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Abstract. We study metric properties of the cone of homogeneous nonnegative multi-
variate polynomials and the cone of sums of powers of linear forms, and the relationship
between the two cones. We compute the maximum volume ellipsoid of the natural base
of the cone of nonnegative polynomials and the minimum volume ellipsoid of the natural
base of the cone of powers of linear forms and compute the coefficients of symmetry of
the bases. The multiplication by (x2

1 + · · · + x2
n )

m induces an isometric embedding of the
space of polynomials of degree 2k into the space of polynomials of degree 2(k+m), which
allows us to compare the cone of nonnegative polynomials of degree 2k and the cone of
sums of 2(k +m)-powers of linear forms. We estimate the volume ratio of the bases of the
two cones and the rate at which it approaches 1 as m grows.

1. Introduction and Results

1.1. Introduction

Let Pn,d denote the vector space of real homogeneous polynomials (forms) of degree d
in n real variables. For even d = 2k there are three interesting closed convex cones in
Pn,2k :

The cone of nonnegative polynomials, C (= Cn,2k),

C = { f ∈ Pn,2k | f (x) ≥ 0 for all x ∈ Rn}.

The cone of sums of squares, Sq (= Sqn,2k),

Sq =
{

f ∈ Pn,2k

 f =
∑

i

f 2
i for some fi ∈ Pn,k

}
.
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The cone of sums of 2kth powers of linear forms, L f (= L fn,2k),

L f =
{

f ∈ Pn,2k

 f =
∑

i

l2k
i for some linear forms li ∈ Pn,1

}
.

The study of algebraic properties of these cones goes back to Hilbert, who described
explicitly all the cases when Cn,2k = Sqn,2k [5]. Hilbert’s 17th problem, solved in
the affirmative by Artin and Schreier in the 1920s, asked whether every nonnegative
polynomial is a sum of squares of rational functions [3]. Constructive aspects of Hilbert’s
problem still draws attention today [3], [9]. For a discussion of some algebraic properties
of the cone of sums of powers of linear forms refer to [8].

To our knowledge, however, these cones have not been studied as general convex
objects, possessing invariants based on convexity. In this paper we look at some convex
properties of these cones.

Let M (= Mn,2k) denote the hyperplane of all forms in Pn,2k with integral 1 on the
unit sphere Sn−1:

M =
{

f ∈ Pn,2k


∫

Sn−1
f dσ = 1

}
,

where σ denotes the rotation invariant probability measure on Sn−1.
We define compact convex bodies C , Sq and L f by intersecting the respective cones

with M :

C = C ∩ M, Sq = Sq ∩ M and L f = L f ∩ M.

The compact convex bodies C , Sq and L f are natural bases of the respective cones and
they have full dimension in M . Their naturality becomes apparent if we consider the
following action of the special orthogonal group SO(n) on Pn,d :

A ∈ SO(n) sends f (x) ∈ Pn,d to A f = f (A−1x).

All three cones C , Sq and L f are fixed by the action of SO(n), and M is the only
hyperplane in Pn,2k fixed by this action. Therefore C , Sq and L f are also fixed by the
action of SO(n), and they are the only hyperplane sections of their respective cones with
this property. This action of SO(n) naturally gives a homomorphism

ϕn,d : SO(n)→ GL(Pn,d),

and therefore we have a representation of SO(n) on Pn,d . There is a natural inner product
on Pn,d :

〈 f , g〉 =
∫

Sn−1
f g dσ.

The metric induced by this inner product makes ϕn,d an orthogonal representation, since
the inner product is invariant under the action of SO(n).

Let K (2m) be the cone in Pn,2k of forms whose restrictions to the sphere are linear
combinations of 2mth powers of linear forms on Sn−1. Equivalently, K (2m) is the cone
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of forms in Pn,2k that multiplied by (x2
1 +· · ·+ x2

n)
m−k become sums of powers of linear

forms:

K (2m) = { f ∈ Pn,2k | (x2
1 + · · · + x2

n)
m−k f ∈ L fn,2m}.

We define K (2m) by intersecting K with the hyperplane of forms of integral 1 on Sn−1.
From general convexity we know that every compact convex body K contains a unique

ellipsoid of maximum volume, known as John’s ellipsoid of K . Also, K is contained in
a unique ellipsoid of minimum volume, known as the Loewner ellipsoid of K [1].

A crude, yet interesting, measure of symmetry of K is its coefficient of symmetry
about a point v in the interior of K . The coefficient of symmetry of K about v is defined
as the largest α ∈ R such that

−α(K − v) is contained in K − v.
We will compute coefficients of symmetry of C and L f with respect to v =
(x2

1 + · · · + x2
n)

k .

1.2. Convexity Results

We prove the following properties:

1. Let α = dim Pn,2k − 1. Then(
vol K (2m)

vol C

)1/α

≥ m! 
((2m + n)/2)

(m − k)! 
((2m + 2k + n)/2)
.

It follows that if for an ε > 0 we let m = (2k2 + kn)/ε, then(
vol K (2m)

vol C

)1/α

≥ 1− ε

(see Theorem 7.8). Thus the volume ratio approaches 1 as m goes to infinity.
Therefore all strictly positive polynomials lie in some K (2m) (see [9]).

2. We show that, in the above metric, John’s ellipsoid of Cn,2k is a ball centered at
(x2

1 + · · · + x2
n)

k of radius

1√(n+2k−1
2k

)− 1

(see Theorem 5.3).
3. We explicitly compute the Loewner ellipsoid of L f n,2k (see Theorem 7.6).
4. We calculate the coefficient of symmetry of Cn,2k and L f n,2k with respect to
(x2

1 + · · · + x2
n)

k , which in both cases turns out to be

1(n+k−1
k

)− 1

(see Theorems 6.5 and 7.6).
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5. Combining properties 2 and 3 we show that L f n,2k contains a ball of radius

k! 
(k + n/2)


(2k + n/2)
√(n+k−1

k

)− 1
,

centered at (x2
1 + · · · + x2

n)
k (see Corollary 7.7).

6. A crucial tool for the above calculations is computation of the Loewner ellipsoid
of a convex hull of the orbit of an arbitrary point under a continuous, multiplic-
ity free group action of a compact group. We apply this to the case of SO(n)
(see Theorem 3.1). The case of continuous representation with no restriction on
mulitiplicities will be discussed elsewhere.

Note that the invariants computed in properties 2–4 are independent of the Euclidean
structure on Pn,d , e.g. the maximal volume ellipsoid is unique and is the same regardless
of the choice of an inner product, although it will not always be a ball.

