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Abstract. The spread of a finite set of points is the ratio between the longest and shortest
pairwise distances. We prove that the Delaunay triangulation of any set of n points inR3 with
spread� has complexity O(�3). This bound is tight in the worst case for all� = O(

√
n).

In particular, the Delaunay triangulation of any dense point set has linear complexity. We
also generalize this upper bound to regular triangulations of k-ply systems of balls, unions
of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for
any n and � = O(n), we construct a regular triangulation of complexity �(n�) whose n
vertices have spread �.

1. Introduction

Delaunay triangulations and Voronoi diagrams are one of the most thoroughly studied
objects in computational geometry, with applications to nearest-neighbor searching [4],
[32], [37], [66], clustering [2], [71], [73], [88], finite-element mesh generation [30], [48],
[75], [91], deformable surface modeling [29], and surface reconstruction [7]–[10], [21],
[70]. Many algorithms in these application domains begin by constructing the Delau-
nay triangulation or Voronoi diagram of a set of points in R3. Since three-dimensional
Delaunay triangulations can have complexity �(n2) in the worst case, these algorithms
have worst-case running time�(n2). However, this behavior is almost never observed in
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Annual ACM–SIAM Symposium on Discrete Algorithms [53].
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practice except for highly contrived inputs. For all practical purposes, three-dimensional
Delaunay triangulations appear to have linear complexity.

This frustrating discrepancy between theory and practice motivates our investigation
of practical geometric constraints that imply low-complexity Delaunay triangulations.
Previous research on this topic has focused on random point sets under various probability
distributions [20], [77], [59], [79], [40], [41], [54], [60], [63]; well-spaced point sets,
which are low-discrepancy samples of Lipschitz density functions [30], [75], [80], [81],
[93], [94]; and surface samples with various density constraints [11], [12], [54], [60],
[63]. (We will discuss the connections between these models and our results in Section 2.)
Our efforts fall under the rubric of realistic input models, which have been primarily
studied for inputs consisting of polygons or polyhedra [17], [101], [102] or sets of balls
[67], [102].

This paper investigates the complexity of three-dimensional Delaunay triangulations
in terms of a geometric parameter called the spread, continuing our work in an earlier
paper [54]. The spread of a set of points is the ratio between the largest and smallest
interpoint distances. Of particular interest are dense point sets in Rd , which have spread
O(n1/d). Valtr and others [6], [50], [97]–[99], [100] have established several combi-
natorial results for dense point sets that improve corresponding bounds for arbitrary
point sets. For example, a dense point set in R3 has at most O(n7/3) halving planes;
the best upper bound known for arbitrary point sets is O(n5/2) [90]. For other combi-
natorial and algorithmic results related to spread, see [5], [24], [34], [56], [64], [65],
and [72].

In Section 3 we prove that the Delaunay triangulation of any set of points in R3 with
spread � has complexity O(�3). This upper bound is independent of the number of
points in the set. In particular, the Delaunay triangulation of any dense point set in R3

has only linear complexity. This bound is tight in the worst case for all� = O(
√

n) and
improves our earlier upper bound of O(�4) [54].

Our upper bound can be extended in several ways. To make the notion of spread
less sensitive to close pairs, we define the order-k spread �k to be the ratio of the
diameter of the set to the radius of the smallest ball containing k points. Our proof
almost immediately implies that the Delaunay triangulation has complexity O(k2�3

k)

for any k. Our techniques also generalize fairly easily to regular triangulations of disjoint
balls whose centers have spread �. With somewhat more effort, we show that if a set
of points can be decomposed into k subsets, each with spread �, then its Delaunay
triangulation has spread O(k2�3). Our results also imply upper bounds on the complexity
of the Delaunay triangulation of uniform or random samples of surfaces. Finally, our
combinatorial bounds imply that the standard randomized incremental algorithm [66]
constructs the Delaunay triangulation of any set of points in expected time O(�3 log n).
These and other related results are developed in Section 4.

However, our upper bound does not generalize to arbitrary triangulations, or even
arbitrary regular triangulations. In Section 5, for any n and� ≤ n, we construct a regular
triangulation, whose n vertices have spread�, whose overall complexity is�(n�). (The
defining balls for this triangulation overlap heavily.) This worst-case lower bound was
already known for Delaunay triangulations for all

√
n ≤ � ≤ n [54]. In particular, there

is a dense point set inR3, arbitrarily close to a cubical lattice, with a regular triangulation
of complexity �(n4/3).
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Throughout the paper we assume without loss of generality that the point sets we
consider are in general position. If the set S contains more than four points on the
boundary of some empty ball, then the Delaunay complex of S is not a triangulation.
However, in this case, almost any arbitrarily small perturbation of S changes its Delaunay
complex into a triangulation, thereby increasing its overall complexity.

We analyze the complexity of three-dimensional Delaunay triangulations by counting
their edges. Since the link of every vertex in a three-dimensional triangulation is a planar
graph, Euler’s formula implies that any triangulation with n vertices and e edges has at
most 2e − 2n triangles and e − n tetrahedra. Two points are joined by an edge in the
Delaunay triangulation of a set S if and only if they lie on a sphere with no points of S
in its interior.

