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Abstract. Let L be a set of n lines in space. A joint of L is a point inR3 where at least three
non-coplanar lines meet. We show that the number of joints of L is O(n112/69 log6/23 n) =
O(n1.6232), improving the previous bound O(n1.643) of Sharir.

1. Introduction

Let L be a set of n lines in space. A joint of L is a point in R3 where at least three
non-coplanar lines �, �′, �′′ of L meet. We denote the joint by any such triple of lines
(�, �′, �′′).

Let JL denote the set of joints of L , and put J (n) = max|JL |, taken over all sets
L of n lines in space. A trivial upper bound on J (n) is O(n2), as a joint is a point
of intersection of (more than) two lines, but it was shown in [11], following a weaker
subquadratic bound in [4], that J (n) is only O(n23/14 polylog(n)) = O(n1.643). An easy
construction, based on lines forming an n1/2 × n1/2 × n1/2 portion of the integer grid,
shows that |JL | can be �(n3/2) (see Fig. 1 and [4]). The goal of this paper is to narrow
the gap between these upper and lower bounds.

One of the main motivations for studying joints of a set L of lines in space is their
connection to elementary cycles of L . An elementary cycle is a set L ′ ⊆ L of at least
three lines with the following properties: (i) The xy-projections of the lines in L ′ all
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Fig. 1. The lower bound construction for joints, illustrated with n = 12 lines.

bound a common face in the arrangement of the xy-projections of the lines in L . (ii) As
we go around the boundary of the common face, we always pass from the projection of
one line � to the projection of another line �′ such that �′ passes above � in 3-space. See
Fig. 2.

A major open problem in the study of visibility in three dimensions is to obtain a
subquadratic bound on the number of elementary cycles of a set of lines in R3. Joints
can be regarded as a degenerate case of elementary cycles. In fact, a slight random
perturbation of the lines in L turns any joint incident to O(1) lines into an elementary
cycle with some constant probability, implying that the number of joints is strongly
related to the number of elementary cycles.

Unfortunately, very little is known about the number of elementary cycles. Chazelle
et al. [4] obtained a bound of O(n9/5) for the special case of line segments (rather than
lines) whose xy-projections form a (distorted) grid. Recently, Aronov et al. [2] obtained a
subquadratic bound on the number of triangular elementary cycles (i.e., cycles formed by
only three lines) for general line arrangements. Solan [13] and Har-Peled and Sharir [9]
have given algorithms that eliminate all (not necessarily elementary) cycles of a set
of lines in space, by cutting the lines at appropriate points. These algorithms run in
subquadratic time, and cut the lines in a subquadratic number of points, provided that
there exists a subquadratic bound on the number of cuts that eliminate all cycles.

The problem of joints is considerably simpler, as witnessed by the much sharper upper
bound of [11], mentioned above. Still, it is a rather challenging problem, open for 10

Fig. 2. An elementary cycle of lines in space.
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years, to tighten the gap between the upper and lower bounds. It is our hope that better
insights into the joints problem would lead to tools that could also be used to obtain
subquadratic bounds for elementary cycles, and for many other problems that involve
lines in space. Recently, Sharir and Welzl [12] have shown that the number of incidences
between the points in JL and the lines in L is O(n5/3).

In this paper we improve the upper bound on J (n) to O(n112/69 log6/23 n) = O(n1.6232).
The proof proceeds by mapping the lines of L into points and/or hyperplanes in projec-
tive 5-space, using Plücker coordinates [5]. We then apply a two-stage decomposition
process, which partitions the problem into subproblems, using cuttings of arrangements
of appropriate subsets of the Plücker hyperplanes. We estimate the number of joints
within each subproblem, and sum up the resulting bounds to obtain the bound asserted
above. The proof adapts and applies some of the tools used by Sharir and Welzl [12] and
recently enhanced by Aronov et al. [1], related mainly to the connection between joints
and reguli spanned by the lines of L; see below for more details.

2. The Upper Bound

2.1. The Toolbox

We begin by recalling and developing some of the tools we need for our proof.

Szemerédi-Trotter Point-Line Incidence Bound [15]. Let L be a set of n lines and let P
be a set of m points, both in a common (two-dimensional) plane. The number I (P, L)
of incidences between the points of P and the lines of L satisfies

I (P, L) = O(n2/3m2/3 + n + m). (1)

This bound is tight in the worst case. See [10] for more details. A corollary of (1) is that
the number of incidences between the points of P and the lines that are incident to at
least k points of P is at most

O

(
m2

k2
+ m

)
.