In many cases we reduce our calculations to polynomials symmetric with respect to
an axis. These are the polynomials fixed by J (n, v), where J (n, v) is the subgroup of
SO(n) consisting of orthogonal transformations that fix a particular vector v ∈ Rn:

J (n, v) = {A ∈ SO(n) | Av = v for some fixed v ∈ Rn}.

We show that every nonnegative polynomial symmetric with respect to an axis is a sum
of squares, which proves to be quite useful, and we think interesting in itself.

1.3. Integral Inequalities

A byproduct of our work is a number of integral inequalities for homogeneous polyno-
mials on Sn−1. We use the usual notation for L p and L∞ norms:

‖ f ‖p =
(∫

Sn−1
| f |p dσ

)1/p

and ‖ f ‖∞ = max
x∈Sn−1

| f (x)|.

We list some of our results roughly in order of appearance in the paper:

1. For nonnegative f ∈ Pn,2k ,

‖ f ‖∞ ≤
(

n + k − 1

k

)
‖ f ‖1

(see Theorem 6.3).
2. Equivalently to 1, let Mf denote the maximum of f on Sn−1 and m f denote the

minimum of f on Sn−1. Also let α = 1/
(n+k−1

k

)
. Then for all f ∈ Pn,2k ,

αMf + (1− α)m f ≤
∫

Sn−1
f dσ ≤ (1− α)Mf + αm f

(see Corollary 6.6).
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3. For f as in 1,

‖ f ‖2 ≤
√(

n + k − 1

k

)
‖ f ‖1.

(see Corollary 6.7).
4. From 1 we easily derive that for f ∈ Pn,k ,

‖ f ‖∞ ≤
(

n + kl − 1

kl

)1/2l

‖ f ‖2l

for all positive integers l (see Corollary 6.4).

Estimates 1 and 2 above are sharp and we also provide all extreme polynomials for them.
For a different proof of 4 by Barvinok and a discussion of applications see [2]. Sogge in
[11], and Duoandikoetxea in [4] derive some related interesting inequalities.

The rest of the article is structured as follows: Section 2 contains the known results
necessary for the rest of the paper. In Section 3 we compute the Loewner ellipsoid of an
orbit of a point under the action of a compact group. In Section 4 we prove some results
about polarity in the space of forms with respect to our inner product 〈 , 〉. In Section 5
we compute John’s ellipsoid for the cone of nonnegative polynomials. In Section 6 we
compute the coefficient of symmetry of the cone of nonnegative polynomials. Section 7
is devoted to the cone of sums of powers of linear forms. We derive the equation of its
Loewner ellipsoid and compute its coefficient of symmetry, and we show the volume
ratio result.

2. Preliminaries

2.1. Representation of SO(n) in Pn,d

There is a natural action of SO(n) on Pn,d which sends f (x) to f (A−1x) for A ∈ SO(n).
We denote the action of A ∈ SO(n) on f by A f . Note that this leads naturally to a
representation ϕn,d of SO(n). We introduce an inner product on Pn,d :

〈 f , g〉 =
∫

Sn−1
f (x)g(x) dσ,

where σ denotes the rotation invariant probability measure on Sn−1. Under our inner
product the norm of f coincides with the usual L2 norm and we will often use ‖ f ‖
instead of ‖ f ‖2. The metric induced by the inner product makes ϕn,d into an orthogonal
representation as

〈A f , Ag〉 =
∫

Sn−1
f (A−1x)g(A−1x) dσ =

∫
Sn−1

f (x)g(x) dσ = 〈 f , g〉,

by rotational invariance of σ .
We use 
 to denote the Laplace differential operator:


 = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n

.
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Definition. If f ∈ Pn,d and


 f = 0,

then f is called a homogeneous harmonic.

The restriction of a homogeneous harmonic to the sphere Sn−1 is called a spherical
harmonic. By linearity of 
, homogeneous harmonics form a vector subspace of Pn,d ,
which we denote by Hn,d :

Hn,d = { f ∈ Pn,d | 
 f = 0}.

Let

r(x) = (x2
1 + · · · + x2

n)
1/2.

The inclusion i : Hn,d−2l → Pn,d given by

i( f ) = r2l f

is an isometry since i( f ) = r2l f is the same function as f on the sphere Sn−1. We
denote the image subspace of Pn,d by H∗n,d−2l :

H∗n,d−2l = { f ∈ Pn,d | f = r2l g for some g ∈ Hn,d−2l}.

We need some facts about the representations ϕn,d , see [7] and [13].

Theorem 2.1. Hn,d is an irreducible SO(n)-module, and, therefore, H∗n,d is an ir-
reducible submodule of Pn,d . Furthermore, Pn,d splits into irreducible submodules as
follows:

Pn,d =
�d/2�⊕
i=0

r2i Hn,d−2i =
�d/2�⊕
i=0

H∗n,d−2i .

Let D(n, d) be the dimension of P(n, d) and let N (n, d) be the dimension of Hn,d . Then

D(n, d) =
(

n + d − 1

d

)
and N (n, d) = (2d + n − 2)(d + n − 3)!

d! (n − 2)!
.

Remark 2.2. The restriction of f ∈ Pn,d to the sphere Sn−1 can be uniquely written
as a sum of spherical harmonics of degrees having the same parity as d.

Definition. Let J (n, v) denote the subgroup of SO(n) that keeps a particular v ∈ Sn−1

fixed:

J (n, v) = {A ∈ SO(n) | Av = v}.
We denote the standard basis of Rn by e1 · · · en . We use the following theorem on

restricting ϕn,d to J (n, v):
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Theorem 2.3. There exists a unique polynomial Lvn,d(x) with the following properties:

1. Lvn,d(x) ∈ Hn,d ,
2. Lvn,d(Ax) = Lvn,d(x) for all A ∈ J (n, v),
3. Lvn,d(v) = 1.

We call Lvn,d(x) the Legendre harmonic with axis v (also called the axial and zonal
polynomial).

We denote Len
n,d simply by Ln,d . We now state some facts about Legendre harmonics

that will be used later:

Theorem 2.4.

1. The norm of the Legendre harmonic is given by

‖Lvn,d‖2 =
∫

Sn−1
(Lvn,d)

2 dσ = 1

N (n, d)
.

2.

‖Lvn,d‖∞ = 1.

The maximum absolute value of Lvn,d is achieved only at v, −v and

Lvn,2k(v) = Lvn,2k(−v) = 1 while Lvn,2k−1(v) = −Lvn,2k−1(−v) = 1.