2. Previous and Related Results

2.1. Points in Space

Our results for dense sets compare favorably with three other types of “realistic” point
data: points with small integer coordinates, random points, and well-spaced points. Fig-
ure 1 illustrates these four models. Although the results for these models are quite
similar, we emphasize that with one exception—integer points with small coordinates
are dense—results in each model are formally incomparable with results in any other
model.

Unlike our new results, which apply only to points in 3-space, all of these related
results have been generalized to higher dimensions. We conjecture that the Delaunay
triangulation of any d-dimensional point set with spread � has complexity O(�d), but
new proof techniques will be required to prove this bound.

Integer Points. First, we easily observe that any triangulation of n points in R3 with
integer coordinates between 1 and � has complexity O(�3), since each tetrahedron
has volume at least 1

6 . (It is an open question whether this bound is tight for all n
and �.) In particular, if � = O(n1/3), so that the set is dense, the complexity of the
Delaunay triangulation is O(n). Dense sets obviously need not lie on a coarse integer
grid; nevertheless, this observation provides some useful intuition for our results.

Random Points. Statistical properties of Voronoi diagrams of random points have been
studied for decades, much longer than any systematic algorithmic development. In the
early 1950s, Meijering [77] proved that for a homogeneous Poisson process in R3, the
expected number of Delaunay neighbors of any point is 48π2/35+ 2 ≈ 15.54; see [79].
This result immediately implies that the Delaunay triangulation of a sufficiently dense
random periodic point set has linear expected complexity. See [83] for generalizations to
arbitrary dimensions and Chapter 5 of [87] for an extensive survey of statistical properties
of random Voronoi diagrams and Delaunay triangulations.

Bentley et al. [15] proved that for n uniformly distributed points in the d-dimensional
hypercube, the expected number of points with more than a constant number of Delaunay
neighbors is O(n1−1/d log n); all such points lie near the boundary of the cube. Extend-
ing their technique, Bernal [20] proved that the expected complexity of the Delaunay
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Fig. 1. Four models of “realistic” point sets. (a) Small integer. (b) Random. (c) Well-spaced. (d) Dense.

triangulation of n random points in the three-dimensional cube is O(n). Dwyer [40],
[41] showed that if a set of n points is generated uniformly at random in the unit ball
in Rd , the Delaunay triangulation has expected complexity d O(d)n; in particular, each
point has d O(d) Delaunay neighbors on average.

Random point sets are not dense, even in expectation. Let S be a set of n points,
generated independently and uniformly from the unit hypercube in Rd . A straightfor-
ward “balls and bins” argument [51], [84] implies that the expected spread of S is
�(n2/d). Moreover, for any α > 0, the spread of S lies between �(α1/dn2/d/log1/d n)
and O(n(2+α)/d) with probability 1 − 1/nα .

Well-Spaced Points. Miller, Talmor, Teng, and others [80], [81], [93], [94] have derived
several results for well-spaced point sets in the context of high-quality mesh generation.
A point set S in R3 is well-spaced with respect to a 1-Lipschitz spacing function λ :
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R
3 → R

+ if, for some fixed constants 0 < δ < 1
2 and 0 < ε < 1, the distance from any

point x ∈ R3 to its second nearest neighbor1 p ∈ S is between δελ(p) and ελ(p). In her
thesis, Talmor [93] proves that Delaunay triangulations of well-spaced point sets have
complexity O(n); in particular, any point in a well-spaced point set has O(1) Delaunay
neighbors.

Any point set that is well-spaced with respect to a constant spacing function is dense.
In general, however, the spread of a well-spaced set can be exponentially large; consider
the one-dimensional well-spaced set {2−i | 1 ≤ i ≤ n}. On the other hand, dense point
sets can contain large gaps and thus are not necessarily well-spaced with respect to any
Lipschitz spacing function; compare Fig. 1(c) and (d).

Talmor’s linear upper bound [93] depends exponentially on the spacing parameters
δ and ε, but this is largely an artifact of the generality of her results.2 For the three-
dimensional case, we can derive tighter bounds as follows. Let S be a point set in R3

that is well-spaced with respect to some 1-Lipschitz spacing function λ. Let p be any
point in S, and let q and r be any two Delaunay neighbors of p. We immediately have
the inequalities |pq| ≤ min{ελ(p), ελ(q)} and |qr | ≥ δελ(q). Because the spacing
function λ is 1-Lipschitz, we have λ(q) ≥ λ(p)− |pq| ≥ λ(p)− ελ(q), which implies
that λ(q) ≥ λ(p)/(1 + ε). Together, these inequalities imply that the set of Delaunay
neighbors of p has spread at most 2(1 + ε)/δ = O(1/δ). A packing argument in our
earlier paper [54] now implies that p has O(1/δ2) Delaunay neighbors. It follows that
the Delaunay triangulation of S has complexity O(n/δ2). (Surprisingly, this bound does
not depend on ε at all!)

Finally, in contrast to both random and well-spaced point sets, a single point in a dense
set in R3 can have �(�2) = �(n2/3) Delaunay neighbors in the worst case [54]. Thus,
our upper bound proof must consider global properties of the Delaunay triangulation.

2.2. Points on Surfaces

The complexity of Delaunay triangulations of points on two-dimensional surfaces in
space has also been studied, largely due to the recent proliferation of Delaunay-based
surface reconstruction algorithms [7]–[10], [21], [70]. Upper and lower bounds range
from linear to quadratic, depending on exactly how the problem is formulated. Specifi-
cally, the results depend on whether the surface is considered fixed or variable, whether
the surface is smooth or polyhedral, and on the precise sampling conditions to be ana-
lyzed. We first review some standard terminology.