We use this bound to prove

Lemma 2.1. Let L be a set of n lines in space. The number of containments between
the lines of L and those planes that contain at least k lines of L is

O

(
n2

k2
+ n

)
.

Proof. Take a generic plane π , so that each line of L intersects π at a distinct point.
A plane containing at least k lines of L intersects π at a line that contains at least k
of these points. The lemma is then an immediate consequence of the corollary to the
Szemerédi–Trotter theorem.
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Reguli (see [14]). Given three pairwise skew lines �1, �2, �3, the set σ = σ(�1, �2, �3)

of lines intersecting all three lines is called a regulus. All lines in σ are pairwise skew. If
�′1, �

′
2, �
′
3 are in σ , then σ⊥ = σ(�′1, �′2, �′3) constitutes another regulus, that is indepen-

dent of the choice of the three lines in σ . (Note that the three generating lines �1, �2, �3

of σ do not belong to σ , but rather to σ⊥.) Both σ and σ⊥ span the same ruled surface
in 3-space.

In more detail,
⋃
�∈σ � =

⋃
�∈σ⊥ � is a ruled surface (which is a quadric—a hyper-

boloid of one sheet or a hyperbolic paraboloid) inR3, denoted by σ ∗ = σ ∗(�1, �2, �3); σ
and σ⊥ are called the generating families of σ ∗ and we say that σ⊥ is the complementary
regulus of σ , and vice versa: (σ⊥)⊥ = σ . Every point in σ ∗ is contained in exactly one
line from σ and in exactly one line from σ⊥. For any line � in R3, either � ∈ σ ∪ σ⊥ (in
particular, � ⊆ σ ∗) or � intersects σ ∗ in at most two points.

It follows that the number of joints in L that lie on the surface σ ∗ of any regulus σ is
at most

min{|L ∩ σ | · |L ∩ σ⊥|, 2|L|}.
This follows from the observation that at most two of the lines that form such a joint
can lie in σ ∗, and the third line must cross σ ∗, and thus participates in at most two joints
there. This allows us to apply the following pruning procedure. We fix a parameter s,
whose value will be determined later. As long as there exists a regulus σ that contains
more than s lines of L , we remove all these lines from L , and lose in this process at most
2n joints. Repeating this step at most n/s times, we eliminate all “heavy” reguli and at
most O(n2/s) joints.

A similar pruning process can be applied to planes that contain more than s lines of L .
Here we use the fact that any plane can contain at most n joints, because any such joint
must be incident to at least one line that is not contained in the plane, and thus meets it
in a single point.

To recap, we may (and will) assume in what follows that no plane or regulus contains
more than s lines of L , and will add O(n2/s) to the overall bound for the number of
joints.

Incidences between Lines and Reguli. Given a set L of m lines and a set R of n reguli
in 3-space, the number I (L , R) of incidences between the lines of L and the reguli of
R (recall that we regard a regulus as a set of lines and not as the surface that they span)
satisfies

I (L , R) = O(m4/7n17/21 + m2/3n2/3 + n + m). (2)

This has recently been shown by Aronov et al. [1]. It extends and strengthens a weaker
bound of O(m3/5n4/5 + m + n) proved in [12] for a more restricted situation.

We use this to prove:

Lemma 2.2. Let L be a set of n lines in space. The number of incidences between the
lines of L and those reguli that contain at least k lines of L is

O

(
n3

k17/4
+ n2

k2
+ n

)
.
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Proof. Let R≥k denote the set of these reguli, and put t = |R≥k |. The bound (2) implies
that

tk ≤ I (L , R≥k) = O(n4/7t17/21 + n2/3t2/3 + n + t).

The lemma then follows by bounding t using this inequality, and by substituting the
resulting bound into (2).

Mapping into Plücker Space. Let L be a set of n lines in R3. We may assume, without
loss of generality, that no pair of lines in L are parallel. This can be enforced by an
appropriate projective transformation that maps L to another set of lines that does not
have parallel pairs, without changing the incidence structure between the lines and their
joints.

