Discrete Comput Geom 33:605–616 (2005) DOI: 10.1007/s00454-004-1094-6

Pairs of Convex Bodies with Centrally Symmetric Intersections of Translates

Valeriu Soltan

Department of Mathematical Sciences, George Mason University, 4400 University Drive, Fairfax, VA 22030-4444, USA vsoltan@gmu.edu

Abstract. For a pair of convex bodies *K* and *K'* in E^d , the *d*-dimensional intersections $K \cap (x + K')$, $x \in E^d$, are centrally symmetric if and only if *K* and *K'* are represented as direct sums $K = R \oplus P$ and $K' = R' \oplus P'$ such that: (i) *R* is a compact convex set of some dimension m, $0 \le m \le d$, and R' = z - R for a suitable vector $z \in E^d$, (ii) *P* and P' are isothetic parallelotopes, both of dimension d - m.

1. Introduction and Main Result

Several results of convex geometry characterize pairs of convex bodies whose intersections of translates satisfy given geometric properties. Thus, convex bodies K and K' in the Euclidean space E^d are homothetic ellipsoids if and only if for any translate x + K', $x \in E^d$, the intersection of the boundaries of K and x + K' lies in a hyperplane (see [1]). Similarly, convex bodies K and K' in E^d are homothetic simplexes if and only if the d-dimensional intersections $K \cap (x + K')$, $x \in E^d$, belong to a unique homothety class (more generally, to at most countably many homothety classes) of convex bodies (see [5]).

We study below the following problem of a similar spirit, related to centrally symmetric convex bodies.

Problem. Describe the pairs of convex bodies K and K' in E^d such that all *d*-dimensional intersections $K \cap (x + K'), x \in E^d$, are centrally symmetric.

In what follows we need some definitions. A *convex body* is a compact convex set with nonempty interior in E^d . A set $X \subset E^d$ is called *centrally symmetric* if and only if there is a point $z \in E^d$ such that X - z = z - X; in this case X is symmetric about z.

We say that sets X and X' in E^d are similarly represented as direct sums

$$X = X_1 \oplus \cdots \oplus X_k, \qquad X' = X'_1 \oplus \cdots \oplus X'_k$$

if there are subspaces $L_1, \ldots, L_k \subset E^d$ forming a direct sum such that both X_i and X'_i lie in L_i for all $i = 1, \ldots, k$.

A *parallelotope* is a compact convex set in E^d that is a direct sum of finitely many line segments. Two parallelotopes P and P' of the same dimension k $(1 \le k \le d)$ are called *isothetic* provided they can be similarly represented as direct sums

$$P = P_1 \oplus \cdots \oplus P_k, \qquad P' = P'_1 \oplus \cdots \oplus P'_k,$$

where P_i and P'_i are parallel line segments for all i = 1, ..., k.

Our main result is given in the following theorem.

Theorem 1. For a pair of convex bodies K and K' in E^d , the following three conditions are equivalent:

- (1) All nonempty intersections $K \cap (x + K')$, $x \in E^d$, are centrally symmetric.
- (2) All d-dimensional intersections $K \cap (x + K'), x \in E^d$, are centrally symmetric.
- (3) K and K' are similarly represented as direct sums

$$K = R \oplus P$$
 and $K' = R' \oplus P'$

such that conditions (i) and (ii) below are satisfied:

- (i) *R* is a compact convex set of some dimension $m, 0 \le m \le d$, and R' = z R for a suitable vector $z \in E^d$,
- (ii) *P* and *P'* are isothetic parallelotopes, both of dimension d m.

Observation 1. The cases m = d and m = 0 in condition (3) of Theorem 1 are interpreted as follows: m = d means that K' = z - K for a suitable vector $z \in E^d$, while m = 0 means that K and K' are isothetic parallelotopes, both of dimension d.

Corollary 1 [3]. A convex body $K \subset E^d$ is a parallelotope if and only if there is a real number $\lambda \in [0, 1[$ such that all nonempty intersections $K \cap (x + \lambda K), x \in E^d$, are centrally symmetric.

2. Auxiliary Theorems

The proof of Theorem 1 is organized by induction on $d = \dim E^d$ and uses Theorems 2 and 3 below. Recall that a subset F of a convex body $M \subset E^d$ is called an *exposed face* of M provided there is a hyperplane H supporting M such that $F = M \cap H$. In what follows, $\mathcal{F}(M)$ denotes the family of exposed faces of M.

If an exposed face *F* of *M* consists of a single point (respectively, of a line segment), then it is called an *exposed point* (respectively, an *exposed line segment*). Throughout this paper we denote by $\mathcal{F}_0(M)$ and $\mathcal{F}_1(M)$ the family of exposed points and the family

of exposed line segments of M, respectively. Generally, the endpoints of an exposed line segment of M are not exposed points themselves, but they are extreme points of the body. Recall that a point $x \in M$ is *extreme* if no open line segment $]y, z[, y \neq z$, with the property $x \in]y, z[\subset M$ exists. In a standard way, the set of extreme points of M is denoted ext M.