Since Ln,d is fixed by J (n, en), by applying rotations of Sn−1 fixing en , we see that
Ln,d is constant on slices of the sphere with hyperplanes Ta perpendicular to en:

Ta = {ζ ∈ Rn | 〈ζ , en〉 = a}, −1 ≤ a ≤ 1.

Hence the Legendre harmonics Ln,d restricted to the sphere Sn−1 are functions of essen-
tially only one variable, namely, the last coordinate. Therefore we can define a polynomial
in t , which we denote Qn,d(t), such that

Ln,d(ξ) = Qn,d(〈ξ, en〉) for all ξ ∈ Sn−1.

The family of polynomials Qn,d(t) are known as the Legendre polynomials and are
special cases of ultraspherical (or Gegenbauer) polynomials. For many identities satisfied
by these polynomials see [12] and [13].

2.2. Loewner and John Ellipsoids

Let K be a convex body in a finite-dimensional real vector space V . There exists a unique
ellipsoid of maximal volume contained in K , known as John’s ellipsoid of K ; we denote
it by DK . Moreover, there is a criterion for determining whether a given ellipsoid E
contained in K is John’s ellipsoid of K based solely on the points in the intersection of
boundaries ∂E ∩ ∂K .
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Recall that a nonsingular linear transformation does not affect ratios of volumes.
Therefore, after translating the center of DK to the origin and then applying a linear
transformation A ∈ GL(V ), we know that John’s ellipsoid of A(K ) is the unit ball Bn .
Therefore we assume that John’s ellipsoid of K is a ball and we state the theorem for
this case:

Theorem 2.5. Each convex body K contains a unique ellipsoid of maximal volume.
This ellipsoid is Bn if and only if the following conditions are satisfied: Bn ⊂ K and (for
some m) there exist unit vectors (ui )

m
1 in the boundary ∂K of K and positive numbers

(ci )
m
1 satisfying ∑

ci ui = 0

and ∑
ci 〈x , ui 〉2 = ‖x‖2 for all x ∈ Rn.

For the proof and discussion see [1].
There also exists a unique ellipsoid of minimal volume containing K , known as

the Loewner ellipsoid of K ; we denote it by L K . It was shown by John in [6] that if
Bn contains K , then the same condition on points in the intersection of boundaries is
necessary and sufficient for a unit ball Bn to be the Loewner ellipsoid of K .

Definition. For a convex body K in V we use K ◦ to denote the polar of K ,

K ◦ = {x ∈ Rn | 〈x , y〉 ≤ 1 for all y ∈ K }.
The following proposition relating John and Loewner ellipsoids of polar bodies will

be useful later.

Proposition 2.6. Let L K be the Loewner ellipsoid of K and suppose that the center of
L K is the origin. Then John’s ellipsoid of K ◦ is L◦K .

Now we assume that the center of the Loewner ellipsoid of K is the origin and let α
be the coefficient of symmetry of K with respect to zero, i.e. let α be the largest positive
real number such that

−αK ⊆ K .

Proposition 2.7. Let K be a convex body and let α be the coefficient of symmetry of
K with respect to the center of the Loewner ellipsoid L K . Then√

α

dim V
L K ⊆ K ⊆ L K .

Similarly, if β is the coefficient of symmetry of K with respect to the center of John’s
ellipsoid DK , then

DK ⊆ K ⊆
√

dim V

β
DK .
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Proof. We show the proposition only for the case of the Loewner ellipsoid. The other
case follows by polarity. Without loss of generality we may assume that L K is a unit ball
centered at the origin. John in [6] has also shown the following:

For a unit vector v ∈ Rn let d(v) be the distance from the origin of the supporting
hyperplane of K in the direction of v:

d(v) = max
x∈K
〈x , v〉.

Then

d(v)d(−v) ≥ 1

dim V
.

Now let w ∈ K be such that

〈v ,w〉 = d(v).

Since the coefficient of symmetry of K is α, it follows that

−αw ∈ K and 〈−αw ,−v〉 = αd(v).

Therefore we see that

αd(v) ≤ d(−v),
and thus

d2(−v)
α

≥ d(v)d(−v) ≥ 1

dim V
.

Hence it follows that for all v ∈ Rn ,

d(v) ≥
√

α

dim V
,

and therefore K contains a ball of radius
√
α/dim V .

3. Loewner Ellipsoid of an Orbit

Let V be a finite-dimensional real vector space. Let G be a compact topological group
and let ϕ: G → GL(V ) be a continuous representation of G. There exists a G-invariant
probability measure µ on G, called the Haar measure. From the existence of the Haar
measure it easily follows that there exists a G-invariant scalar product 〈 , 〉 that makes ϕ
into an orthogonal representation [10].

We will use the shorthand notation of g(v) to denote the action of ϕ(g) on a vector
v ∈ V . Let v ∈ V and let Ov be the orbit of v,

Ov = {g(v) | g ∈ G}.
Let W denote the affine span of Ov ,

W =
{∑

λi gi (v)

 gi ∈ G and λi ∈ R such that
∑

λi = 1

}
,
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and let Kv be the convex hull of Ov ,

Kv =
{∑

λi gi (v)

 gi ∈ G, λi ∈ R such that
∑

λi = 1 and λi ≥ 0

}
.

Since G is compact, it follows that Ov is compact. Therefore Kv is a full-dimensional
compact convex set in W .

Let v̄ denote the projection of v into the isotypic component of V corresponding to
the trivial representation:

v̄ =
∫

G
g(v) dµ.

Since µ is normalized to 1, it follows that v̄ ∈ W . Now consider the linear subspace W
which is obtained by subtracting v̄ from W :

W = {w − v̄ | w ∈ W } .
Notice that W is a G-module. Since

g(v − v̄) = g(v)− g(v̄) = g(v)− v̄,
it follows that W is an affine span of Ov−v̄ , and Kv−v̄ is Kv − v̄. Thus instead of Kv we
can consider Kv−v̄ , inside W .

Therefore we have reduced our problem to computing the Loewner ellipsoid for a point
whose orbit spans the entire space affinely. Let v ∈ V and, without loss of generality,
assume that

V = Aff{Ov}.
In this case G does not fix any vector in V except for the origin. For suppose not, and
let w ∈ V be fixed by G. Then

〈g(v) , w〉 = 〈g−1g(v) , g−1w〉 = 〈v ,w〉 for all g ∈ G.

Therefore

〈x , w〉 = 〈v ,w〉 = const for all x ∈ Aff(Ov)=V .