Let � be a C2 surface embedded in R3. A medial ball of � is a ball whose interior
is disjoint from � and whose boundary touches � at more than one point. The center
of a medial ball is called a medial point, and the closure of the set of medial points is

1 If x is a point in S, then x is its own nearest neighbor in S. This is not the definition actually proposed
by Miller et al., but it is easy to prove that our definition is equivalent to theirs.

2 Specifically, Talmor first proves that the Delaunay triangulation of any well-spaced point sets in any fixed
dimensions is well-shaped: for every simplex, the ratio of circumradius to shortest edge length is bounded
by a constant. She then proves that any vertex in any well-shaped triangulation is incident to only a constant
number of simplices.
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the medial axis of �. The local feature size of a point x ∈ �, denoted lfs(x), is the
distance from x to the medial axis. Finally, a set of points P ⊂ � is an ε-sample of
� if the distance from any surface point x ∈ � to the nearest sample point in P is at
most ε · lfs(x). This condition imposes a lower bound on the number of sample points in
any region of the surface. Given an ε-sample of an unknown surface �, for sufficiently
small ε, the algorithms cited above provably reconstruct a surface geometrically close
and topologically equivalent to�. As a first step, each algorithm constructs the Voronoi
diagram of the sample points; the complexity of this Voronoi diagram is clearly a lower
bound on the running time of the algorithm.

Unfortunately, ε-samples can have arbitrarily complex Delaunay triangulations due
to oversampling. Specifically, for any surface other than the sphere and any sampling
density ε > 0, there is an ε-sample whose Delaunay triangulation has complexity�(n2),
where n is the number of sample points [54]. Thus, in order to obtain non-trivial upper
bounds, we must also impose an upper bound on the density of samples.

Dey et al. [38], [55] define3 a set of points P ⊂ � to be a locally uniform sample
of � if P is well-spaced (in the sense of Miller et al.) with respect to some 1-Lipschitz
function λ : � → R

+ such that λ(x) ≤ lfs(x) for all x ∈ �. If P is well-spaced
with respect to the local feature size function, which is always 1-Lipschitz, we call P a
uniform sample of� [54]. Dey et al. [38] described an algorithm to reconstruct a surface
from a locally uniform sample in O(n log n) time; Funke and Ramos later showed how
to extract a locally uniform ε-sample from an arbitrary ε-sample in O(n log n) time.
Neither of these algorithms constructs the Delaunay triangulation of the points.

In our earlier paper [54] we derived lower bounds on the complexity of Delaunay
triangulations of uniform samples in terms of the sample measure

µ(�) =
∫ ∫

�

dx2

lfs(x)2
.

Any uniform ε-sample of � contains �(ε2µ(�)) points. There are smooth connected
surfaces with sample measure µ for which the Delaunay triangulation of any uniform
ε-sample has complexity �(µ2/log2 µ).

More positive results can be obtained by considering the surface to be fixed and
considering the asymptotic complexity of the Delaunay triangulation as the number of
sample points tends to infinity. In this context, hidden constants in the upper bounds
depend on geometric parameters of the fixed surface, such as the number of facets or
their maximum aspect ratio for polyhedral surfaces, or the minimum curvature radius or
sample measure for curved surfaces. Since the surface is fixed, all such parameters are
considered constants.4

Golin and Na [60]–[62] proved that if n points are chosen uniformly at random on the
surface of any fixed three-dimensional convex polytope, the expected complexity of their
Delaunay triangulation is O(n). Using similar techniques, they recently showed that a
random sample of a fixed non-convex polyhedron has Delaunay complexity O(n log4 n)

3 Again, this is not the definition proposed by Dey et al., but it is easy to show that the definitions are
equivalent.

4 Except in this specific context—the remainder of this section and Section 4.4—all constants in this paper,
either explicit or hidden in asymptotic notation, are absolute.
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with high probability [63]. In fact, their analysis applies to any fixed set of disjoint
triangles in R3.

Attali and Boissonnat [12] recently proved that the Delaunay triangulation of any
(ε, κ)-sample of a fixed polyhedral surface has complexity O(κ2n), improving their
previous upper bound of O(n7/4) (for constant κ) [11]. A set of points is called an
(ε, κ)-sample of a surface � if every ball of radius ε whose center lies on � contains
at least one and at most κ points in P .5 A simple application of Chernoff bounds (see
Theorem 4.11) implies that a random sample of n points on a fixed polyhedron is an
O(ε, O(log n))-sample with high probability, where ε = O(

√
(log n)/n). Thus, Attali

and Boissonnat’s result improves Golin and Na’s high-probability bound for random
points to O(n log2 n).

Very recently, Attali et al. [13] proved that the Delaunay triangulation of any (ε, κ)-
sample of a fixed generic smooth surface has complexity O(n log n), where a sur-
face is considered generic if every medial ball meets the surface at most four times,
counting with multiplicity. Similar Chernoff-bound arguments imply that a random n-
point sample of a fixed generic surface has Delaunay complexity O(n log3 n) with high
probability.