We start by replicating the set of lines L into two sets, color one blue and the other
red. We bound the number of points at which a red line and two blue lines, not in the
same plane, meet.1

We map each blue line � to its Plücker hyperplane π�, and map each red line � into
its Plücker point p�. Both points and hyperplanes lie in real projective 5-space, and the
points all lie in a four-dimensional quadric surface
 known as the Plücker surface. Two
lines �, �′ ∈ L meet if and only if p� lies on π�′ (and p�′ lies on π�). See [5] for more
details on this transformation.

Cuttings. Let� be a set of n algebraic arcs or curves in the plane, of constant maximum
degree, and let 1 ≤ r ≤ n be a parameter. A (1/r)-cutting of the arrangement A(�) of
� is a partition of R2 into pairwise disjoint relatively open cells2 of dimensions 0, 1, 2,
such that each cell is crossed by (i.e., intersected by, but not contained in) at most n/r
curves of �. The size of the cutting is the number of its cells. It has been shown (see [6]
and [8]) that there always exists a (1/r)-cutting of size O(r2), which is asymptotically
optimal.

The notion of cuttings can be extended in an obvious manner to arrangements of
surfaces in higher dimensions. In general, however, optimal or near-optimal bounds for
the size of the cuttings are harder to derive, and in most cases are not yet known. Still, in
the case of hyperplanes in Rd , there exist (1/r)-cuttings, whose cells are simplices, of
optimal size O(rd) [6]. In our analysis, we repeatedly rely on a variant of this result, in
which we need to construct (1/r)-cuttings for a four-dimensional cross section (within
the Plücker surface) of an arrangement of hyperplanes in projective 5-space; see the
following subsection for more details. See also [7] for related applications of cuttings
for incidence counting problems.

1 In the first decomposition stage the colors play no significant role, but they will be more meaningful in
the second decomposition stage, where each subproblem will involve two different subsets of L .

2 In the standard definition of a cutting, the cells are required to have constant descriptive complexity,
meaning that each of them is defined by a constant number of polynomial equalities and inequalities, involving
polynomials of constant maximum degree. In our application, though, this additional property is not needed.
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2.2. Overview of the Proof

We first present a rather informal and brief overview of the proof, which highlights the
main ideas and ignores most of the technical details. We regard the lines in L as either
red or blue, and bound the number of joints incident to two blue lines and one red line.

Using Plücker coordinates, we map each blue line to its Plücker hyperplane, and each
red line to its Plücker point. We use a two-stage cutting-based decomposition scheme in
the Plücker space, first in a primal setting and then in a dual setting that flips between
points and hyperplanes (so in the second stage the blue lines are treated as points and
the red lines as hyperplanes). Using standard machinery, we construct a (1/r)-cutting
in the primal space, and obtain roughly r4 cells (of dimensions between 0 and 4), each
crossed by at most n/r hyperplanes and containing at most roughly n/r4 points. After
the flip to the dual space, applied to the crossing hyperplanes and the contained points of
each primal cell separately, we obtain a total of about r8 cells, each crossed by at most
roughly n/r5 hyperplanes (formerly points) and containing at most roughly n/r5 points
(formerly hyperplanes).

Joints that involve at least one crossing hyperplane and at least one point in one of
these dual cells can simply be interpreted as intersection points of the corresponding pairs
of lines in 3-space, and their number can therefore be bounded by roughly r8 · (n/r5)2 =
n2/r2. The largest value of r for which this reasoning applies is roughly r = n1/5, and
we thus obtain a bound close to n8/5.

However, the analysis is not that simple. The main difficulty lies in analyzing joints
that involve a line whose corresponding Plücker point lies in some lower-dimensional
cell of either the primal or the dual cuttings. The problem is that one of the other lines
involved in the joint may have a Plücker hyperplane that fully contains the cell rather
than crosses it, and the number of such hyperplanes can be arbitrarily large. Estimating
the number of these “containment joints” is the hardest part of the analysis. Fortunately,
though, containment joints possess a lot of structure. They generally lie on a small
number of planes or reguli, and we use the various incidence bounds derived above to
obtain sharp bounds on the number of such joints.

In the remainder of this section we present the technical details of the steps that we
have just outlined.