Thus w = 0.
We now assume that the representation ϕ is multiplicity free, i.e. isomorphic irre-

ducible submodules occur with multiplicity 1 in the decomposition on V ; the case of an
arbitrary representation will be discussed elsewhere. We let

V =
k⊕

i=1

Vi

be the unique orthogonal decomposition of V into irreducible submodules, and let Di

be the dimension of Vi , with D denoting the dimension of V . For x ∈ V we use li (x)
to denote orthogonal projection of x into Vi . Now we prove the main theorem of this
section:
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Theorem 3.1. The Loewner ellipsoid L of Kv is given by the inequality

k∑
i=1

Di

‖ li (v)‖2
‖ li (x)‖2 ≤ D.

Proof. Since Kv is the convex hull of the orbit of v it follows that Kv is fixed by the
action of G. By the uniqueness of the Loewner ellipsoid, it follows that L is also fixed
under the action of G.

Now let E be an ellipsoid in V such that E is fixed under the action of G and v ∈ E .
From invariance of E under G it follows that

Ov ⊆ E,

and hence

Kv ⊆ E .

We will minimize the volume of E , and then we will obtain the Loewner ellipsoid L .
Let w be the center of E . Since G fixes E , it follows that G also fixes w. However,

the only vector fixed by G in V is the origin, and thus w = 0. Also, from the invariance
of E under the action of G, it follows that the defining inequality of E must have the
form

k∑
i=1

λi‖ li (x)‖2 ≤ 1 for some λi ∈ R with λi ≥ 0.

To minimize the volume of E we may assume that v ∈ ∂E , or, in other words,

k∑
i=1

λi‖ li (v)‖2 = 1.

Also,

vol2(E) = vol2(B D)

k∏
i=1

λ
−Di
i ,

where B D denotes the D-dimensional unit ball. Thus we need to minimize

k∏
i=1

λ
−Di
i

subject to

k∑
i=1

λi‖ li (v)‖2 = 1. (1)

We apply the method of Lagrange multipliers and it follows that

cDi
vol2(E)

λi
= ‖ li (v)‖2 for some c ∈ R, and for all 1 ≤ i ≤ k. (2)
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Therefore

λi‖ li (v)‖2 = cDi vol2(E).

We substitute this into (1) and it follows that

c = 1

vol2(E)
∑k

i=1 Di

= 1

vol2(E)D
.

This we substitute into (2) and we see that

λi = Di

‖ li (v)‖2 D
.

Now the theorem follows.

4. Duality

In this section we explicitly compute the dual cone of cone C of nonnegative polynomials
and describe some of its properties.

Definition. For f ∈ Pn,d let ld−2i ( f ) denote the projection of f into H∗n,d−2i .

Theorem 4.1. For v ∈ Sn−1 let pv ∈ Pn,d be as follows:

pv =
�d/2�∑
i=0

N (n, d − 2i)r2i Lvn,d−2i .

Then for all f ∈ Pn,d ,

〈pv , f 〉 = f (v).

Proof. We observe that

〈pv , f 〉 =
〈

k∑
i=0

ld−2i (pv)
k∑

i=0

ld−2i ( f )

〉
=

k∑
i=0

〈N (n, d − 2i)r2i Lvn,d−2i , ld−2i ( f )〉.

Therefore it would suffice to show that for all f ∈ H∗n,d−2i ,

〈N (n, d − 2i)r2i Lvn,d−2i , f 〉 = f (v).

Let Tv denote the hyperplane of all polynomials in H∗n,d−2i with zero at v,

Tv = { f ∈ H∗n,d−2i | f (v) = 0}.

Since Tv is a hyperplane, its orthogonal complement in H∗n,d−2i is a line. Let g ∈ T⊥v . We
observe that Tv is fixed by the action of J (n, v). Therefore T⊥v is also fixed by J (n, v),
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and from Theorem 2.3 it follows that g = cr2i Lvn,d−2i for some constant c ∈ R. Let
g = N (n, d − 2i)r2i Lvn,d−2i . Since g ∈ T⊥v it follows that for all f ∈ H∗n,d−2i ,

〈 f , g〉 = c f (v) for some constant c ∈ R.

To compute c, we use f = r2i Lvn,d−2i and observe that

〈r2i Lvn,d−2i , g〉 = N (n, d − 2i)〈Lvn,d−2i , Lvn,d−2i 〉.

Now from Theorem 2.4, we know that

〈Lvn,d−2i , Lvn,d−2i 〉 =
1

N (n, d − 2i)
and Lvn,d−2i = 1.

Thus it follows that c = 1 as desired.

Remark 4.2. For even d = 2k we may rewrite pv as

pv =
2k∑

i=0

N (n, 2i)r2k−2i Lvn,2i .

Corollary 4.3. Let f ∈ Pn,d be such that

‖ f ‖∞
‖ f ‖ ≥

‖g‖∞
‖g‖ for all nonzero g ∈ Pn,d .

Then f is a scalar multiple of pen , up to a rotation of Rn , and

‖ f ‖∞
‖ f ‖ =

√
D(n, d).

Proof. By applying an appropriate rotation and rescaling we may assume that

‖ f ‖∞ = f (en) = 1.

We observe that f lies in the affine hyperplane T of all polynomials with value 1 at en

and furthermore f is the shortest form on this hyperplane by the assumption that

‖ f ‖∞
‖ f ‖ ≥

‖g‖∞
‖g‖ for all g ∈ Pn,d .

Thus f is perpendicular to T and from Theorem 4.1 it follows that f is a multiple of
pen .

Let C∗ denote the dual cone of C ,

C∗ = { f ∈ Pn,2k | 〈 f , g〉 ≥ 0 for all g ∈ C}.
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Corollary 4.4. C∗ is the conical hull of the orbit of pen , where

pen =
2k∑

i=0

N (n, 2i)r2k−2i Ln,2i .

Proof. Let K be the conical hull of the points pv for all v ∈ Sn−1,

K =
{∑

i

λi pvi

 vi ∈ Sn−1 and λi ∈ R, λi ≥ 0

}
.

Consider K ∗,

K ∗ = { f ∈ Pn,2k | 〈 f , g〉 ≥ 0 for all g ∈ K }
= { f ∈ Pn,2k | 〈 f , pv〉 ≥ 0 for all v ∈ Sn−1}.

From Theorem 4.1, we know that 〈 f , pv〉 = f (v), and therefore K ∗ = C . Since C is a
closed cone, by the BiPolar Theorem it follows that K = C∗.

Now let A ∈ SO(n) be such that Aw = v. Then we note that ALvn,2i = Lwn,2i and
therefore

Apv = pw.

Thus the set of pv for all v ∈ Sn−1 is the same as the orbit of pen and we obtain the
desired result.