Let *M* and *M'* be a given pair of convex bodies in E^d . For any hyperplane *H* supporting *M*, denote by *H'* the hyperplane parallel to *H* and supporting *M'* such that *M'* lies on the same side from *H'* as *M* does with respect to *H*. In this case the exposed face $F' = M' \cap H'$ of *M'* will be called *associate* to the exposed face $F = M \cap H$. Generally, the relation "is associate to" is not a one-to-one correspondence between the families $\mathcal{F}(M)$ and $\mathcal{F}(M')$.

The following theorems are auxiliary for the proof of Theorem 1. (To distinguish similarly looking elements, we use θ for the zero vector of E^d .)

Theorem 2. Let M and M' be convex bodies in E^d such that all nonempty intersections $M \cap (x + M'), x \in E^d$, are centrally symmetric. Then M and -M' satisfy the following two conditions:

- (4) Any exposed point a of M has an associate exposed point a' of -M' such that $(-M') \cap (a'+W)$ is a translate of $M \cap (a+W)$ for a suitable neighborhood W of θ .
- (5) Any exposed line segment [a, b] of M has an associate exposed line segment [a', b'] of -M' parallel to [a, b] and such that for a suitable neighborhood W of θ the sets $(-M') \cap (a'+W)$ and $(-M') \cap (b'+W)$ are translates of $M \cap (a+W)$ and $M \cap (b+W)$, respectively, provided a b and a' b' have the same direction.

Theorem 3. Let M and M' be convex bodies in E^d . Then M' is a translate of M if and only if the following two conditions are satisfied:

- (6) Any exposed point a of M has an associate exposed point a' of M' such that M' ∩ (a' + W) is a translate of M ∩ (a + W) for a suitable neighborhood W of θ.
- (7) Any exposed line segment [a, b] of M has an associate exposed line segment [a', b'] of M' that is a translate of [a, b] and such that for a suitable neighborhood W of θ the sets $M' \cap (a' + W)$ and $M' \cap (b' + W)$ are translates of $M \cap (a + W)$ and $M \cap (b + W)$, respectively, provided a b and a' b' have the same direction.

In a standard way, bd M and int M denote, respectively, the boundary and the interior of a convex body $M \subset E^d$. A boundary point x of M is called *regular* if there is a unique hyperplane supporting M at x. Denote by N(M) the family of outward unit normals to M at its regular points. In particular, M is a polytope if and only if the set N(M) is finite. Finally, $B_r(a) = \{x \in E^d : ||x - a|| \le r\}$ stands for the closed ball with center a and radius r, and $S = \{x \in E^d : ||x|| = 1\}$ denotes the unit sphere of E^d .

3. Proof of Theorem 2

We prove condition (5) only, since the proof of (4) may be considered as a limit case of (5), by taking a = b and a' = b'.

Let [a, b] be an exposed line segment of M. Translating M, if necessary, we may assume that $a = \theta$. Denote by H a hyperplane with the property $M \cap H = [\theta, b]$, and let e be the unit vector orthogonal to H such that M and e belong to the same closed half-space P determined by H. Let G be the hyperplane through θ orthogonal to the line segment $[\theta, b]$, and let Q be the closed half-space determined by G and disjoint to b. Next, put R = b/2 + Q. In other words, R is the closed half-space determined by the hyperplane b/2 + G and containing θ .

Choose a real number $\lambda > 0$ so small that the hyperplane $H_{\lambda} = \lambda e + H$ intersects int *M*. Denote by D_{λ} the part of *R* that lies between *H* and H_{λ} , and let M_{λ} be the set of regular points of *M* which lie in D_{λ} . Now let $N(M_{\lambda})$ be the set of outward unit normals to *M* at points from M_{λ} . Since $M \cap H = [\theta, b]$ and *R* excludes the segment |b/2, b|, by a compactness argument we obtain the existence of a number δ such that $0 < \delta < \min\{\lambda, \|b\|/2\}$ and the closure of $N(M_{\delta})$ belongs to an open half-sphere of the unit sphere *S*. Indeed, otherwise we would obtain the existence of two parallel hyperplanes through θ and a point from $]\theta$, b[, respectively, both supporting *M*.

Translating M', if necessary, we may assume that M' is disjoint to int P and is supported by H at θ such that $M' \cap H$ lies in Q. By a continuity argument, we may choose a vector $x \in D_{\delta}$ such that $\theta \in int(x + M')$ and $P \cap (x + M')$ lies in D_{λ} . From the above it follows that the intersection $K = M \cap (x + M')$ is a convex body situated in D_{δ} and that $K \cap H = [\theta, w]$ for a point $w \in]\theta, b/2]$. By the hypothesis, K is centrally symmetric.

Let *F* be the hyperplane supporting *K* and parallel to *H*, $F \neq H$. Obviously, *F* lies in the closed slab between *H* and x + H. Because *K* is centrally symmetric, there is an exposed line segment [z, z - w] of *K* with the property $K \cap F = [z, z - w]$. Moreover, *K* is symmetric about the middle point of the line segment $[\theta, z]$.