Our new upper bound has a similar corollary. Informally, a uniform sample of any
fixed (not necessarily polyhedral, smooth, or convex) surface has spread O(

√
n), so its

Delaunay triangulation has complexity O(n3/2). This bound is tight in the worst case; a
right circular cylinder with constant height and radius has a uniform (ε, 1)-sample with
Delaunay complexity �(n3/2). Similar arguments establish upper bounds of O(κ2n3/2)

for (ε, κ)-samples and O(n3/2 log3/2 n), with high probability, for random samples. We
describe these results more formally in Section 4.

3. Sparse Delaunay Triangulations

In this section we prove the main result of the paper.

Theorem 3.1. The Delaunay triangulation of any finite set of points in R3 with spread
� has complexity O(�3).

Our proof is structured as follows. We implicitly assume that no two points are closer
than unit distance apart, so that spread is synonymous with diameter. Two sets P and Q
are well-separated if each set lies inside a ball of radius r , and these two balls are
separated by distance 2r . Without loss of generality, we assume that the balls containing
P and Q are centered at points (2r, 0, 0) and (−2r, 0, 0), respectively. Our argument
ultimately reduces to counting the number of crossing edges—edges in the Delaunay
triangulation of P ∪ Q with one endpoint in each set. See Fig. 2.

5 This definition ignores the local feature size, which is necessary for polyhedral surfaces, since the local
feature size is zero at any sharp corner. Moreover, for any fixed smooth surface, the minimum local feature
size is a constant, so any (ε, κ)-sample is an O(ε)-sample according to our earlier definition.
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Fig. 2. A well-separated pair of sets P ∪ Q and a crossing edge intersecting a pixel.

Our proof has four major steps, each presented in its own subsection.

• We place a grid of O(r2) circular pixels of constant radius ε < 1 on the plane
x = 0, so that every crossing edge passes through a pixel. In Section 3.1 we prove
that all the crossing edges stabbing any single pixel lie within a slab of constant
width between two parallel planes. Our proof relies on the fact that the edges of a
Delaunay triangulation have a consistent depth order from any viewpoint [43].

• We say that a crossing edge is relaxed if its endpoints lie on an empty sphere of
radius O(r). In Section 3.2 we show that at most O(r) relaxed edges pass through
any pixel, using a generalization of the “Swiss cheese” packing argument used
to prove our earlier O(�4) upper bound [54]. This implies that there are O(r3)

relaxed crossing edges overall.
• In Section 3.3 we show that there are a constant number of conformal (i.e., sphere-

preserving) transformations that change the spread of P ∪ Q by at most a constant
factor, such that every crossing edge of P ∪ Q is a relaxed Delaunay edge in at
least one image. The proof uses a packing argument in a particular subspace of the
space of three-dimensional Möbius transformations. It follows that P ∪ Q has at
most O(r3) crossing edges.

• Finally, in Section 3.4, we count the Delaunay edges for an arbitrary point set
S using an octtree-based well-separated pair decomposition [23]. Every edge in
the Delaunay triangulation of S is a crossing edge of some subset pair in the
decomposition. However, not every crossing edge is a Delaunay edge of S; a subset
pair contributes a Delaunay edge only if it is close to a large empty witness ball.
We charge the pair’s O(r3) crossing edges to the �(r3) volume of this ball. We
choose the witness balls so that any unit of volume is charged at most a constant
number of times, implying the final O(�3) bound.

3.1. Nearly Concurrent Crossing Edges Are Nearly Coplanar

The first step in our proof is to show that the crossing edges intersecting any pixel are
nearly coplanar. To do this, we use an important fact about depth orders of Delaunay
triangulations, related to shellings of convex polytopes.

Let x be a point in R3, called the viewpoint, and let S be a set of line segments (or
other convex objects). A segment s ∈ S is behind another segment t ∈ S with respect to
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Fig. 3. (a) A screw. (b) Front view of C , showing viewpoints where s1 appears behind s2. (c) Every vertex
of C sees a different depth order, two of which are inconsistent. See Lemma 3.3.

x if t intersects conv{x, s}. If the transitive closure of this relation is a partial order, any
linear extension is called a consistent depth order of S with respect to x . Otherwise, S
contains a depth cycle—a sequence of segments s1, s2, . . . , sk such that every segment
si is directly behind its successor si+1 and sk is directly behind s1. De Berg et al. [18]
describe an algorithm that either computes a depth order or finds a depth cycle for a
given set of n segments, in O(n4/3+ε) time. See [16] and [28] for related results.

We say that three line segments form a screw if they form a depth cycle from some
viewpoint. See Fig. 3(a).

Lemma 3.2. The edges of any Delaunay triangulation have a consistent depth order
from any viewpoint. In particular, no three Delaunay edges form a screw.

Proof. Let x be a point, and let S be a sphere with radius r and center c. The power
distance from x to S is |xc|2 −r2; if x is outside S, this is the square of the distance from
x to S along a line tangent to S. Edelsbrunner [43], [45] proved that a consistent depth
order for the simplices in any Delaunay triangulation, with respect to any viewpoint x ,
can be obtained by sorting the power distances from x to the (empty) circumspheres
of the simplices. (See Section 4.3.) This is precisely the order in which the Delaunay
tetrahedra are computed by Seidel’s shelling convex hull algorithm [89]. We can easily
extract a consistent depth order for the Delaunay edges from this simplex order.