5. John’s Ellipsoid of the Cone of Nonnegative Polynomials

In this section we compute John’s ellipsoid of Cn,2k . Recall that M is the hyperplane of
all forms of integral 1 on Sn−1. If we regard the point r2k = (x2

1+· · ·+ x2
n)

k as the origin
in M , then the inner product 〈 , 〉 induces an inner product in M which we denote 〈 , 〉M ,

〈 f , g〉M = 〈 f − r2k , g − r2k〉 for f, g ∈ M.

Recall that C∗ is the dual cone of C , and define C
∗

by intersecting C∗ with the hyper-
plane M ,

C
∗ = C∗ ∩ M.

We now establish a relationship between C and C
∗

in terms of 〈 , 〉M .

Lemma 5.1. Let C
◦

be the polar of C with respect to 〈 , 〉M . Then

C
◦ = −C

∗ + 2r2k .

Proof. We observe that

C
◦ = { f ∈ M | 〈 f , g〉M ≤ 1 for all g ∈ C}
= { f ∈ M | 〈 f − r2k , g − r2k〉 ≤ 1 for all g ∈ C}.
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Since both f and g have integral 1 on Sn−1, it follows that

〈 f , r2k〉 = 〈g , r2k〉 = 1,

and therefore

C
◦ = { f ∈ M | 〈 f , g〉 ≤ 2 for all g ∈ C}.

Thus

−C
◦ + 2r2k = { f ∈ M | 〈 f , g〉 ≥ 0 for all g ∈ C} = C

∗
.

Theorem 5.2. The Loewner ellipsoid E of C
∗

is a ball with center r2k and radius

√
D(n, 2k)− 1 =

√(
n + 2k − 1

2k

)
− 1.

Proof. From Corollary 4.4 it follows that C
∗

is the convex hull of the orbit of pen .
We also know from Theorem 2.1 that the representation of SO(n) is multiplicity free.
Therefore we can apply Theorem 3.1. The irreducible subspaces are H∗n,2i for 1 ≤ i ≤ k.
Let l2i ( f ) denote the projection of f into H∗n,2i and then

‖l2i (pen )‖2 = ‖N (n, 2i)Ln,2i‖2 = N (n, 2i).

The result now follows from Theorem 3.1.

Theorem 5.3. John’s ellipsoid D of C is a ball with center r2k and radius

1√
D(n, 2k)− 1

= 1√(n+2k−1
2k

)− 1
.

Proof. From Lemma 5.1 we know that

C
◦ = −C

∗ + 2r2k .

Therefore the Loewner ellipsoid of C
◦

is a ball with center r2k and radius
√

D(n, 2k)− 1.
By Proposition 2.6 we know that John’s ellipsoid of C is the polar of the Loewner ellipsoid
of C

◦
and the theorem follows.

6. Coefficient of Symmetry of the Cone of Nonnegative Polynomials

In this section we compute the coefficient of symmetry of C with respect to r2k . We
begin by showing that all forms symmetric with respect to an axis are sums of squares
of forms.

Definition. For 0 ≤ a ≤ 1, let

qa(x) = x2
n − ar2 = (1− a)x2

n − a(x2
1 + · · · + x2

n−1).
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Definition. For f ∈ Pn,d let V ( f ) be the vanishing set of f ,

V ( f ) = {x ∈ Rn | f (x) = 0}.

Lemma 6.1. Let f (x) ∈ Pn,2k be a nonnegative form and suppose that f is fixed by
J (n, v) for some v ∈ Rn . Then f is a sum of squares of forms.

Proof. We induct on k.

Base case: k = 1. In this case we are dealing with homogeneous quadratics and all
nonnegative homogeneous quadratics are sums of squares.

Inductive step: k ⇒ k + 1. Applying a suitable rotation of Rn , we may assume that
f is fixed by J (n, en). It will suffice to show the lemma for f with a zero, since we can
consider the form

f − αr2k,

where α is the minimum of f on Sn−1. Since f has a zero, and f is fixed by J (n, en)

it follows that V ( f ) is a nonempty subset of Rn that is fixed by J (n, en). Hence V ( f )
contains Vqa for some a ∈ [0, 1].

We first deal with the two degenerate cases:
If a = 1, then

q1 = −(x2
1 + · · · + x2

n−1) and Vqa = {λen | λ ∈ R}.
Since f (en) = 0 we can write

f =
2k−1∑
i=0

xi
ngi ,

where gi depend only on x1, . . . , xn−1. Since f is fixed by J (n, en), it follows that gi is
fixed by J (n, en) for all 0 ≤ i ≤ 2k − 1. Since gi depends only on x1, . . . , xn−1, we see
that gi is fixed by SO(n − 1). Then i must be even and

g2i = λi (x
2
1 + · · · + x2

n−1)
k−i for some λi ∈ R.

Thus x2
1 + · · · + x2

n−1 divides f . We write f = (x2
1 + · · · + x2

n−1)g and g is the sum of
squares by induction, and then so is f .

If a = 0, then q0(x) = x2
n and xn divides f , but since f is nonnegative, it follows that

x2
n divides f and f = x2

n g. By induction, g is a sum of squares, and then f is as well.
For 0 < a < 1, let I = I (Vqa ) be the vanishing ideal of Vqa :

I = { f ∈ R[x1, . . . , xn] | f (x) = 0 for all x ∈ Vqa },
where R[x1, . . . , xn] is the ring of real polynomials in n variables. We will show that I
is a principal ideal generated by qa .

Let g ∈ I . By reducing modulo qa we may write

g = bqa + xnc + d,
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where c and d are polynomials that depend only on x1, . . . , xn−1. Let

h = g − bpa = xnc + d.

We observe that h ∈ I and also h(x1, . . . , xn−1,−xn) ∈ I , since V (qa) is fixed by
reflection about the e1, . . . , en−1 hyperplane. Thus −xnc + d ∈ I , and then xnc and d
are in I . However, since a > 0, the vanishing set of qa intersects the hyperplane xn = 0
only at the origin. Thus we see that c ∈ I . Also, c and d only depend on the first n − 1
variables. Therefore, since a < 1, we see that c and d vanish on the entire hyperplane
spanned by e1, . . . , en−1. Hence,

c = d ≡ 0.

Thus I = (qa).
Since I is a principal ideal generated by qa and f ∈ I it follows that qa divides

f , and we can write f = qag. Now we note that qa(x) ≥ 0 for x ∈ Sn−1 with x2
n ≥

a, and qa(x) < 0 for x ∈ Sn−1 with x2
n < a. Since qag ≥ 0, it follows that

g(x) = 0 for all x ∈ V (pa),

otherwise the sign of g does not change in the neighborhood of some x ∈ V (qa), which
yields a contradiction since a < 1. Thus g ∈ I and therefore qa divides g. Hence q2

a
divides f . We write f = q2

a h and h is a sum of squares by induction.