We claim that $z \in \text{int } M$. Indeed, assume, for contradiction, that $z \in \text{bd } M$. Since $z \in K \subset D_{\delta}$ and F intersects the interior of M, the boundary of K in any neighborhood of z should contain a (d - 1)-dimensional piece of bd M. Hence any neighborhood of z contains a regular point p of K that belongs to M_{δ} . Let e_p be the outward unit normal of K (also of M) at p. By the symmetry of K about z/2, the point q = z - p is a regular point of K and the outward unit normal e_q to K at q is opposite to e_p : $e_q = -e_p$. Since $\theta \in \text{int}(x + M')$, we can choose p so close to z that the respective point q belongs to int(x + M'). As a result, q lies in the boundary of M, and whence $q \in M_{\delta}$. Thus we have two distinct points $p, q \in M_{\delta}$ with $e_p = -e_q$, which is in contradiction with the choice of δ . Hence $z \in \text{int } M$.

The inclusions $z \in bd K$ and $z \in int M$ obviously imply that $z \in bd(x + M')$, otherwise z would lie in the interior of K. Moreover, the hyperplane F should coincide with x + H. Indeed, assume for a moment that F is different from x + H. In this case, one can find a point $u \in [x, z]$, which belongs to $M \cap (x + M')$ and lies between x + Hand F. The last is in contradiction with the choice of F.

Next we show that z = x. Indeed, since $z \in bd(x + M')$ and since x + H supports K along the line segment [z, z - w], the hyperplane x + H supports x + M' along a

line segment [z, s] that contains [z, z - w]. Hence $M' \cap H = [z - x, s - x]$. From the inclusion $M' \cap H \subset Q$ and the fact that *G* supports $M' \cap H$ at θ , we conclude that $z - x = \theta$, i. e., z = x. As a result, $M' \cap H = [\theta, s - x]$, whence $[\theta, x - s]$ is an exposed line segment of -M' associate to $[\theta, b]$.

Since $\theta \in int(x + M')$ and $x = z \in int M$, there is a neighborhood $W_1 \subset E^d$ of θ such that $W_1 \subset int(x + M')$ and $x - W_1$ is a neighborhood of x that lies in int M. Because K is symmetric about x/2, we have

$$M \cap W_1 = K \cap W_1 = x - K \cap (x - W_1) = x - (x + M') \cap (x - W_1) = (-M') \cap W_1.$$

Repeating the consideration above for the points *b* and x - s, we obtain the existence of a neighborhood $W_2 \subset E^d$ of θ such that $(M - b) \cap W_2 = (-M' - x + s) \cap W_2$. Obviously, the set $W = W_1 \cap W_2$ is a required neighborhood of θ .

4. Proof of Theorem 3

If a convex body M' is a translate of a convex body M, then conditions (6) and (7) are trivially satisfied.

Conversely, let M and M' be a pair of convex bodies in E^d that satisfy conditions (6) and (7). We show that M' is a translate of M. This part of the proof is organized by induction on $d = \dim E^d$.

The case d = 1 is trivial, and the case d = 2 is based on the following statement.

Claim 1. Let M and M' be convex bodies in the plane E^2 that satisfy conditions (6) and (7). Then the relation "is associate to" gives one-to-one correspondences $\mathcal{F}_0(M) \leftrightarrow \mathcal{F}_0(M')$ and $\mathcal{F}_1(M) \leftrightarrow \mathcal{F}_1(M')$.

Proof of Claim 1. Choose a point $x \in \mathcal{F}_0(M)$, and let $x' \in \mathcal{F}_0(M')$ be associate to x such that $M' \cap (x'+W)$ is a translate of $M \cap (x+W)$ for a suitable neighborhood W of θ . Let H be a line with $M \cap H = \{x\}$, and let H' be the line parallel to H with $M' \cap H' = \{x'\}$. Assume for a moment that x has another associate point $x'_1 \in \mathcal{F}_0(M')$, that is, assume the existence of a line H_1 distinct from H such that $M \cap H_1 = \{x\}$ and of the line H'_1 parallel to H_1 and supporting M' at x'_1 only. Since $M' \cap (x'+W) = (x'-x) + M \cap (x+W)$, the line $H'' = x' - x + H_1$ supports M' at x'. Thus H'_1 and H'' are parallel lines both supporting M' from the same side. As a result, $H'_1 = H''$ and H'_1 supports M' along the line segment $[x', x'_1]$, contradicting the condition $M' \cap H'_1 = \{x'_1\}$. Hence any exposed point x of M has a unique associate exposed point x' of M'.