The next lemma describes sufficient (but not necessary) conditions for three pairwise-
skew segments to form a screw.
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Lemma 3.3. Let c be a parallelepiped centered at the origin, and let C = w · c for
some w ≥ 2 + √

5 ≈ 4.2361. Three line segments, each parallel to a different edge of
c, form a screw if they all intersect c but none of their endpoints lie inside C .

Proof. Since any affine image of a screw is also a screw, it suffices to consider the
case where c and C are concentric axis-aligned cubes of widths 1 and w, respectively.
Let s1, s2, s3 be the three segments, each parallel to a different coordinate axis. Any
ordered pair of these segments, say (s1, s2), define an unbounded polyhedral region V12

of viewpoints from which s1 appears behind s2. The segment s2 is the only bounded edge
of V12, and both of its endpoints are outside C . Thus, we can determine which vertices
of C lie inside V12 by considering the projection to the xy-plane. From Fig. 3(b) we
observe that if w ≥ 2 + √

5, then V12 contains exactly half of the vertices of C , all on
the same facet. A symmetric argument implies that the vertices of the opposite facet lie
in V21. Similarly, V13 and V31 contain the vertices of a different opposing pair of facets
of C , and V23 and V32 contain the vertices of the third opposing pair of facets. Thus,
each of the eight vertices of C sees one of the eight possible depth orders of the three
segments. Since only six of these orders are consistent, two vertices of C see a depth
cycle, implying that the segments form a screw. See Fig. 3(c).

Recall that a pixel is a circle of radius ε in the plane x = 0; see Fig. 2.

Lemma 3.4. The crossing edges passing through any pixel lie inside a slab of width
(20 + 9

√
5)ε ≈ 40.1246ε between two parallel planes.

Proof. We in fact prove a stronger statement. Any two planes h1 and h2 whose line of
intersection lies in the plane x = 0 define an anchored double wedge, consisting of all
the points above h1 and below h2 or vice versa. We define the thickness of an anchored
double wedge to be the width of the two-dimensional slab obtained by intersecting the
double wedge with the plane x = r . We claim that the crossing edges passing through
any pixel lie inside an ε-neighborhood of an anchored double wedge with thickness
(6 + 3

√
5)ε. The lemma follows immediately from this claim.

Without loss of generality, suppose the pixel π is centered at the origin, and let E
denote the set of crossing edges passing through π . Translate each edge in E parallel to
the plane x = 0 so that it passes through the origin, and call the resulting set of segments
Ẽ . We need to show that the segments Ẽ lie in an anchored double wedge of thickness
(6 + 3

√
5)ε. Since all these segments pass through the origin, it suffices to show that

the intersection points between Ẽ and the plane x = r lie in a two-dimensional strip
of width (6 + 3

√
5)ε between two parallel lines. The width of a set of planar points

is determined by only three points, so it suffices to check every triple of segments
in Ẽ .

Let e1, e2, e3 be three arbitrary crossing edges in E , and let ẽ1, ẽ2, ẽ3 be the corre-
sponding segments in Ẽ . For each i , let pi and qi be the intersection points of ẽi with
the planes x = r and x = −r , respectively, and let si ⊆ ẽi be the segment between pi

and qi . Finally, let ω be the width of the thinnest two-dimensional strip containing the
triangle �p1 p2 p3. Observe that �p1 p2 p3 contains a circle of radius ω/3.
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Let C denote the scaled Minkowski sum (s1 + s2 + s3)/3; this is a parallelepiped
centered at the origin, with edges parallel to the original crossing edges ei . Since each
segment si fits exactly within the slab −r ≤ z ≤ r , so does the cuboid C . The intersection
of C with the plane x = 0 is the scaled Minkowski sum (�p1 p2 p3 + �q1q2q3)/2. This
hexagon also contains a circle of radius ω/3, which we denote � for reasons that will
be clear shortly.

Let c be a smaller copy of C , uniformly scaled around the origin so that it just contains
the pixelπ . Recall thatπ is a circle of radius ε in the plane x = 0. Since the circle� ⊂ C
is concentric with and exactly a factor of ω/3ε larger than π , it follows that C is at least
a factor of ω/3ε larger than c. Moreover, since the segments e1, e2, e3 pass through π ,
they also all intersect c.

Lemma 3.2 implies that the Delaunay edges e1, e2, e3 cannot form a screw. Thus,
by Lemma 3.3, we must have ω/3ε < 2 + √

5, or, equivalently, ω < (6 + 3
√

5)ε, as
claimed.

3.2. Slabs Contain Few Relaxed Edges

At this point we would like to argue that any slab of constant width contains only O(r)
crossing edges. Unfortunately, this is not true—a variant of our helix construction [54]
implies that a slab can contain up to �(r3) edges, �(r2) of which can pass through a
single, arbitrarily small pixel. However, most of these Delaunay edges have extremely
large empty circumspheres.

We say that a crossing edge is relaxed if its endpoints lie on the boundary of an empty
(not necessarily unique) ball with radius less than 4r , and tense otherwise. In this section
we show that few relaxed edges pass through any pixel. Once again, recall that that ε
denotes the pixel radius.

Lemma 3.5. If ε < 1
16 , then for any pixel π , each point in P is an endpoint of at most

one relaxed edge passing through π .