2.3. The Primal Partitioning Stage

We construct a (1/r)-cutting � of the arrangement of the set H of the Plücker hyper-
planes, or, more precisely, of its cross section within the Plücker surface
. The cutting
is obtained by taking a random sample R of r hyperplanes of H , by triangulating each
cell of A(R), and by taking the cross sections within 
 of the resulting simplices. The
actual construction is somewhat more involved, and follows the technique of Chazelle
and Friedman [6], which uses additional samplings within some of the cells constructed
above.3 Omitting the routine details (for which see [6]), we end up with a larger sample,

3 It might be simpler to digest the following analysis by ignoring the Chazelle–Friedman refinement. This
will only affect the polylogarithmic factor appearing in the overall bound.
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which we still denote by R, consisting of O(r) hyperplanes, and yielding a cutting that
consists of O(r4 log r) cells of constant descriptive complexity (each cell is the intersec-
tion of some j-simplex, for 1 ≤ j ≤ 5, with 
), so that each cell is crossed by at most
n/r blue Plücker hyperplanes. (The size of the cutting is a consequence of the Zone The-
orem of Aronov et al. [3], which implies that the complexity of the zone of 
 in A(R),
that is, the sum of the complexities of all the cells ofA(R) crossed by
, is O(r4 log r),
from which it follows that the cells of A(R) that are crossed by 
 can be triangulated
into O(r4 log r) simplices.) Moreover, by splitting cells into subcells, if necessary, we
may also assume that each cell contains at most n/(r4 log r) red Plücker points. (Recall
that lower-dimensional cells may be contained in many more blue hyperplanes, but each
is crossed by at most n/r of them.)

We now bound the number of red–blue–blue joints by applying a case analysis on the
location, within the cutting �, of the Plücker point of the red line in the joint.

Vertices of �. Consider a joint (�1, �2, �3), for �1, �2, �3 ∈ L , such that p�1 is a vertex
of �. The number of such joints is at most

∑
v dv , where the sum is over the vertices v

of � and dv is the number of lines � ∈ L such that π� passes through v. We denote the
set of these lines as L(v). We may assume that v is a vertex formed as the transversal
intersection of 
 with (at least) four hyperplanes of R. Any other vertex of � will not
coincide with a Plücker point p�, for � ∈ L , provided that the triangulation is performed
in a sufficiently generic manner.4

We fix a hyperplaneπ�, for � ∈ L(v), and intersect it with all hyperplanes of R and with

. Since the four hyperplanes of R that form the vertex v intersect there transversally,
their cross sections within π� ∩ 
 also intersect transversally at v, so this point is a
vertex of the three-dimensional arrangement of these cross sections. The number of such
vertices, within π� ∩
, is at most O(r3), for a total bound of O(nr3) on the number of
joints at vertices of �.

Edges of �. Let γ be an intersection curve of three hyperplanes of R with 
. (As
in the case of vertices, only edges of � contained in such curves are of interest, if the
triangulation is sufficiently generic. Note also that we consider here full intersection
curves, each consisting of many edges of �.) Let �1, �2, �3 be the three corresponding
lines of L . Suppose first that these lines are pairwise skew and thus define a regulus σ .
Let � ∈ L be such that p� ∈ γ . Then � lies in σ ∗ (and belongs to σ ). Let (�, �′, �′′) be
a joint that involves �. It is impossible that both π�′ , π�′′ fully contain γ , because then
�′, �′′ would belong to σ⊥ and thus would not meet at all. Hence, say, π�′ crosses γ ,
and �′ crosses σ ∗, in at most two points. In other words, we can charge the joint under
consideration to one of these crossing points of �′ with σ ∗. The number of such crossings
is at most 2n for each regulus σ , for a total of O(nr3) joints.

Suppose next that two of the lines, say �1, �2, meet each other. Thus they define a
common plane h and a common point q. If the third line �3 lies in h or passes through q,
then the intersection π�1 ∩ π�2 ∩ π�3 ∩
 is two-dimensional, as is easily seen, so these
three lines do not define a one-dimensional intersection curve that induces edges of �.

4 For example, each cell can be triangulated into simplices, all emanating from some common generic
point in the relative interior of the cell.
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`1

`2

`3

h

h0

q

q0

Fig. 3. The pair of planes corresponding to an edge of �.

Hence �3 meets h at a single point q ′ �= q. It follows that any line � with p� ∈ γ either
lies in h and passes through q ′, or passes through q and through �3, and thus lies in the
plane h′ spanned by q and �3. See Fig. 3. In other words, any joint on � lies in h ∪ h′,
and at least one of the three lines forming the joint must cross h or h′ at the joint. There
are at most 2n such crossing points, so the number of joints in this case is at most 2n,
for a total of O(nr3) joints.