Next we prove that distinct exposed points x_1 and x_2 of M have distinct associate exposed points x'_1 and x'_2 of M'. Indeed, assume, for contradiction, that $x'_1 = x'_2$. Let H_1 , H'_1 and H_2 , H'_2 be the respective pairs of parallel lines with the properties

$$M \cap H_1 = \{x_1\}, \qquad M \cap H_2 = \{x_2\}, \qquad M' \cap H'_1 = M' \cap H'_2 = \{x'_1\}.$$

Let also W_1 and W_2 be some neighborhoods of θ that satisfy condition (6) for the pairs x_1, x'_1 and x_2, x'_1 , respectively. Then the neighborhood $W = W_1 \cap W_2$ of θ satisfies condition (6) for each of the pairs x_1, x'_1 and x_2, x'_1 . As a result, both lines $H_1 = x_1 - x_1 - x_1 - x_1 - x_2 - x_2$

 $x'_1 + H'_1$ and $H' = x_2 - x'_1 + H'_1$ support M such that $M \cap H_1 = \{x_1\}$ and $M \cap H' = \{x_2\}$. Since the lines H_1 and H' are parallel and support M from the same side, they should coincide. The last is in contradiction with $x_1 \neq x_2$.

Finally, let $x' \in \mathcal{F}_0(M')$ and let H' be a line with the property $M' \cap H' = \{x'\}$. Denote by H the line parallel to H' and supporting M such that M lies on the same side from H as M' does with respect to H'. If H supported M along a line segment [v, w], then [v, w] would be an exposed line segment of M with no associate in $\mathcal{F}_1(M')$. Hence the intersection $M \cap H$ is an exposed point x of M. As a result, any exposed point of M' is associate to an exposed point of M. Summing up, we obtain that the relation "is associate to" gives a one-to-one correspondence $\mathcal{F}_0(M) \leftrightarrow \mathcal{F}_0(M')$.

Let $[x, z] \in \mathcal{F}_1(M)$, and let $[x', z'] \in \mathcal{F}_1(M')$ be associate to [x, z]. Since the line supporting *M* along [x, z] is uniquely defined, [x', z'] is a unique associate to [x, z]. Obviously, distinct line segments from $\mathcal{F}_1(M)$ have distinct associate line segments from $\mathcal{F}_1(M')$.

Conversely, let $[x', z'] \in \mathcal{F}_1(M')$ and let H' be the line with the property $M' \cap H' = [x', z']$. Denote by H the line parallel to H' and supporting M such that M lies on the same side from H as M' does with respect to H'. Assume for a moment that $M \cap H$ consists of a single point v, and let $v' \in \mathcal{F}_0(M')$ be associate to v. As is easily seen, v' should coincide with one of x', z'. Since any neighborhood of x' or z' contains a part of the line segment [x', z'], from (7) it follows that $M \cap H$ should contain a line segment parallel to [x', z'], contradicting the assumption $M \cap H = \{v\}$. Hence [x', z'] is associate to a line segment $[x, z] \in \mathcal{F}_1(M)$. Summing up, we obtain that the relation "is associate to" gives a one-to-one correspondence $\mathcal{F}_1(M) \leftrightarrow \mathcal{F}_1(M')$.

We continue the proof of the inductive statement for d = 2. As is easily seen, any extreme point of a planar convex body is either an exposed point or an endpoint of an exposed line segment of the body. From Claim 1 and conditions (6) and (7) we obtain that for any extreme point x of M there is a unique extreme point x' of M' such that $M' \cap (x' + W_x)$ is a translate of $M \cap (x + W_x)$ for a suitable neighborhood W_x of θ

Denote by $\mathcal{O}(M)$ the family of open line segments]v, z[such that $[v, z] \in \mathcal{F}_1(M)$. Obviously, the family

$$\mathcal{C} = \mathcal{O}(M) \cup \{ \mathrm{bd}\, M \cap W_x : x \in \mathrm{ext}\, M \}$$

is an open cover for bd M. Hence bd M is the union of finitely many open arcs $V_1, \ldots, V_m \in C$. From Claim 1 we conclude that the respective translates V'_1, \ldots, V'_m of these arcs cover bd M'. The last obviously implies that M' is a translate of M.

Assume that the inductive statement ("M' is a translate of M") is true for all $d \le n-1$, $n \ge 3$, and let M and M' be convex bodies in E^n that satisfy conditions (6) and (7). Choose a point $a \in \mathcal{F}_0(M)$, and let $a' \in \mathcal{F}_0(M')$ be associate to a. Translating, if necessary, we may assume that $a = a' = \theta$, and that $L \subset E^n$ is an (n-1)-dimensional subspace with the property $M \cap L = M' \cap L = \{\theta\}$ and such that both M and M' lie in the same half-space of E^n determined by L. Denote by H and H' the hyperplanes parallel to L that support M and M', respectively $(H \ne L \ne H')$. Our goal is to show that M = M'.

Let S_L be the unit sphere of L, and let G be the set of vectors in S_L such that each $e \in G$ is parallel to a line segment from the set $(\operatorname{bd} M \cup \operatorname{bd} M') \setminus (H \cup H')$. As follows

from [4], the (n-2)-dimensional measure of G equals 0. Hence the complementary set $F = S_L \setminus G$ is dense in S_L .

For any vector $e \in F$, denote by T_e the (n-1)-dimensional subspace of E^n orthogonal to e. Let M_e (respectively, M'_e) be the orthogonal projection of M (respectively, of M') on T_e . Due to the choice of F, any boundary point of M_e (respectively, of M'_e) is the orthogonal projection of a unique boundary point of M (respectively, of M').