Remark 6.2. From the proof of Lemma 6.1 it follows that if

V (qa) ⊆ V ( f ) with 0 ≤ a < 1

for some nonnegative f ∈ Pn,2k , not necessarily symmetric with respect to J (n, en),
then

q2
a divides f for 0 < a < 1 and x2

n divides f if a = 0.

Our goal is to compute the coefficient of symmetry of C . We begin with the crucial
integral inequality.

Definition. Let Max denote the maximal L∞ norm for the functions in C ,

Max = max
f ∈C
‖ f ‖∞.

Theorem 6.3. Let f ∈ C be such that ‖ f ‖∞ = Max. Then

f = 1

D(n, k)

(�k/2�∑
l=0

N (n, k − 2l)r2l Ln,k−2l

)2

,

up to a rotation of Rn , and

Max = ‖ f ‖∞ = D(n, k).
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Proof. Let f ∈ C be such that ‖ f ‖∞ = Max. Applying a rotation of Rn , if necessary,
we may assume that f (en) = Max. Now let p be the average of f over J (n, en),

p =
∫

A∈J (n,en)

A f dµ,

where µ is the normalized Haar measure on J (n, en). Clearly, p is a nonnegative form
and ∫

Sn−1
p dσ = 1.

Thus p ∈ C . Also, ‖p‖∞ = ‖ f ‖∞ = Max, since p(en) = f (en). Since p is the average
of f over J (n, en), it follows that p is fixed by J (n, en). Then from Lemma 6.1 we see
that p is a sum of squares.

Since p ∈ Sq , it is a convex combination of extreme points of Sq , and an extreme
point of Sq must be a square. Thus we see that

p =
∑

λi h
2
i with λi > 0,

∑
λi = 1,

where hi ∈ Pn,k . Therefore,

Max = p(en) =
∑

λi h
2
i (en). (3)

However,

Max ≥ ‖h2
i ‖∞ ≥ h2

i (en) and therefore ‖h2
i ‖∞ = h2

i (en) = Max.

Thus there exists h ∈ Pn,k such that h2 ∈ Sq and

‖h2‖∞ = Max.

Then we observe that

‖h‖∞
‖h‖ ≥

‖g‖∞
‖g‖ for all g ∈ Pn,k .

Then from Corollary 4.3 it follows that

h = 1√
D(n, k)

�k/2�∑
i=0

N (n, k − 2i)r2i Ln,k−2i ,

up to a rotation of Rn . Also from Corollary 4.3 we know that

Max = ‖h2‖∞ = D(n, k).

Now we will show that up to a rotation of Rn , the only form in C with maximal
L∞ norm is h2. We know that all Legendre harmonics are fixed by J (n, en). Therefore
it follows that h2 is also fixed by J (n, en). Now we observe that from the proof of
Corollary 4.3 it is clear that

h2(en) = h2(−en) = ‖h2‖∞ = Max,
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and en , −en are the only points where the maximum occurs. Thus, if A ∈ SO(n) acts
on h, then it either fixes h, or the maximum of Ah occurs not at±en . Therefore h2 is the
only square, and thus the only extreme point of Sq , which takes on the value Max at en .
Now going back to (3) we see that p = h2, since p is a convex linear combination of
extreme points of Sq with value Max at en . Therefore,

h2 =
∫

A∈J (n,εn)

A f dµ.

Now h2 lies in the boundary of C , and thus it must have a zero. However, h2 is also the
average of f over J (n, en) and we know that f is nonnegative. Therefore we see that
V ( f ) contains V (q2). Since q2 is fixed by J (n, en), it follows that V (qa) ⊆ V (h2), for
some a ∈ [0, 1], and since h(en) �= 0 it follows that 0 ≤ a < 1. Then it follows from
Remark 6.2 that we can factor out a square of a form fixed by J (n, en) from h2 and f .
Call it m2, and let

h̃2 = h2

m2
and f̃ = f

m2
.

Again, h̃2 generates an extreme ray of a cone of sums of squares, now of a lesser degree,
otherwise h2 would not lie on an extreme ray. Since m is fixed by J (n, en), we still have

h̃2 =
∫

A∈J (n,εn)

A f̃ dµ ,

because averaging over J (n, en) is the same as taking the average over slices of the
sphere with hyperplanes perpendicular to en . Thus, again by proof of Lemma 6.1 we can
factor out the same square from both h̃2 and f̃ and we can continue with this process,
and in the end f = h2.

Corollary 6.4. For all f ∈ Pn,k ,

‖ f ‖∞ ≤
(

n + kl − 1

kl

)1/2l

‖ f ‖2l .

Proof. We apply Theorem 6.3 to f 2l . Since f 2l is nonnegative, and f 2l ∈ Pn,2kl , from
Theorem 6.3 we know that

‖ f 2l‖∞ ≤ D(n, kl)‖ f 2l‖1.

Since

‖ f 2l‖∞ = ‖ f ‖2l
∞ and ‖ f 2l‖1 = ‖ f ‖2l

2l ,

by taking the 2lth root of both sides we obtain the desired inequality.

Theorem 6.5. The coefficient of symmetry of C with respect to r2k is

1

D(n, k)− 1
= 1(n+k−1

k

)− 1
.
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Proof. Let f ∈ ∂C , and denote by f̄ the polynomial in ∂C that is opposite to f with
respect to r2k ,

f̄ = α(r2k − f )+ r2k for some α ∈ R such that α > 0.

Since f̄ ∈ ∂C , it is a nonnegative form with a zero. Then it follows that

α = 1

maxx∈Sn−1 f (x)− 1
= 1

‖ f ‖∞ − 1
.

Thus

f̄ = 1

‖ f ‖∞ − 1
(r2k − f )+ r2k, (4)

and, since the minimum of f on Sn−1 is zero,

‖ f̄ ‖∞ = α + 1 = ‖ f ‖∞
‖ f ‖∞ − 1

.

Also using (4) we see that

‖ f − r2k‖
‖ f̄ − r2k‖ =

‖ f − r2k‖
‖(1/(‖ f ‖∞ − 1))(r2k − f )‖ = ‖ f ‖∞ − 1.

Therefore it follows that the coefficient of symmetry of C with respect to r2k is 1/(Max−
1). From Theorem 6.3, we know that Max = D(n, k), and the result follows.

Corollary 6.6. Let Mf denote the maximum of f on Sn−1 and let m f denote the mini-
mum of f on Sn−1. Let α = 1/

(n+k−1
k

)
. Then

αMf + (1− α)m f ≤
∫

Sn−1
f dσ ≤ (1− α)Mf + αm f ,

and both inequalities are sharp.

Proof. Consider the set W obtained from C by subtracting r2k from all forms in C ,

W = C − r2k .

We observe that W is the set of all forms of integral zero with minimum at most −1 on
Sn−1.

From the definition of W it follows that the coefficient of symmetry of W around
zero is the same as the coefficient of symmetry of C around r2k . Thus the coefficient of
symmetry of W around zero is

1(n+k−1
k

)− 1
= α

1− α .

However, since

M− f = −m f and m− f = −Mf ,
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it follows that for all f ∈ Pn,2k of integral zero,

α

1− α ≤
−Mf

m f
≤ 1− α

α
.

For f ∈ Pn,2k consider

f̂ = f −
(∫

Sn−1
f dσ

)
r2k .

We have shown above that

−(Mf −
∫

Sn−1 f dσ)

m f −
∫

Sn−1 f dσ
= −M f̂

m f̂

≤ 1− α
α

.

Thus

1

α

∫
Sn−1

f dσ ≥ Mf +
(

1

α
− 1

)
m f ,

and one side of the desired inequality follows. The other half is done in the same way.

Corollary 6.7. C is contained in ball of radius

√
D(n, k)− 1 =

√(
n + k − 1

k

)
− 1 ,

or, equivalently, for all nonnegative f ∈ Pn,2k ,

‖ f ‖2 ≤
√(

n + k − 1

k

)
‖ f ‖1.

Proof. From Theorem 5.3 we know that John’s ellipsoid of C is a ball of radius
1/
√

[b]D(n, 2k)− 1 around r2k , and the coefficient of symmetry of C with respect
to r2k is 1/(D(n, k)− 1). We apply Proposition 2.7, and it follows that therefore C is
contained in the ball of radius

√
D(n, k)− 1

√
D(n, 2k)− 1√

D(n, 2k)− 1
=
√

D(n, k)− 1 =
√(

n + k − 1

k

)
− 1,

centered at r2k , as desired.

7. Cone of Sums of Powers of Linear Forms

In order to study the cone L f we need to decompose x2k
n as a sum of Legendre harmonics.

We begin by recalling the Rodrigues Rule.
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Lemma 7.1. Rodrigues Rule [7]: Let Qn,d(t) be the Legendre polynomial defined in
Section 2. Then∫ +1

−1
f (t)Qn,d(t)(1− t2)(n−3)/2dt = Rd(n)

∫ +1

−1
f (n)(t)(1− t2)(2d+n−3)/2,

where Rd(n) is the Rodrigues constant:

Rd(n) = 
((n − 1)/2)

2n
((4k + n − 1)/2)
.

Since x2k
n is symmetric and is fixed by the action of J (n, en) it decomposes as a sum

of the Legendre harmonics. The next theorem gives the precise decomposition.

Theorem 7.2.

x2k
n∫

Sn−1 x2k
n dσ

=
k∑

l=0

k! 
((2k + n)/2)

(k − l)! 
((2k + 2l + n)/2)
N (n, 2l)r2k−2l Ln,2l .

Proof. We first recall the well-known fact that∫
Sn−1

x2k
n dσ = 
((2k + 1)/2)
(n/2)√

π
((n + 2k)/2)
. (5)

See, for example, [2].
Since x2k

n is fixed by J (n, en), we know that it decomposes as a sum of Legendre
harmonics of even degrees. Therefore it suffices to compute

〈x2k
n , r2l Ln,2k−2l〉 =

∫
Sn−1

x2k
n Ln,2k−2l dσ.

On Sn−1 both x2k
n and Ln,2k−2l are functions of the last coordinate, and hence this integral

translates into

|Sn−2|
|Sn−1|

∫ +1

−1
t2k Qn,2k−2l(t)(1− t2)(n−3)/2dt,

where |Sn−1| denotes the surface area of Sn−1. Now we apply the Rodrigues Rule to∫ +1

−1
t2k Qn,2k−2l(t)(1− t2)(n−3)/2dt,

and get

(2k)!

(2l)!
R2k−2l(n)

∫ +1

−1
t2l(1− t2)(4k−4l+n−3)/2dt.

This we can interpret back as an integral over the sphere of dimension 4k − 4l + n − 1
and we obtain

(2k)! |S4k−4l+n−1|
(2l)! |S4k−4l+n−2| R2k−2l(n)

∫
S4k−4l+n−1

x2l
n dσ.



Convexity Properties of the Cone of Nonnegative Polynomials 367

Next we substitute in (5) to get

(2k)! |S4k−4l+n−1|
((2l + 1)/2)
((4k − 4l + n)/2)√
π(2l)! |S4k−4l+n−2|
((4k − 2l + n)/2)

R2k−2l(n).

Now,

|Sn−1| = πn/2


(n/2)
,

and thus we get

(2k)! 
((2l + 1)/2)
((4k − 4l + n − 1)/2)

(2l)! 
((4k − 2l + n)/2)
R2k−2l(n).

Substituting in the value of R2k−2l(n) we obtain∫ +1

−1
t2k Qn,2k−2l(t)(1− t2)(n−3)/2dt = (2k)! 
((2l + 1)/2)
((n − 1)/2)

22k−2l(2l)! 
((4k − 2l + n)/2)
.

Thus we get that

〈x2k
n , r2l Ln,2k−2l〉 = |S

n−2|(2k)! 
((2l + 1)/2)
((n − 1)/2)

|Sn−1|22k−2l(2l)! 
((4k − 2l + n)/2)

= (2k)! 
((2l + 1)/2)
(n/2)√
π22k−2l(2l)! 
((4k − 2l + n)/2)

. (6)

Now the doubling rule for the gamma function says that

2x−1

( x

2

)



(
x + 1

2

)
= √π
(x).

Applying this to x = 2l + 1 we get




(
2l + 1

2

)
=
√
π
(2l + 1)

22l
(l + 1)
. (7)

Substituting (7) into (6) we have

〈x2k
n , r

2l Ln,2k−2l〉 = (2k)! 
(n/2)

l! 22k
((4k − 2l + n)/2)
.

Thus using (5),

t
〈x2k

n , r
2l Ln,2k−2l〉∫

Sn−1 x2k
n dσ

=
√
π(2k)! 
((2k + n)/2)

22kl! 
((4k − 2l + n)/2)
((2k + 1)/2)
. (8)

Now we again apply the doubling rule this time to x = 2k + 1 to get




(
2k + 1

2

)
=
√
π
(2k + 1)

22k
(k + 1)
,
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which we substitute into (8):

〈x2k
n , r2l Ln,2k−2l〉∫

Sn−1 x2k
n dσ

= k! 
((2k + n)/2)

l! 
((4k − 2l + n)/2)
.