2-Faces of �. Let ϕ be an intersection 2-surface of two hyperplanes of R with 

(again, only 2-faces of � that lie in such 2-surfaces are of interest, and we consider
full intersection 2-surfaces rather than individual 2-faces), and let �1, �2 be the two
corresponding lines of L . Suppose first that �1, �2 pass through a common point q, and
thus lie in a common plane h. Then any line λ with pλ ∈ ϕ either lies in h or passes
through q . We can thus view ϕ as the union of two subsurfaces ϕq , ϕh , where ϕq (resp.,
ϕh) is the locus of all points representing lines passing through q (resp., lying in h).

Let (�, �′, �′′) be a joint where p� ∈ ϕq . We may assume that p� does not lie on any
edge of � that is contained in ϕ, because such points have already been accounted for.
If π�′ , say, fully contains ϕq , then �′ must pass through q (since it touches every line that
passes through q), and thus the joint in question must be the point q itself. The overall
number of such joints is only O(r2). We may thus assume that both π�′ and π�′′ cross ϕq .

Similarly, let (�, �′, �′′) be a joint where p� ∈ ϕh . If π�′ , say, fully contains ϕh , then
�′ must lie in h. In this case the joint must lie in h. As we have already noted, h contains
at most n joints, so the overall number of joints of this kind is at most O(nr2). We may
thus assume that both π�′ and π�′′ cross ϕh .

Thus, in either case, we are left with subproblems, each associated with a 2-face τ of�
(the surface ϕ is now decomposed back into its constituent 2-faces), such that τ contains
at most n/(r4 log r) red Plücker points and is crossed by at most n/r blue Plücker hyper-
planes; the problem associated with τ considers red–blue–blue joints where the red point
lies in τ and both blue hyperplanes cross τ . The number of subproblems is O(r4 log r).
We handle these subproblems in the second dual stage of the analysis—see below.

Finally, suppose that �1 and �2 are skew. Consider a joint (�, �′, �′′), where p� ∈ ϕ.
Neither of the hyperplanes π�′ , π�′′ can fully contain ϕ, because then the corresponding
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line would have to be incident to every line that meets �1 and �2, which is clearly
impossible. Hence, in this case we obtain, as above, a collection of subproblems, each
associated with a 2-face τ of� (a subface of ϕ), such that τ contains at most n/(r4 log r)
red Plücker points and is crossed by at most n/r blue Plücker hyperplanes. As above,
the number of subproblems is O(r4 log r), and they are all handled in the second dual
stage of the analysis.

3-Faces of�. Let p� be a point in the relative interior of some 3-face of�, contained in
the intersection of 
 with some hyperplane π�1 in R (only such 3-faces are of interest).
Any hyperplane incident to p�, with the exception of π�1 , crosses at least one of the
two adjacent cells of �. We can thus assign p� to such an adjacent cell, and count the
joints on � as part of the subproblem associated with that cell (losing in the reduction
a total of at most n joints). Thus no special treatment is needed for points on 3-faces
of �. Alternatively, we can regard each 3-face τ as yielding a subproblem of its own,
involving the (at most n/(r4 log r)) red points that it contains and the (at most n/r ) blue
hyperplanes that cross it. The number of subproblems is O(r4 log r) and they are handled
in the subsequent dual stage.

Cells of�. As in the case of 2-faces and 3-faces, each cell τ of�generates a subproblem
involving the at most n/(r4 log r) red Plücker points in τ and the at most n/r blue Plücker
hyperplanes that cross τ . There are O(r4 log r) subproblems of this type.

2.4. The Dual Partitioning Stage

Let τ be a cell of �; we include here also the cases where τ is a 2-face or a 3-face of
�, and only hyperplanes that cross τ are considered. Let Lτ be the set of all lines � ∈ L
such that p� ∈ τ , and let L ′τ be the set of all lines � ∈ L such that π� crosses τ ; we have
|Lτ | ≤ n/(r4 log r) and |L ′τ | ≤ n/r . We “dualize” the problem, by mapping the lines of
Lτ to (red) Plücker hyperplanes and lines of L ′τ to (blue) Plücker points in projective 5-
space. Recall that we consider here joints (�1, �2, �3) where �1 ∈ Lτ , �2, �3 ∈ L ′τ . Since
�2, �3 are mapped to distinct points, the triple interaction of �1, �2, �3 is not localized at
any point of this dual parametric 5-space. We therefore do not consider at all any triple
interaction at this stage. Instead, we charge the joint in question simply to the incidence
between p�2 and π�1 , or to the incidence between p�3 and π�1 . Clearly, this count is a
(probably gross) overestimate of the number of joints under consideration.5