Claim 2. For any $e \in F$, the orthogonal projections M_e and M'_e satisfy conditions (6) and (7).

Proof of Claim 2. Let *z* be an exposed point of M_e , and let *R* be an (n-2)-dimensional affine set in T_e with the property $M_e \cap R = \{z\}$. If l(e) is the one-dimensional subspace of *L* containing *e*, then R + l(e) is a hyperplane in E^n that supports *M* at a single point, say *x*. Hence, *x* is an exposed point of *M*. By condition (6), M' has an exposed point x' associate to *x*, and there is a neighborhood $W \subset E^n$ of θ such that $M' \cap (x' + W)$ is a translate of $M \cap (x + W)$. Denote by z' and *V*, respectively, the orthogonal projections of x' and *W* on T_e . Then *V* is a neighborhood of θ in T_e such that $M'_e \cap (z' + V)$ is a translate of $M_e \cap (z + V)$.

Similarly, by condition (7), for any exposed line segment [u, z] of M_e , the set M'_e contains an exposed line segment [u', z'] that is associate to [u, z] and is a translate of [u, z]. If u - z and u' - z' have the same direction, then, as above, there exists a neighborhood V of θ in T_e such that $M'_e \cap (u' + V)$ is a translate of $M_e \cap (u + V)$ and $M'_e \cap (z' + V)$ is a translate of $M_e \cap (z + V)$.

By the inductive assumption, from Claim 2 it follows that M'_e is a translate of M_e for any $e \in F$. Since

$$M_e \cap (L \cap T_e) = M'_e \cap (L \cap T_e) = \{\theta\}$$

and both M_e and M'_e lie in the same half-space of T_e determined by its (n-2)-dimensional subspace $L \cap T_e$, we have that $M_e = M'_e$.

Obviously, $M \subset M_e + l(e)$ for any $e \in F$. If $x \notin M$, then, using the density of F in S_L , we can find a vector $e \in F$ such that the line x + l(e) through x is disjoint to M. Then the orthogonal projection of x on T_e does not belong to M_e , whence $x \notin M_e + l(e)$. Summing up, we obtain that $M = \bigcap \{M_e + l(e) : e \in F\}$.

Similarly, $M' = \bigcap \{M'_e + l(e) : e \in F\}$. Since $M_e = M'_e$ for all $e \in F$, we finally have M' = M.

5. Auxiliary Lemmas

This section contains some more auxiliary statements necessary for the proof of Theorem 1.

Lemma 1. Let X be a nonempty set in E^d , and put Y = z - X for some $z \in E^d$. Then any nonempty intersection $X \cap (x + Y)$, $x \in E^d$, is symmetric about (x + z)/2.

Proof. Obviously, a set $T \subset E^d$ is symmetric about a point $v \in E^d$ if and only if T - v is symmetric about θ . Also, the intersection $T \cap (-T)$, if nonempty, is symmetric about θ . These two observations and the equality

$$X \cap (x+Y) - \frac{x+z}{2} = X \cap (x+z-X) - \frac{x+z}{2} = \left(X - \frac{x+z}{2}\right) \cap \left(\frac{x+z}{2} - X\right)$$

imply that $X \cap (x + Y)$, if nonempty, is symmetric about (x + z)/2.

Lemma 2. Let subspaces $L_1, \ldots, L_k \subset E^d$ form a direct sum, and let $S_i, T_i \subset L_i$ and $x_i \in L_i$ be such that $S_i \cap (x_i + T_i) \neq \emptyset$ for all $i = 1, \ldots, k$. Put

$$S = S_1 \oplus \cdots \oplus S_k, \qquad T = T_1 \oplus \cdots \oplus T_k, \qquad x = x_1 + \cdots + x_k.$$

Then the intersection $S \cap (x + T)$ is centrally symmetric if and only if all intersections $S_i \cap (x_i + T_i), i = 1, ..., k$, are centrally symmetric.

Proof. Obviously,

$$S \cap (x+T) = [S_1 \cap (x_1+T_1)] \oplus \cdots \oplus [S_k \cap (x_k+T_k)].$$

If each set $S_i \cap (x_i + T_i)$ is symmetric about $z_i \in L_i$, i = 1, ..., k, and $z = z_1 + \cdots + z_k$, then the equality

$$S \cap (x+T) - z = [S_1 \cap (x_1+T_1) - z_1] \oplus \dots \oplus [S_k \cap (x_k+T_k) - z_k]$$

= $[z_1 - S_1 \cap (x_1+T_1)] \oplus \dots \oplus [z_k - S_k \cap (x_k+T_k)]$
= $z - S \cap (x+T)$

implies that $S \cap (x + T)$ is symmetric about z.