Proof. Suppose some point p ∈ P is an endpoint of two crossing edges pq and pq ′,
both passing through π , where |pq| ≥ |pq ′|. Let θ = ∠qpq ′. We immediately have
θ ≤ 2 tan−1(ε/r) < 2ε/r and |qq ′| ≥ 1. See Fig. 4. Thus, the circle through p, q, and

≥1
p

q’

q
ε

≥r
θ

2θ

Fig. 4. Proof of Lemma 3.5.
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q ′ has radius at least 1
2 sin θ > 1/2θ > r/4ε > 4r . Any empty circumsphere of pq must

have at least this radius, so it must be tense.

Lemma 3.6. The relaxed edges inside any slab of constant width are incident to at
most O(r) points in P .

Proof. Let σ be a slab of widthω = O(1) between two parallel planes, and let E be the
set of points in P incident to any relaxed edge contained in σ . To prove that |E | = O(r),
we use a variant of our earlier “Swiss cheese” packing argument [54]. Intuitively, we
take the intersection of the bounding sphere of P and the slab σ , remove the Delaunay
circumspheres of relaxed edges in σ , argue that the resulting “Swiss cheese slice” has
small surface area, and then charge a constant amount of surface area to each endpoint
in E . To formalize this argument, we need to expand σ slightly and slightly contract the
Delaunay balls.

Let σ ′ be a parallel slab with the same central plane as σ , with slightly larger width
ω + 1. Let ©P denote the sphere of radius r containing P . Let D be the intersection
of σ ′ with the sphere of radius r + 1 concentric with ©P . The volume of D is at most
π(ω + 1)(r + 1)2 = O(r2).

For each point p ∈ E , we define two balls: Bp is the smallest Delaunay ball of some
relaxed edge pq , and bp is the open ball concentric with Bp but with radius smaller by
1
3 . The radius of Bp is at most 4r , and the radius of br is at most 4r − 1

3 .
Finally, we define the “Swiss cheese slice”� = D\⋃

p∈E bp. For each point p ∈ E ,
let hp = ∂� ∩ ∂bp be the concave surface of the corresponding “hole” not eaten by any
other ball, and let H = ⋃

p∈E hp. Equivalently, H = ∂�\∂D. See Fig. 5.
We claim that the surface area of H is only O(r). The proof of this claim is elementary

but tedious; we give the proof separately below. By an argument similar to Lemma 2.6
in our earlier paper [54], the ball of unit diameter centered at any point p ∈ E contains
at least �(1) of this surface area; we also include this argument below. Since these
unit-diameter balls are disjoint, we conclude that E contains at most O(r) points.

Claim 3.6.1. Area(H) = O(r).

Fig. 5. The “Swiss cheese slice” � determined by two relaxed crossing edges intersecting a common pixel.
The darker portion of the surface is H . The contracted Delaunay balls bp are not shown.
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y

z

cp

z

y

z’
y’

Fig. 6. Proof of Claim 3.6.1. The slab σ ′ is shaded.

Proof. Let cp be the common center of Bp and bp, and let ap be the axis line through cp

and normal to the planes bounding σ . For any point x ∈ hp, let x̄ be its nearest neighbor
on the axis ap, and let Hp be the union of segments x x̄ over all x ∈ hp. See Fig. 6 for a
two-dimensional example. Finally, let rp = minx∈hp |x x̄ |.

The triangle inequality implies that x x̄ and y ȳ have disjoint interiors whenever x �= y.
In particular, if x and y are both from the same surface patch hp, then x̄ = ȳ = cp;
otherwise, x x̄ and y ȳ are entirely disjoint. Since the surface patches hp are (by definition)
pairwise disjoint, it follows that the volumes Hp are also pairwise disjoint. Thus,

∑
p∈E

vol(Hp) = vol

(⋃
p∈E

Hp

)
≤ vol(D) = O(r2). (1)

We can bound the volume of each hole Hp as follows:

vol(Hp) =
∫ ∫

x∈hp

|x x̄ | · cos∠cpx x̄

2
dx2

=
∫ ∫

x∈hp

|x x̄ |2
2|xcp| dx2

= 1

2|pcp|
∫ ∫

x∈hp

|x x̄ |2 dx2

≥ 1

8r

∫ ∫
x∈hp

|x x̄ |2 dx2

≥ r2
p

8r
area(hp). (2)

The intersection bp ∩ ∂σ ′ consists of two parallel disks, the smaller of which has
radius rp. Since both σ ′ and the boundary of Bp contain the endpoints of some crossing
edge pq of length at least 2r , the larger of these two disks has radius at least r −ω− 4

3 .
Again referring to Fig. 6, we choose two points y, z ∈ hp ∩ ∂σ ′ ⊆ bp ∩ ∂σ ′ on the
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boundary of the larger and smaller disks, respectively, so that rp = |zz̄|. We can bound
this radius as follows:

r2
p = |zz̄|2 = ∣∣zcp

∣∣2 − ∣∣z̄cp

∣∣2

= ∣∣zcp

∣∣2 − (|z̄ ȳ| + ∣∣ȳcp

∣∣)2
= ∣∣zcp

∣∣2 − (|z̄ ȳ| +
√∣∣ycp

∣∣2 − |y ȳ|2)2

= ∣∣zcp

∣∣2 − (|z̄ ȳ|2 + 2 |z̄ ȳ|
√∣∣ycp

∣∣2 − |y ȳ|2 + ∣∣ycp

∣∣2 − |y ȳ|2)

= |y ȳ|2 − 2 |z̄ ȳ|
√∣∣ycp

∣∣2 − |y ȳ|2 − |z̄ ȳ|2
≥ |y ȳ|2 − 2 |z̄ ȳ| ∣∣ycp

∣∣ − |z̄ ȳ|2 .
Now substituting the known equations and inequalities

|y ȳ| ≥ r − ω − 4
3 , |z̄ ȳ| = ω + 1,

∣∣ycp

∣∣ < 4r − 1
3 ,

we obtain the lower bound

r2
p ≥ (r − 1

3 )
2 − 2(ω + 1)(4r − 1

3 )− (ω + 1)2 = �(r2). (3)

Finally, combining inequalities (1)–(3) yields an upper bound for the surface area of H :

area(H) =
∑
p∈E

area(hp) ≤
∑
p∈E

8r

r2
p

vol(Hp) = O

(
1

r

)
·
∑
p∈E

vol(Hp) = O(r).

Claim 3.6.2. For any point p ∈ E , the ball of unit diameter centered at p contains
�(1) surface area of H .

Proof. We closely follow the proof of Lemma 2.6 in [54]. Recall that p has distance 1
3

from the hole surface H , and distance at least 1
2 to the boundary of the enlarged slab σ ′.

Let U denote the unit-diameter ball centered at p. We temporarily work in a coordinate
frame where p is the origin and x = (0, 0, 1

3 ) is the closest point of H to p. Let U ′ be
the open ball of radius 1

3 centered at the origin; this ball lies entirely inside �. Let V
be the open unit-diameter ball centered at the point (0, 0, 5

6 ). Finally, let W be the cone
whose apex is the origin and whose base is the circle ∂U ∩ ∂V . See Fig. 7. Since r ≥ 1,
we easily observe that V lies entirely outside �; specifically, x ∈ hp′ for some p′ ∈ E ,
and V lies within the corresponding ball bp′ . Thus, the surface area of H ∩ W ⊆ H ∩ U
is at least the area of the spherical cap ∂U ′ ∩ W , which is π/27.

Together, Lemmas 3.4–3.6 imply that O(r) relaxed edges intersect any pixel. Since
there are O(r2) pixels, we conclude that there are O(r3) relaxed edges overall.

3.3. Tense Edges Are Easy to Relax

In order to count the tense crossing edges of P ∪ Q, we show that there are a constant
number of transformations of space, such that every tense edge is mapped to a relaxed
edge at least once.
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U

U'

V

W

Fig. 7. Proof of Claim 3.6.2.

A Möbius transformation is a continuous bijection from the extended Euclidean space
R̂ = R ∪ {∞} � Sd to itself, such that the image of any sphere is a sphere. (A hyperplane
in R is a sphere through ∞ in R̂.) The space of Möbius transformations is generated by
inversions. Examples include reflections (inversions by hyperplanes), translations (the
composition of two parallel reflections), dilations (the composition of two concentric
inversions), and the well-known stereographic lifting map from R̂ to Sd ⊂ Rd+1 relating
d-dimensional Delaunay triangulations to (d + 1)-dimensional convex hulls [22]:

λ(x1, x2, . . . , xd) = (x1, x2, . . . , xd , 1)

x2
1 + x2

2 + · · · + x2
d + 1

, λ(∞) = (0, 0, . . . , 0, 0).

Möbius transformations are also the maps induced on the boundary of hyperbolic space
S

d+1 by hyperbolic isometries. Two-dimensional Möbius transformations are also called
linear fractional transformations, since they can be written as maps on the extended
complex plane Ĉ = C ∪ {∞} � S

2 of the form z �→ (az + b)/(cz + d) for some
complex numbers a, b, c, d .

Möbius transformations are conformal, meaning they locally preserve angles. There
are infinitely many other two-dimensional conformal maps [86]—in fact, conformal
maps are widely used in algorithms for meshing planar domains [39] and parameter-
izing surfaces [42], [74]—but Möbius transformations are the only conformal maps in
dimensions three and higher. Higher-dimensional Möbius transformations are described
in detail by Beardon [14]; see also [69], [96], [95], or [82].

Let � be a sphere in R3 with finite radius (not passing through the point ∞), and let
π : R̂3 → R̂

3 be a conformal transformation. If π(�) is also a finite-radius sphere and
the point π(∞) lies in the interior of �(�), we say that π everts �.

Let S be a set of points in R3 ⊂ R̂
3, and let p, q, r, s ∈ S be the vertices of a

Delaunay simplex with empty circumsphere�. For any conformal transformation κ , the
sphere κ(�) passes through the points κ(p), κ(q), κ(r), and κ(s). This sphere either
excludes all other points in κ(S), contains all other points in κ(S), or is a plane with
all other points of κ(S) on one side. In other words, conv{κ(p), κ(q), κ(r), κ(s)} is
either a Delaunay simplex, an anti-Delaunay6 simplex, or a convex hull facet of κ(S).
Thus, ignoring degenerate cases, the abstract simplicial complex consisting of Delaunay
and anti-Delaunay simplices of any point set, which we call its Delaunay polytope, is
invariant under conformal transformations.

6 The anti-Delaunay triangulation is the dual of the furthest point Voronoi diagram.
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Fig. 8. Every rotary map preserves every solid circle and maps every dotted circle to another dotted circle.
The bold circles are ©P and ©Q.

In this section we exploit this conformal invariance to count tense crossing edges. The
main idea is to find a small collection of conformal maps, such that for any tense edge,
at least one of the maps transforms it into a relaxed edge, by shrinking (but not everting)
its circumsphere. In order to apply our earlier arguments to count the transformed edges,
we consider only conformal maps that map P ∪ Q to another well-separated pair of sets
with nearly the same spread.

Recall that P and Q lie inside balls of radius r centered at (2r, 0, 0) and (−2r, 0, 0),
respectively. Call these balls ©P and ©Q. We call an orientation-preserving con-
formal map κ a rotary map if it preserves these spheres, that is, if κ(©P) = ©P
and κ(©Q) = ©Q. Rotary maps actually preserve a continuous one-parameter fam-
ily of spheres centered on the x-axis, including the points p∗ = (

√
3r, 0, 0) and q∗ =

(−√
3r, 0, 0) and the plane x = 0. (In the space of spheres [36], [44], this family is just

the line through ©P and ©Q.) See Fig. 8 for a two-dimensional example.
The image of P ∪ Q under any rotary map is clearly well-separated. In order to apply

our earlier arguments, we also require that these maps do not significantly change the
spread.

Lemma 3.7. For any rotary map κ , the closest pair of points in κ(P ∪ Q) has distance
between 1

3 and 3.

Proof. Consider the stereographic lifting map λ : R̂3 → S
3 that takes p∗ and q∗ to

opposite poles of S3 and the plane x = 0 to the equatorial sphere. Any rotary map can
be written as λ−1 ◦ ρ ◦ λ, where ρ is a simple rotation about the axis λ(p∗)λ(q∗). (Thus,
the space of rotary maps is isomorphic to SO(3), the group of rigid motions of S2.)

To make the stereographic lifting map λ concrete, we embed R̂3 and S3 into R4, as
the hyperplane x4 = √

3r and the sphere of radius
√

3r/2 centered at (0, 0, 0,
√

3r/2),
respectively. Now λ is an inversion through the sphere of radius

√
3r centered at the
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origin o = (0, 0, 0, 0):

λ(x1, x2, x3, x4) = 3r2
(
x1, x2, x3, x4)

x2
1 + x2

2 + x2
3 + x2

4

, λ(∞) = (0, 0, 0, 0).

Simple calculations (see pp. 26–27 of [14]) imply that for any points p, q ∈ R̂4, we have

|λ(p) λ(q)| = 3r2|pq|
|po| |qo| .

The distance from the origin o to any point in P ∪ Q (in the hyperplane w = √
3r ) is

between 2r and 2
√

3r . Thus, for any points p, q ∈ P ∪ Q, we have

|pq|
4

≤ |λ(p)λ(q)| ≤ 3|pq|
4

.

Simple rotations do not change distances at all. Thus, for any rotary map π , we have

|pq|
3

≤ |π(p)π(q)| ≤ 3|pq|

for all points p, q ∈ P ∪ Q. The lemma follows immediately.

Lemma 3.8. There is a set of O(1) rotary maps {π1, π2, . . . , πk} such that any crossing
edge of P ∪ Q is mapped to a relaxed crossing edge of πi (P ∪ Q) by some πi .

Proof. Rotations about the x-axis are rotary maps, but since they do not actually change
the radius of any sphere, we would like to ignore them. We say that two rotary maps κ1

and κ2 are rotationally equivalent if κ1 = ρ ◦ κ2 for some rotation ρ about the x-axis.
The rotation class of a rotary map κ , which we denote 〈κ〉, is the set of maps that are
rotationally equivalent to κ . Since any rotation class 〈κ〉 is uniquely identified by the
point κ−1(0, 0, 0) in the plane x = 0, the space of rotation classes is isomorphic to
R̂

2 � S2.
Let B1, B2, . . . , Bm be the smallest empty balls containing the crossing edges of

P ∪ Q. For each ball Bi , let κi denote any rotary map such that κi (Bi ) is centered on the
x-axis and is not everted, so κi (Bi ) is an empty Delaunay ball of some crossing edge of
κi (P ∪ Q). We easily observe that κi (Bi ) has radius less than 3r , so the corresponding
crossing edge is relaxed. Thus, for each crossing edge, we have a point 〈κi 〉 on the sphere
of rotation classes, corresponding to a rotation class of maps that relax that edge.

Our key observation is that we have a lot of “wiggle room” in choosing our relaxing
maps κi . Consider the ball B̄ of radius 3r centered at the origin; this is the smallest
ball containing both ©P and ©Q. Let W be the set of rotation classes 〈w〉 such that
the radius of w(B̄) is at most 4r and w(B̄) is not everted. W is a circular cap of some
constant angular radius θ on the sphere of rotation classes, centered at 〈1〉, the rotation
class of the identity map. (See Fig. 9.)

For each i , the ball κi (Bi ) lies entirely inside B̄, so any rotation class in W transforms
κi (Bi ) into another ball of radius at most 4r . