” is not a one-to-one correspondence between the families
F(M) and F(M ′).

The following theorems are auxiliary for the proof of Theorem 1. (To distinguish
similarly looking elements, we use θ for the zero vector of Ed .)

Theorem 2. Let M and M ′ be convex bodies in Ed such that all nonempty intersections
M ∩ (x +M ′), x ∈ Ed , are centrally symmetric. Then M and−M ′ satisfy the following
two conditions:

(4) Any exposed point a of M has an associate exposed point a′ of −M ′ such that
(−M ′)∩ (a′ +W ) is a translate of M ∩ (a+W ) for a suitable neighborhood W
of θ .

(5) Any exposed line segment [a, b] of M has an associate exposed line segment
[a′, b′] of−M ′ parallel to [a, b] and such that for a suitable neighborhood W of
θ the sets (−M ′)∩(a′ +W ) and (−M ′)∩(b′ +W ) are translates of M∩(a+W )

and M ∩ (b + W ), respectively, provided a − b and a′ − b′ have the same
direction.

Theorem 3. Let M and M ′ be convex bodies in Ed . Then M ′ is a translate of M if and
only if the following two conditions are satisfied:

(6) Any exposed point a of M has an associate exposed point a′ of M ′ such that
M ′ ∩ (a′ + W ) is a translate of M ∩ (a + W ) for a suitable neighborhood W
of θ .

(7) Any exposed line segment [a, b] of M has an associate exposed line segment
[a′, b′] of M ′ that is a translate of [a, b] and such that for a suitable neighborhood
W of θ the sets M ′ ∩ (a′ +W ) and M ′ ∩ (b′ +W ) are translates of M ∩ (a+W )

and M ∩ (b + W ), respectively, provided a − b and a′ − b′ have the same
direction.

In a standard way, bd M and int M denote, respectively, the boundary and the interior
of a convex body M ⊂ Ed . A boundary point x of M is called regular if there is a unique
hyperplane supporting M at x . Denote by N (M) the family of outward unit normals to
M at its regular points. In particular, M is a polytope if and only if the set N (M) is finite.
Finally, Br (a) = {x ∈ Ed : ||x − a|| ≤ r} stands for the closed ball with center a and
radius r , and S = {x ∈ Ed : ‖x‖ = 1} denotes the unit sphere of Ed .
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3. Proof of Theorem 2

We prove condition (5) only, since the proof of (4) may be considered as a limit case of
(5), by taking a = b and a′ = b′.

Let [a, b] be an exposed line segment of M . Translating M , if necessary, we may
assume that a = θ . Denote by H a hyperplane with the property M ∩ H = [θ, b], and
let e be the unit vector orthogonal to H such that M and e belong to the same closed
half-space P determined by H . Let G be the hyperplane through θ orthogonal to the
line segment [θ, b], and let Q be the closed half-space determined by G and disjoint to
b. Next, put R = b/2+ Q. In other words, R is the closed half-space determined by the
hyperplane b/2+ G and containing θ .

Choose a real number λ > 0 so small that the hyperplane Hλ = λe + H intersects
int M . Denote by Dλ the part of R that lies between H and Hλ, and let Mλ be the set
of regular points of M which lie in Dλ. Now let N (Mλ) be the set of outward unit
normals to M at points from Mλ. Since M ∩ H = [θ, b] and R excludes the segment
]b/2, b], by a compactness argument we obtain the existence of a number δ such that
0 < δ < min{λ, ‖b‖/2} and the closure of N (Mδ) belongs to an open half-sphere
of the unit sphere S. Indeed, otherwise we would obtain the existence of two parallel
hyperplanes through θ and a point from ]θ, b[, respectively, both supporting M .

Translating M ′, if necessary, we may assume that M ′ is disjoint to int P and is
supported by H at θ such that M ′ ∩ H lies in Q. By a continuity argument, we may
choose a vector x ∈ Dδ such that θ ∈ int(x + M ′) and P ∩ (x + M ′) lies in Dλ. From
the above it follows that the intersection K = M ∩ (x+M ′) is a convex body situated in
Dδ and that K ∩ H = [θ,w] for a point w ∈ ]θ, b/2]. By the hypothesis, K is centrally
symmetric.

Let F be the hyperplane supporting K and parallel to H , F �= H . Obviously, F lies
in the closed slab between H and x + H . Because K is centrally symmetric, there is an
exposed line segment [z, z−w] of K with the property K ∩ F = [z, z−w]. Moreover,
K is symmetric about the middle point of the line segment [θ, z].

We claim that z ∈ int M . Indeed, assume, for contradiction, that z ∈ bd M . Since
z ∈ K ⊂ Dδ and F intersects the interior of M , the boundary of K in any neighborhood
of z should contain a (d − 1)-dimensional piece of bd M . Hence any neighborhood of z
contains a regular point p of K that belongs to Mδ . Let ep be the outward unit normal of
K (also of M) at p. By the symmetry of K about z/2, the point q = z − p is a regular
point of K and the outward unit normal eq to K at q is opposite to ep: eq = −ep. Since
θ ∈ int(x + M ′), we can choose p so close to z that the respective point q belongs to
int(x + M ′). As a result, q lies in the boundary of M , and whence q ∈ Mδ . Thus we
have two distinct points p, q ∈ Mδ with ep = −eq , which is in contradiction with the
choice of δ. Hence z ∈ int M .

The inclusions z ∈ bd K and z ∈ int M obviously imply that z ∈ bd(x + M ′),
otherwise z would lie in the interior of K . Moreover, the hyperplane F should coincide
with x + H . Indeed, assume for a moment that F is different from x + H . In this case,
one can find a point u ∈ [x, z[, which belongs to M ∩ (x +M ′) and lies between x + H
and F . The last is in contradiction with the choice of F .

Next we show that z = x . Indeed, since z ∈ bd(x + M ′) and since x + H supports
K along the line segment [z, z − w], the hyperplane x + H supports x + M ′ along a



Pairs of Convex Bodies with Centrally Symmetric Intersections of Translates 609

line segment [z, s] that contains [z, z − w]. Hence M ′ ∩ H = [z − x, s − x]. From the
inclusion M ′ ∩ H ⊂ Q and the fact that G supports M ′ ∩ H at θ , we conclude that
z− x = θ , i. e., z = x . As a result, M ′ ∩H = [θ, s− x],whence [θ, x− s] is an exposed
line segment of −M ′ associate to [θ, b].

Since θ ∈ int(x + M ′) and x = z ∈ int M , there is a neighborhood W1 ⊂ Ed of
θ such that W1 ⊂ int(x + M ′) and x − W1 is a neighborhood of x that lies in int M .
Because K is symmetric about x/2, we have

M ∩W1 = K ∩W1 = x − K ∩ (x −W1) = x − (x + M ′)∩ (x −W1) = (−M ′)∩W1.

Repeating the consideration above for the points b and x − s, we obtain the existence
of a neighborhood W2 ⊂ Ed of θ such that (M − b) ∩ W2 = (−M ′ − x + s) ∩ W2.
Obviously, the set W = W1 ∩W2 is a required neighborhood of θ .

4. Proof of Theorem 3

If a convex body M ′ is a translate of a convex body M , then conditions (6) and (7) are
trivially satisfied.

Conversely, let M and M ′ be a pair of convex bodies in Ed that satisfy conditions
(6) and (7). We show that M ′ is a translate of M . This part of the proof is organized by
induction on d = dim Ed .

The case d = 1 is trivial, and the case d = 2 is based on the following statement.

Claim 1. Let M and M ′ be convex bodies in the plane E2 that satisfy conditions (6)
and (7). Then the relation “is associate to” gives one-to-one correspondencesF0(M)↔
F0(M ′) and F1(M)↔ F1(M ′).

Proof of Claim 1. Choose a point x ∈ F0(M), and let x ′ ∈ F0(M ′) be associate to x
such that M ′ ∩(x ′+W ) is a translate of M∩(x+W ) for a suitable neighborhood W of θ .
Let H be a line with M∩H = {x}, and let H ′ be the line parallel to H with M ′∩H ′ = {x ′}.
Assume for a moment that x has another associate point x ′1 ∈ F0(M ′), that is, assume the
existence of a line H1 distinct from H such that M ∩H1 = {x} and of the line H ′1 parallel
to H1 and supporting M ′ at x ′1 only. Since M ′ ∩ (x ′ +W ) = (x ′ − x)+ M ∩ (x +W ),
the line H ′′ = x ′ − x + H1 supports M ′ at x ′. Thus H ′1 and H ′′ are parallel lines both
supporting M ′ from the same side. As a result, H ′1 = H ′′ and H ′1 supports M ′ along the
line segment [x ′, x ′1], contradicting the condition M ′ ∩ H ′1 = {x ′1}. Hence any exposed
point x of M has a unique associate exposed point x ′ of M ′.

Next we prove that distinct exposed points x1 and x2 of M have distinct associate
exposed points x ′1 and x ′2 of M ′. Indeed, assume, for contradiction, that x ′1 = x ′2. Let H1,
H ′1 and H2, H ′2 be the respective pairs of parallel lines with the properties

M ∩ H1 = {x1}, M ∩ H2 = {x2}, M ′ ∩ H ′1 = M ′ ∩ H ′2 = {x ′1}.
Let also W1 and W2 be some neighborhoods of θ that satisfy condition (6) for the pairs
x1, x ′1 and x2, x ′1, respectively. Then the neighborhood W = W1 ∩ W2 of θ satisfies
condition (6) for each of the pairs x1, x ′1 and x2, x ′1. As a result, both lines H1 = x1 −
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x ′1+H ′1 and H ′ = x2− x ′1+H ′1 support M such that M∩H1 = {x1} and M∩H ′ = {x2}.
Since the lines H1 and H ′ are parallel and support M from the same side, they should
coincide. The last is in contradiction with x1 �= x2.

Finally, let x ′ ∈ F0(M ′) and let H ′ be a line with the property M ′ ∩ H ′ = {x ′}.
Denote by H the line parallel to H ′ and supporting M such that M lies on the same side
from H as M ′ does with respect to H ′. If H supported M along a line segment [v,w],
then [v,w] would be an exposed line segment of M with no associate in F1(M ′). Hence
the intersection M ∩ H is an exposed point x of M . As a result, any exposed point of
M ′ is associate to an exposed point of M . Summing up, we obtain that the relation “is
associate to” gives a one-to-one correspondence F0(M)↔ F0(M ′).

Let [x, z] ∈ F1(M), and let [x ′, z′] ∈ F1(M ′) be associate to [x, z]. Since the line
supporting M along [x, z] is uniquely defined, [x ′, z′] is a unique associate to [x, z].
Obviously, distinct line segments from F1(M) have distinct associate line segments
from F1(M ′).

Conversely, let [x ′, z′] ∈ F1(M ′) and let H ′ be the line with the property M ′ ∩ H ′ =
[x ′, z′]. Denote by H the line parallel to H ′ and supporting M such that M lies on the
same side from H as M ′ does with respect to H ′. Assume for a moment that M ∩ H
consists of a single point v, and let v′ ∈ F0(M ′) be associate to v. As is easily seen, v′

should coincide with one of x ′, z′. Since any neighborhood of x ′ or z′ contains a part of
the line segment [x ′, z′], from (7) it follows that M ∩ H should contain a line segment
parallel to [x ′, z′], contradicting the assumption M∩H = {v}. Hence [x ′, z′] is associate
to a line segment [x, z] ∈ F1(M). Summing up, we obtain that the relation “is associate
to” gives a one-to-one correspondence F1(M)↔ F1(M ′).

We continue the proof of the inductive statement for d = 2. As is easily seen, any
extreme point of a planar convex body is either an exposed point or an endpoint of an
exposed line segment of the body. From Claim 1 and conditions (6) and (7) we obtain
that for any extreme point x of M there is a unique extreme point x ′ of M ′ such that
M ′ ∩ (x ′ +Wx ) is a translate of M ∩ (x +Wx ) for a suitable neighborhood Wx of θ

Denote by O(M) the family of open line segments ]v, z[ such that [v, z] ∈ F1(M).
Obviously, the family

C = O(M) ∪ {bd M ∩Wx : x ∈ ext M}
is an open cover for bd M . Hence bd M is the union of finitely many open arcs V1, . . . ,

Vm ∈ C. From Claim 1 we conclude that the respective translates V ′1, . . . , V ′m of these
arcs cover bd M ′. The last obviously implies that M ′ is a translate of M .

Assume that the inductive statement (“M ′ is a translate of M”) is true for all d ≤ n−1,
n ≥ 3, and let M and M ′ be convex bodies in En that satisfy conditions (6) and (7).
Choose a point a ∈ F0(M), and let a′ ∈ F0(M ′) be associate to a. Translating, if
necessary, we may assume that a = a′ = θ , and that L ⊂ En is an (n − 1)-dimensional
subspace with the property M ∩ L = M ′ ∩ L = {θ} and such that both M and M ′ lie
in the same half-space of En determined by L . Denote by H and H ′ the hyperplanes
parallel to L that support M and M ′, respectively (H �= L �= H ′). Our goal is to show
that M = M ′.

Let SL be the unit sphere of L , and let G be the set of vectors in SL such that each
e ∈ G is parallel to a line segment from the set (bd M ∪ bd M ′)\(H ∪ H ′). As follows
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from [4], the (n− 2)-dimensional measure of G equals 0. Hence the complementary set
F = SL\G is dense in SL .

For any vector e ∈ F , denote by Te the (n−1)-dimensional subspace of En orthogonal
to e. Let Me (respectively, M ′e) be the orthogonal projection of M (respectively, of M ′)
on Te. Due to the choice of F , any boundary point of Me (respectively, of M ′e) is the
orthogonal projection of a unique boundary point of M (respectively, of M ′).

Claim 2. For any e ∈ F , the orthogonal projections Me and M ′e satisfy conditions (6)
and (7).

Proof of Claim 2. Let z be an exposed point of Me, and let R be an (n−2)-dimensional
affine set in Te with the property Me ∩ R = {z}. If l(e) is the one-dimensional subspace
of L containing e, then R+ l(e) is a hyperplane in En that supports M at a single point,
say x . Hence, x is an exposed point of M . By condition (6), M ′ has an exposed point x ′

associate to x , and there is a neighborhood W ⊂ En of θ such that M ′ ∩ (x ′ + W ) is a
translate of M ∩ (x +W ). Denote by z′ and V , respectively, the orthogonal projections
of x ′ and W on Te. Then V is a neighborhood of θ in Te such that M ′e ∩ (z′ + V ) is a
translate of Me ∩ (z + V ).

Similarly, by condition (7), for any exposed line segment [u, z] of Me, the set M ′e
contains an exposed line segment [u′, z′] that is associate to [u, z] and is a translate
of [u, z]. If u − z and u′ − z′ have the same direction, then, as above, there exists a
neighborhood V of θ in Te such that M ′e ∩ (u′ + V ) is a translate of Me ∩ (u + V ) and
M ′e ∩ (z′ + V ) is a translate of Me ∩ (z + V ).

By the inductive assumption, from Claim 2 it follows that M ′e is a translate of Me for
any e ∈ F . Since

Me ∩ (L ∩ Te) = M ′e ∩ (L ∩ Te) = {θ}
and both Me and M ′e lie in the same half-space of Te determined by its (n−2)-dimensional
subspace L ∩ Te, we have that Me = M ′e.

Obviously, M ⊂ Me + l(e) for any e ∈ F . If x �∈ M , then, using the density of F in
SL , we can find a vector e ∈ F such that the line x + l(e) through x is disjoint to M .
Then the orthogonal projection of x on Te does not belong to Me, whence x �∈ Me+ l(e).
Summing up, we obtain that M = ∩ {Me + l(e) : e ∈ F}.

Similarly, M ′ = ⋂ {M ′e + l(e) : e ∈ F}. Since Me = M ′e for all e ∈ F , we finally
have M ′ = M .

5. Auxiliary Lemmas

This section contains some more auxiliary statements necessary for the proof of
Theorem 1.

Lemma 1. Let X be a nonempty set in Ed , and put Y = z− X for some z ∈ Ed . Then
any nonempty intersection X ∩ (x + Y ), x ∈ Ed , is symmetric about (x + z)/2.
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Proof. Obviously, a set T ⊂ Ed is symmetric about a point v ∈ Ed if and only if T −v
is symmetric about θ . Also, the intersection T ∩ (−T ), if nonempty, is symmetric about
θ . These two observations and the equality

X ∩ (x + Y )− x + z

2
= X ∩ (x + z − X)− x + z

2
=
(

X − x + z

2

)
∩
(

x + z

2
− X

)

imply that X ∩ (x + Y ), if nonempty, is symmetric about (x + z)/2.

Lemma 2. Let subspaces L1, . . . , Lk ⊂ Ed form a direct sum, and let Si , Ti ⊂ Li and
xi ∈ Li be such that Si ∩ (xi + Ti ) �= ∅ for all i = 1, . . . , k. Put

S = S1 ⊕ · · · ⊕ Sk, T = T1 ⊕ · · · ⊕ Tk, x = x1 + · · · + xk .

Then the intersection S ∩ (x + T ) is centrally symmetric if and only if all intersections
Si ∩ (xi + Ti ), i = 1, . . . , k, are centrally symmetric.

Proof. Obviously,

S ∩ (x + T ) = [S1 ∩ (x1 + T1)]⊕ · · · ⊕ [Sk ∩ (xk + Tk)].

If each set Si ∩ (xi +Ti ) is symmetric about zi ∈ Li , i = 1, . . . , k, and z = z1+· · ·+ zk ,
then the equality

S ∩ (x + T )− z = [S1 ∩ (x1 + T1)− z1]⊕ · · · ⊕ [Sk ∩ (xk + Tk)− zk]

= [z1 − S1 ∩ (x1 + T1)]⊕ · · · ⊕ [zk − Sk ∩ (xk + Tk)]

= z − S ∩ (x + T )

implies that S ∩ (x + T ) is symmetric about z.
Conversely, let the intersection S ∩ (x + T ) be symmetric about a point z ∈ Ed .

Clearly, z ∈ L1 ⊕ · · · ⊕ Lk . Denote by ϕi the parallel projection of L1 ⊕ · · · ⊕ Lk onto
Li along L1 ⊕ · · · ⊕ Li−1 ⊕ Li+1 ⊕ · · · ⊕ Lk , and let zi = ϕi (z), i = 1, . . . , k. Then

zi − Si ∩ (xi + Ti ) = ϕi (z− S ∩ (x + T )) = ϕi (S ∩ (x + T )− z) = Si ∩ (xi + Ti )− zi .

Hence each set Si ∩ (xi + Ti ) is symmetric about zi , i = 1, . . . , k.

Lemma 3. Let X1, X2, . . . be a sequence of centrally symmetric compact sets in Ed

convergent in the Hausdorff metric to a bounded set X . Then the limit set X is also
centrally symmetric.

Proof. Let Xi be symmetric about a point zi , i = 1, 2, . . . Since Xi → X , all the
sets Xi are situated in a neighborhood of X , and, as a result, the sequence z1, z2, . . . is
bounded. If zi1 , zi2 , . . . is a subsequence of z1, z2, . . . that converges to a point z, then

X − z = lim
j→∞

(Xij − zij ) = lim
j→∞

(zij − Xij ) = z − X,

i.e., X is symmetric about z.
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6. Proof of Theorem 1

First we prove the equivalence of conditions (1) and (2).
Since (1) obviously implies (2), it is sufficient to show that (2) ⇒ (1). Let X =

K ∩ (x + K ′), x ∈ Ed , be nonempty, and choose a point y ∈ X . Then there is a
sequence y1, y2, . . . of points from int K that converges to y. Consider the intersections
Xi = K ∩ (x + yi − y + K ′), i = 1, 2, . . . Since yi ∈ (int K )∩ (x + yi − y + K ), each
set Xi has dimension d . By (2), all Xi are centrally symmetric. Since Xi → X in the
Hausdorff metric when i →∞, X is centrally symmetric itself (see Lemma 3).

The remaining part of the proof is devoted to the equivalence of conditions (1) and
(3). Lemmas 1 and 2 above obviously imply that (3)⇒ (1). Hence, it remains to show
that (1)⇒ (3). Since the case d = 1 is trivial, we assume that d ≥ 2. If K ′ = z− K for
a suitable vector z ∈ Ed , we have finished the proof. Assume that K ′ �= z − K for any
z ∈ Ed . Then Theorems 2 and 3 imply the existence of an exposed line segment [a, b]
of K that has an associate exposed line segment [a′, b′] of−K ′ such that [a′, b′] is not a
translate of [a, b]. By a symmetry argument, we may assume that ‖a′ − b′‖ < ‖a − b‖.

Translating K and −K ′, if necessary, we may assume that a = a′ = θ . Condition
(1) implies the existence of a hyperplane H supporting both K and −K ′ such that K
and −K ′ lie in the same closed half-space P determined by H , with K ∩ H = [θ, b]
and (−K ′) ∩ H = [θ, b′], where b′ ∈ ]θ, b[. Moreover, there is a neighborhood W of
the origin θ such that K ∩ W = (−K ′) ∩ W . Hence for any point x ∈ int K ∩ W , the
intersection K∩(x+K ′) is a convex body, centrally symmetric about x/2 (see Lemma 2).
In particular, H supports K ∩ (x + K ′) along a line segment [θ, c], c ∈ ]θ, b], and the
hyperplane x + H supports K ∩ (x + K ′) along the line segment [x, x − c]. Moreover,
θ ∈ int(x + K ′), as shown in the proof of Theorem 2.

Denote by l the line containing the segment [θ, b], and let lx be the line through x
parallel to l. By a continuity argument, the point x above can be chosen so close to θ
that the line segment lx ∩ K becomes arbitrarily close to [θ, b]; in particular, lx ∩ K
becomes longer than [θ, b′]. Thus we can translate x+K ′ along the line lx into a position
x +w+ K ′, w ∈ l, such that the exposed line segment [x +w, x +w− b′] of the body
x + w + K ′ lies in int K .

Claim 3. For any points z ∈ ]θ, b[ and z′ ∈ ]θ, b′[, there is a neighborhood W of θ
such that (−K ′) ∩ (z′ +W ) is a translate of K ∩ (z +W ).

Proof of Claim 3. First we choose z′ to be the middle point of [x + w, x + w − b′].
Since K ∩ (x + w + K ′) is centrally symmetric, we obtain that the point z ∈ [θ, b]
symmetric to z′ satisfies the conclusion of Claim 3. Shifting the body x + w + K ′ both
ways along the line lx such that [x+w, x+w−b′] remains in K , and using the symmetry
of intersections K ∩ (x + w + K ′), we obtain that any point u ∈ [θ, b] from a small
neighborhood of z satisfies, together with z′, the conclusion of Claim 3. Coming back to
z′, we obtain that any point u ∈ [x + w, x + w − b′] from a small neighborhood of z′,
satisfies, together with z, the conclusion of Claim 3. Continuing along this way, we get
the proof of Claim 3.

Claim 3 implies the following corollary.
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Corollary 2. For any points z ∈ ]θ, b[ and z′ ∈ ]θ, b′[, the generated cones

Cz(K ) = {z+λ(x−z) : x ∈ K , λ ≥ 0}, Cz′(K
′) = {z′+λ(x−z′) : x ∈ K ′, λ ≥ 0}

satisfy the relation Cz′(K ′) + z′ = z − Cz(K ), and each of these cones contains the
line l.

Claim 4. The line segment [θ,−b′] is an affine diameter of K ′, i.e., there are distinct
parallel hyperplanes through θ and −b′, respectively, both supporting K ′.

Proof of Claim 4. Equivalently, [x +w, x +w − b′] is stated to be an affine diameter
of x + w + K ′. It is known (see, e.g., [2]) that a chord [r, s] of a convex body C ⊂ Ed

is an affine diameter of C if and only if [r, s] is a longest chord of C in the direction
parallel to [r, s].

Assume, for contradiction, that [x + w, x + w − b′] is not an affine diameter of
x + w + K ′. Then there exists a line segment [p, q] ⊂ (x + w + K ′) parallel to l
and longer than [x + w, x + w − b′]. By a continuity argument, we may consider that
]p, q[ ⊂ int(x + w + K ′). Then the relative interior of the trapezoid A with bases
[x +w, x +w− b′] and [p, q] lies in the interior of x +w+ K ′. Due to Corollary 2, we
may choose the point x ∈ int K ∩W and the respective pointw ∈ l such that A intersects
l along a line segment [p1, q1] that lies inside [θ, b]. Obviously, the hyperplanes x + H
and H support the symmetric convex body K ∩ (x + w + K ′) along the line segments
[x +w, x +w− b′] and [p1, q1], respectively, a contradiction with the fact that [p1, q1]
is longer than [x + w, x + w − b′]. Thus [x + w, x + w − b′] is a longest chord of
x + w + K ′ in the direction l, whence it is an affine diameter of x + w + K ′.

Claim 5. There is a hyperplane T through θ and not containing l such that K ′ has a
pair of (d− 1)-dimensional exposed faces parallel to T and containing the points θ and
−b′, respectively.

Proof of Claim 5. Since [θ,−b′] is an affine diameter of K ′, there is a hyperplane T
supporting K ′ that passes through θ and does not contain l such that the hyperplane
T −b′ also supports K ′. We prove that the sets K ′ ∩T and K ′ ∩ (T −b′) are the required
(d − 1)-dimensional exposed faces of K ′.

First we show the existence of a neighborhood V of the point t = −b′/2 such that
the line segment (z + l) ∩ K ′ is of length at least ‖b′‖ for any point z ∈ K ′ ∩ V . An
obvious modification of the considerations preceding Claim 3 implies the existence of
a point x ∈ K close to −t and of a point w ∈ l such that [w + x, w + x − b′] lies
in K . Moreover, Claim 3 implies the existence of a neighborhood U of −t such that
[w + x, w + x − b′] ⊂ K for all x ∈ K ∩ U . Furthermore, U can be chosen such
that (−K ′) ∩ U = K ∩ U . Then each intersection K ∩ (x + w + K ′), x ∈ K ∩ U , is
centrally symmetric and is supported by the hyperplane x + H along the line segment
[x + w, x + w − b′]. Hence each K ∩ (x + w + K ′), x ∈ K ∩ U , is supported by H
along a line segment [r, r − b′] that lies in l and is a translate of [x + w, x + w − b′].
Obviously, the line segment [r − x − w, r − x − w − b′] is of length ‖b′‖ and lies in
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K ′ ∩ (l − x − w) = K ′ ∩ (l − x). Therefore, the segment K ′ ∩ (l − x) is of length at
least ‖b′‖. Finally, put V = −U .

On the other hand, [θ,−b′] is a longest chord of K ′ in the direction l. Hence the line
segment (z + l) ∩ K ′ is exactly of length ‖b′‖ for any point z ∈ K ′ ∩ V . Since each
such segment lies between the parallel hyperplanes T and T − b′, its endpoints lie on T
and T − b′, respectively. Obviously, these endpoints fill some (d − 1)-dimensional sets
in T and T − b′, respectively. Thus both sets K ′ ∩ T and K ′ ∩ (T − b′) are (d − 1)-
dimensional.

Claim 6. K and K ′ are similarly represented as direct sums K = Q ⊕ [θ, b] and
K ′ = Q′ ⊕ [θ, b′], where Q and Q′ are (d − 1)-dimensional compact convex sets
in T .

Proof of Claim 6. In view of Corollary 2 and Claim 5, it is sufficient to prove that for
any two-dimensional plane L through l, both intersections P = K ∩ L and P ′ = K ′ ∩ L ,
if two-dimensional, are isothetic parallelograms.

According to the consideration above, P is supported by the line l along the segment
[θ, b], and P ′ is supported by l along the line segment [θ,−b′]. Moreover, P ′ is supported
by the lines R = L∩T and R−b′ along some segments [θ, v′] and [−b′, w′], respectively,
where T is the hyperplane defined in Claim 5.

Since any nonempty intersection K ∩ (x + K ′) is supported by the hyperplanes H
and x + H along the line segments [θ,w] ⊂ l and [x, x − w], respectively, and since
both these segments lie in L , we conclude that for any point x ∈ L the set P ∩ (x + P ′)
equals L ∩ K ∩ (x + K ′). Hence P ∩ (x + P ′), x ∈ L , is centrally symmetric if and
only if K ∩ (x + K ′) is centrally symmetric.

To show that P and P ′ are isothetic parallelograms, we consider only those intersec-
tions P ∩ (x + P ′), x ∈ L , which are parallelograms, and, as a consequence, derive the
respective properties of the boundaries of P and P ′. For simplicity, our considerations
are performed in the plane L , such that both P and P ′ have nonempty interior.

Choose a point x ∈ int P such that [x, x − v′] intersects [θ, b] and [x, x − b′]
intersects the boundary of P . From the central symmetry of P ∩ (x + P ′) we conclude
that P ∩ (x + P ′) has to be a parallelogram. Then bd P contains a line segment [θ, v]
that lies in R. By a similar argument, bd P contains a line segment [b, w] ⊂ b + R.

Considering the possible cases ‖v‖ < ‖v′‖, ‖v‖ > ‖v′‖, ‖v‖ = ‖v′‖, we first assume
that ‖v‖ < ‖v′‖. Then there is a scalar λ > 0 such that λv + x + P ′ entirely contains
[θ, v] and [λv + x, λv + x − v′] still intersects [θ, b]. Since P ∩ (λv + x + P ′) is a
parallelogram, bd P contains a line segment [v, u] parallel to l. Moving λv + x + P ′

further along the ray {λv : λ > 0} and looking for the intersection of P and λv+ x+ P ′,
we obtain that bd P ′ contains a line segment [v′, u′] parallel to l. Now moving v + P ′

along the ray {λb : λ > 0} and, if necessary, again along the ray {λv : λ > 0}, we obtain
that ‖u − v‖ is at least ‖b′‖, and P ′ is a parallelogram. Further movement of v + P ′

along the ray {λv : λ > 0} gives us that P is also a parallelogram isothetic to P ′.
In a similar way, any of the cases ‖v‖ > ‖v′‖, ‖w‖ > ‖w′‖, ‖w‖ < ‖w′‖ gives us

that P and P ′ are isothetic parallelograms. It remains to assume that ‖v‖ = ‖v′‖ and
‖w‖ = ‖w′‖. Then moving b′ + P ′ along the ray {λv : λ > 0} we get that w = v and
w′ = v′, i.e., that P and P ′ are isothetic parallelograms.
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We finalize the proof of Theorem 1 by induction on d. The case d = 2 is confirmed
in the proof of Claim 6. Assume that (1)⇒ (3) is true for all d ≤ n − 1, n ≥ 2, and let
convex bodies K , K ′ ⊂ En satisfy condition (1). By Claim 6, K and K ′ are similarly
represented as direct sums K = Q ⊕ [θ, b] and K ′ = Q′ ⊕ [θ, b′], where Q and Q′ are
(n− 1)-dimensional compact convex sets in the (n− 1)-dimensional subspace T of En .
Obviously, Q∩(x+Q′), x ∈ T , is nonempty if and only if K ∩(x+K ′) is nonempty. By
condition (1), every nonempty intersection Q∩ (x+Q′), x ∈ T , is centrally symmetric,
and, by the inductive assumption, Q and Q′ satisfy condition (3), with n − 1 instead of
d . From K = Q ⊕ [θ, b] and K ′ = Q′ ⊕ [θ, b′] we obviously conclude that K and K ′

satisfy condition (3), with n instead of d.
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