Conversely, let the intersection $S \cap (x + T)$ be symmetric about a point $z \in E^d$. Clearly, $z \in L_1 \oplus \cdots \oplus L_k$. Denote by φ_i the parallel projection of $L_1 \oplus \cdots \oplus L_k$ onto L_i along $L_1 \oplus \cdots \oplus L_{i-1} \oplus L_{i+1} \oplus \cdots \oplus L_k$, and let $z_i = \varphi_i(z), i = 1, \dots, k$. Then

$$z_i - S_i \cap (x_i + T_i) = \varphi_i (z - S \cap (x + T)) = \varphi_i (S \cap (x + T) - z) = S_i \cap (x_i + T_i) - z_i.$$

Hence each set $S_i \cap (x_i + T_i)$ is symmetric about $z_i, i = 1, ..., k$.

Lemma 3. Let X_1, X_2, \ldots be a sequence of centrally symmetric compact sets in E^d convergent in the Hausdorff metric to a bounded set X. Then the limit set X is also centrally symmetric.

Proof. Let X_i be symmetric about a point z_i , i = 1, 2, ... Since $X_i \rightarrow X$, all the sets X_i are situated in a neighborhood of X, and, as a result, the sequence $z_1, z_2, ...$ is bounded. If $z_{i_1}, z_{i_2}, ...$ is a subsequence of $z_1, z_2, ...$ that converges to a point z, then

$$X - z = \lim_{j \to \infty} (X_{i_j} - z_{i_j}) = \lim_{j \to \infty} (z_{i_j} - X_{i_j}) = z - X_{i_j}$$

i.e., X is symmetric about z.

6. Proof of Theorem 1

First we prove the equivalence of conditions (1) and (2).

Since (1) obviously implies (2), it is sufficient to show that (2) \Rightarrow (1). Let $X = K \cap (x + K'), x \in E^d$, be nonempty, and choose a point $y \in X$. Then there is a sequence y_1, y_2, \ldots of points from int *K* that converges to *y*. Consider the intersections $X_i = K \cap (x + y_i - y + K'), i = 1, 2, \ldots$ Since $y_i \in (\text{int } K) \cap (x + y_i - y + K)$, each set X_i has dimension *d*. By (2), all X_i are centrally symmetric. Since $X_i \rightarrow X$ in the Hausdorff metric when $i \rightarrow \infty$, *X* is centrally symmetric itself (see Lemma 3).

The remaining part of the proof is devoted to the equivalence of conditions (1) and (3). Lemmas 1 and 2 above obviously imply that (3) \Rightarrow (1). Hence, it remains to show that (1) \Rightarrow (3). Since the case d = 1 is trivial, we assume that $d \ge 2$. If K' = z - K for a suitable vector $z \in E^d$, we have finished the proof. Assume that $K' \neq z - K$ for any $z \in E^d$. Then Theorems 2 and 3 imply the existence of an exposed line segment [a, b] of K that has an associate exposed line segment [a', b'] of -K' such that [a', b'] is not a translate of [a, b]. By a symmetry argument, we may assume that ||a' - b'|| < ||a - b||.

Translating *K* and -K', if necessary, we may assume that $a = a' = \theta$. Condition (1) implies the existence of a hyperplane *H* supporting both *K* and -K' such that *K* and -K' lie in the same closed half-space *P* determined by *H*, with $K \cap H = [\theta, b]$ and $(-K') \cap H = [\theta, b']$, where $b' \in]\theta, b[$. Moreover, there is a neighborhood *W* of the origin θ such that $K \cap W = (-K') \cap W$. Hence for any point $x \in \text{int } K \cap W$, the intersection $K \cap (x+K')$ is a convex body, centrally symmetric about x/2 (see Lemma 2). In particular, *H* supports $K \cap (x + K')$ along a line segment $[\theta, c], c \in]\theta, b]$, and the hyperplane x + H supports $K \cap (x + K')$ along the line segment [x, x - c]. Moreover, $\theta \in \text{int}(x + K')$, as shown in the proof of Theorem 2.

Denote by *l* the line containing the segment $[\theta, b]$, and let l_x be the line through *x* parallel to *l*. By a continuity argument, the point *x* above can be chosen so close to θ that the line segment $l_x \cap K$ becomes arbitrarily close to $[\theta, b]$; in particular, $l_x \cap K$ becomes longer than $[\theta, b']$. Thus we can translate x + K' along the line l_x into a position $x + w + K', w \in l$, such that the exposed line segment [x + w, x + w - b'] of the body x + w + K' lies in int *K*.

Claim 3. For any points $z \in]\theta$, b[and $z' \in]\theta$, b'[, there is a neighborhood W of θ such that $(-K') \cap (z' + W)$ is a translate of $K \cap (z + W)$.

Proof of Claim 3. First we choose z' to be the middle point of [x + w, x + w - b']. Since $K \cap (x + w + K')$ is centrally symmetric, we obtain that the point $z \in [\theta, b]$ symmetric to z' satisfies the conclusion of Claim 3. Shifting the body x + w + K' both ways along the line l_x such that [x + w, x + w - b'] remains in K, and using the symmetry of intersections $K \cap (x + w + K')$, we obtain that any point $u \in [\theta, b]$ from a small neighborhood of z satisfies, together with z', the conclusion of Claim 3. Coming back to z', we obtain that any point $u \in [x + w, x + w - b']$ from a small neighborhood of z', satisfies, together with z, the conclusion of Claim 3. Continuing along this way, we get the proof of Claim 3.

Claim 3 implies the following corollary.

V. Soltan

Corollary 2. For any points $z \in [\theta, b]$ and $z' \in [\theta, b']$, the generated cones

$$C_{z}(K) = \{z + \lambda(x - z) : x \in K, \lambda \ge 0\}, \qquad C_{z'}(K') = \{z' + \lambda(x - z') : x \in K', \lambda \ge 0\}$$

satisfy the relation $C_{z'}(K') + z' = z - C_z(K)$, and each of these cones contains the line l.

Claim 4. The line segment $[\theta, -b']$ is an affine diameter of K', i.e., there are distinct parallel hyperplanes through θ and -b', respectively, both supporting K'.

Proof of Claim 4. Equivalently, [x + w, x + w - b'] is stated to be an affine diameter of x + w + K'. It is known (see, e.g., [2]) that a chord [r, s] of a convex body $C \subset E^d$ is an affine diameter of C if and only if [r, s] is a longest chord of C in the direction parallel to [r, s].

Assume, for contradiction, that [x + w, x + w - b'] is not an affine diameter of x + w + K'. Then there exists a line segment $[p, q] \subset (x + w + K')$ parallel to l and longer than [x + w, x + w - b']. By a continuity argument, we may consider that $[p, q] \subset (int(x + w + K'))$. Then the relative interior of the trapezoid A with bases [x + w, x + w - b'] and [p, q] lies in the interior of x + w + K'. Due to Corollary 2, we may choose the point $x \in int K \cap W$ and the respective point $w \in l$ such that A intersects l along a line segment $[p_1, q_1]$ that lies inside $[\theta, b]$. Obviously, the hyperplanes x + H and H support the symmetric convex body $K \cap (x + w + K')$ along the line segments [x + w, x + w - b'] and $[p_1, q_1]$, respectively, a contradiction with the fact that $[p_1, q_1]$ is longer than [x + w, x + w - b']. Thus [x + w, x + w - b'] is a longest chord of x + w + K' in the direction l, whence it is an affine diameter of x + w + K'.

Claim 5. There is a hyperplane T through θ and not containing l such that K' has a pair of (d-1)-dimensional exposed faces parallel to T and containing the points θ and -b', respectively.

Proof of Claim 5. Since $[\theta, -b']$ is an affine diameter of K', there is a hyperplane T supporting K' that passes through θ and does not contain l such that the hyperplane T - b' also supports K'. We prove that the sets $K' \cap T$ and $K' \cap (T - b')$ are the required (d - 1)-dimensional exposed faces of K'.

First we show the existence of a neighborhood V of the point t = -b'/2 such that the line segment $(z + l) \cap K'$ is of length at least ||b'|| for any point $z \in K' \cap V$. An obvious modification of the considerations preceding Claim 3 implies the existence of a point $x \in K$ close to -t and of a point $w \in l$ such that [w + x, w + x - b'] lies in K. Moreover, Claim 3 implies the existence of a neighborhood U of -t such that $[w + x, w + x - b'] \subset K$ for all $x \in K \cap U$. Furthermore, U can be chosen such that $(-K') \cap U = K \cap U$. Then each intersection $K \cap (x + w + K'), x \in K \cap U$, is centrally symmetric and is supported by the hyperplane x + H along the line segment [x + w, x + w - b']. Hence each $K \cap (x + w + K'), x \in K \cap U$, is supported by H along a line segment [r, r - b'] that lies in l and is a translate of [x + w, x + w - b']. Obviously, the line segment [r - x - w, r - x - w - b'] is of length ||b'|| and lies in

 $K' \cap (l - x - w) = K' \cap (l - x)$. Therefore, the segment $K' \cap (l - x)$ is of length at least ||b'||. Finally, put V = -U.

On the other hand, $[\theta, -b']$ is a longest chord of K' in the direction l. Hence the line segment $(z + l) \cap K'$ is exactly of length ||b'|| for any point $z \in K' \cap V$. Since each such segment lies between the parallel hyperplanes T and T - b', its endpoints lie on T and T - b', respectively. Obviously, these endpoints fill some (d - 1)-dimensional sets in T and T - b', respectively. Thus both sets $K' \cap T$ and $K' \cap (T - b')$ are (d - 1)-dimensional.

Claim 6. *K* and *K'* are similarly represented as direct sums $K = Q \oplus [\theta, b]$ and $K' = Q' \oplus [\theta, b']$, where Q and Q' are (d - 1)-dimensional compact convex sets in T.

Proof of Claim 6. In view of Corollary 2 and Claim 5, it is sufficient to prove that for any two-dimensional plane *L* through *l*, both intersections $P = K \cap L$ and $P' = K' \cap L$, if two-dimensional, are isothetic parallelograms.

According to the consideration above, *P* is supported by the line *l* along the segment $[\theta, b]$, and *P'* is supported by *l* along the line segment $[\theta, -b']$. Moreover, *P'* is supported by the lines $R = L \cap T$ and R - b' along some segments $[\theta, v']$ and [-b', w'], respectively, where *T* is the hyperplane defined in Claim 5.

Since any nonempty intersection $K \cap (x + K')$ is supported by the hyperplanes Hand x + H along the line segments $[\theta, w] \subset l$ and [x, x - w], respectively, and since both these segments lie in L, we conclude that for any point $x \in L$ the set $P \cap (x + P')$ equals $L \cap K \cap (x + K')$. Hence $P \cap (x + P')$, $x \in L$, is centrally symmetric if and only if $K \cap (x + K')$ is centrally symmetric.

To show that *P* and *P'* are isothetic parallelograms, we consider only those intersections $P \cap (x + P')$, $x \in L$, which are parallelograms, and, as a consequence, derive the respective properties of the boundaries of *P* and *P'*. For simplicity, our considerations are performed in the plane *L*, such that both *P* and *P'* have nonempty interior.

Choose a point $x \in \text{int } P$ such that [x, x - v'] intersects $[\theta, b]$ and [x, x - b'] intersects the boundary of P. From the central symmetry of $P \cap (x + P')$ we conclude that $P \cap (x + P')$ has to be a parallelogram. Then bd P contains a line segment $[\theta, v]$ that lies in R. By a similar argument, bd P contains a line segment $[b, w] \subset b + R$.

Considering the possible cases ||v|| < ||v'||, ||v|| > ||v'||, ||v|| = ||v'||, we first assume that ||v|| < ||v'||. Then there is a scalar $\lambda > 0$ such that $\lambda v + x + P'$ entirely contains $[\theta, v]$ and $[\lambda v + x, \lambda v + x - v']$ still intersects $[\theta, b]$. Since $P \cap (\lambda v + x + P')$ is a parallelogram, bd *P* contains a line segment [v, u] parallel to *l*. Moving $\lambda v + x + P'$ further along the ray $\{\lambda v : \lambda > 0\}$ and looking for the intersection of *P* and $\lambda v + x + P'$, we obtain that bd *P'* contains a line segment [v', u'] parallel to *l*. Now moving v + P' along the ray $\{\lambda b : \lambda > 0\}$ and, if necessary, again along the ray $\{\lambda v : \lambda > 0\}$, we obtain that ||u - v|| is at least ||b'||, and *P'* is a parallelogram. Further movement of v + P' along the ray $\{\lambda v : \lambda > 0\}$ gives us that *P* is also a parallelogram isothetic to *P'*.

In a similar way, any of the cases ||v|| > ||v'||, ||w|| > ||w'||, ||w|| < ||w'|| gives us that *P* and *P'* are isothetic parallelograms. It remains to assume that ||v|| = ||v'|| and ||w|| = ||w'||. Then moving b' + P' along the ray { $\lambda v : \lambda > 0$ } we get that w = v and w' = v', i.e., that *P* and *P'* are isothetic parallelograms.

V. Soltan

We finalize the proof of Theorem 1 by induction on *d*. The case d = 2 is confirmed in the proof of Claim 6. Assume that $(1) \Rightarrow (3)$ is true for all $d \le n - 1$, $n \ge 2$, and let convex bodies $K, K' \subset E^n$ satisfy condition (1). By Claim 6, *K* and *K'* are similarly represented as direct sums $K = Q \oplus [\theta, b]$ and $K' = Q' \oplus [\theta, b']$, where *Q* and *Q'* are (n - 1)-dimensional compact convex sets in the (n - 1)-dimensional subspace *T* of E^n . Obviously, $Q \cap (x + Q'), x \in T$, is nonempty if and only if $K \cap (x + K')$ is nonempty. By condition (1), every nonempty intersection $Q \cap (x + Q'), x \in T$, is centrally symmetric, and, by the inductive assumption, *Q* and *Q'* satisfy condition (3), with n - 1 instead of *d*. From $K = Q \oplus [\theta, b]$ and $K' = Q' \oplus [\theta, b']$ we obviously conclude that *K* and *K'* satisfy condition (3), with *n* instead of *d*.

Acknowledgment

The author thanks the referee for many helpful comments on an earlier draft of this paper.

References

- 1. P. R. Goodey, Homothetic ellipsoids, Math. Proc. Cambridge Philos. Soc. 93 (1983), 25-34.
- P. C. Hammer, Convex curves of constant Minkowski breadth, in *Convexity* (V. Klee, ed.), pp. 291–304, American. Mathematical. Society., Providence, RI, 1963.
- A. B. Kharazishvili, Characterization properties of a parallelepiped, Soobshch. Akad. Nauk. Gruzin. SSR 72 (1973), 17–19.
- 4. D. G. Larman and C. A. Rogers, Increasing paths on the one-skeleton of a convex body and the directions of line segments on the boundary of a convex body, *Proc. London Math. Soc.* 23 (1971), 683–694.
- 5. V. Soltan, A characterization of homothetic simplices, Discrete Comput. Geom. 22 (1999), 193-200.

Received October 22, 2003, and in revised form January 21, 2004. Online publication June 21, 2004.