We construct a (1/r)-cutting�′τ of the cross section within
 of the hyperplanes π�,
for � ∈ Lτ , using, as above, a generic triangulation of the arrangementA(Rτ ), for an ap-
propriate sample Rτ of O(r) of these hyperplanes. As above, the size of�′τ is O(r4 log r),
and we may assume that each of its cells τ ′ contains at most (n/r)/(r4 log r) =
n/(r5 log r) blue Plücker points p�, for � ∈ L ′τ , and is crossed by at most (n/(r4 log r))/r
= n/(r5 log r) red Plücker hyperplanes π�, for � ∈ Lτ .

5 Arguably, this is one of the weak spots of our analysis. Any method of “preserving” the triple interactions
at joints would likely lead to an improved bound on J (n).
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We first note that the number of incident pairs (p�, π�′), involving a blue Plücker point
p� of L ′τ and a red Plücker hyperplane π�′ of Lτ that crosses the cell of �′τ that contains
p�, is

O

(
r4 log r ·

(
n

r5 log r

)2
)
= O

(
n2

r6 log r

)
.

Summing this bound over all cells τ of �, we obtain an overall number of

O

(
r4 log r · n2

r6 log r

)
= O

(
n2

r2

)

joints of this type. Hence, in what follows we may restrict the analysis to incidences
between the blue points and the red hyperplanes that fully contain the corresponding cell
of �′τ .

We thus proceed to bound the number of “containment” incident pairs (p�2 , π�1), for
�2 ∈ L ′τ , �1 ∈ Lτ , applying a case analysis on the location of p�2 in �′τ .

Vertices of �′τ . Consider a joint (�1, �2, �3) where �1 ∈ Lτ , �2, �3 ∈ L ′τ , such that p�2 ,
say, is a vertex of �′τ . As in the primal stage, the number of such joints is at most the
sum

∑
v dv , taken over the vertices v of �′τ , where dv is the number of red lines � ∈ Lτ

such that π� passes through v. We denote the set of these lines as L(v)τ . As in the primal
stage, only vertices v incident to four hyperplanes of Rτ that meet there transversally
need to be considered.

We fix a hyperplaneπ� for � ∈ L(v)τ and intersect it with all hyperplanes of Rτ and with

. Since the four hyperplanes of Rτ that form the vertex v intersect there transversally,
their cross sections within π� ∩
 also intersect transversally at v, so that this point is a
vertex of the three-dimensional arrangement of these cross sections. The number of such
vertices, within π� ∩ 
, is at most O(r3), for a total of O(r3 · (n/(r4 log r))), which,
multiplied by the number of cells τ , yields a bound of O(nr3) on the number of joints
at vertices of the cuttings �′τ .

Regulus Edges of �′τ . This is the most intricate part of our analysis. Let γ be an
intersection curve of three hyperplanes of Rτ with
, representing three respective lines
�1, �2, �3 (again, only such curves are of interest). Suppose first that these lines are
pairwise skew, so that they form a regulus σ . Let kσ (resp., k ′σ ) denote the number of
lines � of Lτ (resp., of L ′τ ) that are contained in σ⊥ (resp., in σ ); in 5-space these are lines
for which π� contains γ (resp., p� lies in γ ). We need to bound the number of incident
pairs of lines (�, �′) ∈ Lτ × L ′τ , such that p�′ ∈ γ . We do not include in this count lines
�′ ∈ L ′τ whose points p�′ are vertices of�′τ , since they have already been accounted for.

Recall that we only need to consider the case where π� contains γ ; that is, � ∈ σ⊥. A
trivial upper bound on the number of joints under consideration (or, rather, the number
of incident pairs (�, �′), as above) is kσ · k ′σ . Our next steps proceed by case analysis on
the values of kσ and k ′σ , which uses two threshold values s, t that we specify later, where
s is the parameter used in the process of pruning away heavy reguli and planes, applied
at the beginning of the analysis.
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(a) kσ ≤ t : In this case we bound the number of joints by t
∑

σ k ′σ , where the sum
extends over all reguli σ with this property. Since, in 5-space, k ′σ counts points
that lie on the curves representing the reguli and each point is counted only once
(since we exclude vertices of the cutting), the above sum is at most tn/r . Summed
over all cells τ , this yields an overall bound of O(nr3t log r) joints (which already
dominates the bounds O(nr3) obtained for the vertices of the dual cuttings, as well
as for the vertices and edges of the primal cutting).6

(b) kσ > t : By the initial pruning process, we may assume that k ′σ ≤ s. In this case
we use Lemma 2.2 to conclude that the sum

∑
σ kσ , over those reguli σ for which

kσ > t (for the fixed cell τ ), is at most

O

(
(n/(r4 log r))3

t17/4
+ (n/(r

4 log r))2

t2
+ n

r4 log r

)

= O

(
n3

r12t17/4 log3 r
+ n2

r8t2 log2 r
+ n

r4 log r

)
.

Multiplying by s and by the number of cells τ , we obtain the bound

O

(
n3s

r8t17/4 log2 r
+ n2s

r4t2 log r
+ ns

)

on the number of joints under consideration.

Non-Regulus Edges of�′τ . Suppose next that two of the lines that define the intersection
curve, say �1, �2, meet (recall that we have assumed that no pair of lines in L are parallel).
Thus they define a common plane h and a common point q. If the third line �3 ∈ Lτ lies
in h or passes through q , then the intersection π�1 ∩π�2 ∩π�3 ∩
 is two-dimensional, so
these three lines do not define an edge of �′τ . Hence �3 meets h at a single point q ′ �= q.
It follows (see Fig. 3) that any line � with p� ∈ γ either lies in h and passes through q ′,
or it passes through q and through �3, and thus lies in the plane h′ spanned by q and �3.
In other words, any joint on � lies in h ∪ h′. We can decompose γ into two subcurves
γh , γh′ , where γh (resp., γh′ ) consists of all points p� for which � lies in h and passes
through q ′ (resp., lies in h′ and passes through q).

We next repeat the preceding analysis, handling planes instead of reguli, which makes
it somewhat simpler.7 Let then γ = γh∪γh′ be an intersection curve of three hyperplanes
of Rτ , representing lines �1, �2, �3 that form a pair of planes h, h′, as above. We focus on
one of the subcurves, say γh . Let kh (resp., k ′h) denote the number of lines � of Lτ (resp.,
of L ′τ ) that are contained in h; in 5-space these are lines for which π� contains γh (resp.,
p� lies in γh). We need to bound the number of incident pairs of lines (�, �′) ∈ Lτ × L ′τ ,
for which p�′ ∈ γh . We do not include in this count lines �′ ∈ L ′τ whose points p�′ are
vertices of �′τ , since they have already been accounted for.

As in the case of reguli, we only consider the case where π� contains γh . A trivial
upper bound on the number of joints under consideration is kh ·k ′h . Our next steps proceed

6 This is another weak spot in our analysis—see the discussion at the end of the paper.
7 It also yields smaller bounds, as we shall see, so this part of the analysis does not really affect the final

overall bound.
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by case analysis on the values of kh and k ′h , which uses the same two threshold values
s, t as for the case of reguli.

(a) kh ≤ t : In this case we bound the number of joints by t
∑

h k ′h , where the sum
extends over all planes h with this property. Since, in 5-space, k ′h counts blue points
(representing lines in L ′τ ) that lie on the corresponding curves γh , and each point
is counted only once (since we exclude vertices of the cutting), the above sum is at
most tn/r . Summed over all cells τ , this yields an overall bound of O(nr3t log r).

(b) kh > t : The pruning process allows us to assume that k ′h ≤ s. In this case we use
Lemma 2.1 to conclude that the sum

∑
h kh , over those planes h for which kh > t

(for the fixed cell τ ), is at most

O

(
(n/(r4 log r))2

t2
+ n

r4 log r

)
= O

(
n2

r8t2 log2 r
+ n

r4 log r

)
.

Multiplying by s and by the number of cells τ , we obtain the bound

O

(
n2s

r4t2 log r
+ ns

)
(3)

on the number of joints under consideration.

2-Faces of �′τ . The analysis follows closely that for the 2-faces of the primal cutting
�. Specifically, let ϕ be an intersection 2-surface of two hyperplanes of Rτ with 
, and
let �1, �2 be the two corresponding lines of Lτ . Suppose first that �1, �2 pass through
a common point q , and thus lie in a common plane h. Then any line � with p� ∈ ϕ
either lies in h or passes through q. We can thus view ϕ as the union of two surfaces
ϕq , ϕh , where ϕq (resp., ϕh) is the locus of all (points representing) lines passing through
q (resp., lying in h).

Let (�, �′, �′′) be a joint where � ∈ Lτ , �′, �′′ ∈ L ′τ , and, say, p�′ ∈ ϕq . We may
assume that p�′ does not lie on any edge of�′τ that is contained in ϕ, because such points
have already been taken care of. As above, we assume that π� fully contains ϕq . Then �
must pass through q , and thus the joint in question must be the point q itself. The overall
number of such joints is only O(r2), for an overall bound of O(r6 log r).

Similarly, let (�, �′, �′′) be a joint as above, where p�′ ∈ ϕh . Assume now that π� fully
contains ϕh . Then � must lie in h. In this case the joint must lie in h. We then proceed
exactly as in the analysis of non-regulus edges of�′τ . (In case (a) of the analysis, the sum∑

h k ′h is at most n/r , since it counts lines of L ′τ without multiplicity, as we ignore the
corresponding Plücker points that lie on edges of �′τ .) This yields the same bounds as
in cases (a) and (b) of the non-regulus edges, i.e., a total bound of O(n2s/(r4t2 log r)+
ns + nr3t log r) for the number of joints of this kind.

Finally, the case where �1 and �2 are skew can be ignored. Indeed, consider a joint
(�, �′, �′′), where, say, p�′ ∈ ϕ. Then the hyperplane π� cannot fully contain ϕ, because
then the line � would have to be incident to every line that meets �1 and �2, which is
clearly impossible.

Cells of �′τ . Since cells are full-dimensional, no “containment” incidence can arise in
this case.
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3-Faces of �′τ . Let p�′ , where �′ ∈ L ′τ , be a blue point in the relative interior of some
3-face of �′τ , contained in π� ∩
, for some � ∈ Lτ . Clearly, no other hyperplane of Lτ
can fully contain the 3-face, so p�′ is involved in just one containment incidence, for a
total of O(n/r) joints of this type. Summing over all cells τ of�, the overall number of
such joints is O(r4 log r · (n/r)) = O(nr3 log r).

Putting It All Together. Adding the bounds obtained in the preceding analysis steps,
we obtain a grand total of

O

(
n2

s
+ nr3t log r + n3s

r8t17/4 log2 r
+ n2

r2
+ n2s

r4t2 log r
+ ns + r6 log r

)

joints. We now choose

r = n13/69

log3/23 n
, s = r2 = n26/69

log6/23 n
, t = n

r5 log n
= n4/69

log8/23 n
,

to obtain that the overall number of joints is O(n112/69 log6/23 n). (This choice of param-
eters equalizes the first four terms in the above bound; the last three terms are dominated
by the first four.)

We thus obtain the main result of this paper:

Theorem 2.3. The number of joints of a set of n lines in 3-space is O(n112/69 log6/23 n)
= O(n1.6232).

2.5. Discussion

There are two natural conjectures concerning J (n). The first (in view of the best known
lower bound) is that J (n) = �(n3/2). The second, and somewhat weaker conjecture, is
that J (n) ≈ O(n8/5). There are several informal reasons for the second conjecture. For
example, observe that the two stages of decomposition end up with about r8 subproblems,
each involving about n/r5 lines, which leads to a recurrence relation, whose basic solution
is about n8/5. Of course, the subproblems are different from the original one, since joints
are “lost” there. Still, the general characteristics of the decomposition suggest this bound.

We strongly believe that at least the second conjecture is true. There are two weak
spots in our analysis. The first is the handling of regulus-edges of the dual cuttings.
We can handle well reguli that contain many lines of L ′τ , but it seems that we handle
the “lighter” reguli in a suboptimal manner. At any rate, the term that the analysis of
these light reguli yields, namely O(nr3t log r), is one of the causes for our bound to be
weaker than O(n8/5). The second cause is the way we handle the subproblems at the
second partitioning stage: we bound there the number of relevant joints simply by the
product of the sizes of the two corresponding sets of lines. We suspect that this is a gross
overestimate, and that sharper bounds can be obtained using a more careful analysis.
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