Now recall that

‖r2l Ln,2k−2l‖2 = ‖Ln,2k−2l‖2 = 1

N (n, 2k − 2l)
,

and the desired result follows.

We now make a crucial definition. We define a family of linear operators T2m,2k that
averages a form p in Pn,2k over the 2mth powers of linear forms 〈x , v〉 for v in Sn−1 and
m ≥ k.

Definition. Let T2m,2k : Pn,2k → Pn,2k be a linear operator defined by

(T2m,2k p)(x) =
∫

Sn−1 p(v)〈x , v〉2m dσ(v)∫
Sn−1 x2m

n dσ
for x, v ∈ Sn−1.

The fact that the result of the averaging is a polynomial of degree 2k rather than 2m
follows from the following observation. Since we only look at the unit sphere we can
replace p with pr2m−2k and the resulting polynomial will be of degree 2m but it will be
divisible by r2m−2k , and thus on Sn−1 it will be the same as a polynomial of degree 2k.

Remark 7.3. It will follow from Lemma 7.4 that the operators T2m,2k have been defined
in a different form by Reznick in [9].

We observe that T2m,2k maps nonnegative forms to the sums of powers of linear forms.
The following lemma shows the precise action of T2m,2k on Pn,2k .

Lemma 7.4.

T2m,2k( f ) =
k∑

i=0

m! 
((2m + n)/2)

(m − i)! 
((2m + 2i + n)/2)
l2i ( f ).

Proof. We rewrite T2m,2k f as

(T2m,2k f )(x) =
〈

f
〈x , v〉2m∫

Sn−1〈x , v〉2m dσ(v)

〉
.

We apply Theorem 7.2 and it follows that

(T2m,2k f )(x) =
〈

f
m∑

i=0

m! 
((2m + n)/2)

(m − i)! 
((2m + 2i + n)/2)
N (n, 2i)Lvn,2i

〉
.
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Now we decompose f as a sum of spherical harmonics and observe that

(T2m,2k f )(x) =
k∑

i=0

〈
l2i ( f )

m! 
((2m + n)/2)

(m − i)! 
((2m + 2i + n)/2)
N (n, 2i)Lvn,2i

〉
.

We recall that by Theorem 4.1

〈l2i ( f ) , Nn,2i Lvn,2i 〉 = (l2i f )(v).

Therefore

T2m,2k( f ) =
k∑

i=0

m! 
((2m + n)/2)

(m − i)! 
((2m + 2i + n)/2)
l2i ( f ).

Remark 7.5. It follows from Lemma 7.4 that T2m,2k is a diagonal operator on the
harmonic subspaces of Pn,2k . Thus T2m,2k commutes with the action of SO(n).

Theorem 7.6. The Loewner ellipsoid of L f is given by the inequality

k∑
i=1

(
(k − i)! 
((2k + 2i + n)/2)

k! 
((2k + n)/2)

)2

‖ l2i ( f )‖2 ≤ Dn,2k − 1,

and the coefficient of symmetry of L f is

1

D(n, k)− 1
= 1(n+k−1

k

)− 1
.

Proof. By Lemma 7.4 and Theorem 7.2,

T2k,2k(pen ) =
k∑

i=0

k! 
((2k + n)/2)

(k − i)! 
((2k + 2i + n)/2)
N (n, 2i)Ln,2i = x2k

n∫
Sn−1 x2k

n dσ
.

Since T2k,2k commutes with the action of SO(n), it follows that

T2k,2k(C
∗
) = L f .

Therefore T2k,2k maps the Loewner ellipsoid of C
∗

to the Loewner ellipsoid of L f .
By Theorem 5.2 the Loewner ellipsoid of L f is a ball with center r2k and of radius√

D(n, k)− 1. The inequality for the Loewner ellipsoid of L f follows.
By Lemma 5.1 we know that C

∗
and C are after a reflection polar to each other.

Therefore they have the same coefficient of symmetry with respect to r2k . Since T2k,2k

fixes r2k , it follows that the coefficient of symmetry of L f is the same as the coefficient
of symmetry of C

∗
, which by Theorem 6.5 is (D(n, k)− 1)−1.

Corollary 7.7. L f contains a ball of radius

k! 
((2k + n)/2)


((4k + n)/2)
√

D(n, k)− 1

centered at r2k .
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Proof. The coefficient

(k − i)! 
((2k + 2i + n)/2)

k! 
((2k + n)/2)
for 0 ≤ i ≤ k

is clearly maximized when i = k. Thus the Loewner ellipsoid of L f contains a ball of
radius

k! 
((2k + n)/2)
√

D(n, 2k)− 1


((4k + n)/2)
.

From Proposition 2.7 and Theorem 7.6 we know that L f will contain its Loewner ellipsoid
shrunk by the factor of

1√
(D(n, 2k)− 1)(D(n, k)− 1)

.

Now the corollary follows.

Definition. Let K (2m) be the cone in Pn,2k of forms whose restrictions to the sphere
are linear combinations of 2mth powers of linear forms on Sn−1. Equivalently K (2m)
is the cone of forms in Pn,2k that multiplied by r2m−2k become sums of powers of linear
forms

K (2m) = { f ∈ Pn,2k | (x2
1 + · · · + x2

n)
m−k f ∈ L fn,2m}.

We define K (2m) by intersecting K with the hyperplane of forms of integral 1 on Sn−1.

Theorem 7.8. Let α = dim Pn,2k − 1. Then

(
vol K (2m)

vol C

)1/α

≥ m! 
((2m + n)/2)

(m − k)! 
((2m + 2k + n)/2)
.

Proof. We observe that from the definition of T2m,2k it follows that T2m,2k maps C into
K (2m). Since T2m,2k fixes r2k , it follows that T2m,2k maps C into K (2m). However, from
Lemma 7.4 T2m,2k acts on H∗n,2i by shrinking it by a factor of

m! 
((2m + n)/2)

(m − i)! 
((2m + 2i + n)/2)
.

This coefficient is clearly minimized when i = k and then the theorem follows.

Corollary 7.9. Let ε ≥ 0 and let m = (2k2 + kn)/ε. Then

(
vol K (2m)

vol C

)1/α

≥ 1− ε.
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Remark 7.10. The volume ratio(
vol K (2m)

vol C

)1/α

approaches 1 as m tends to infinity. Therefore every strictly positive form lies in some
K (2m) (see [9])
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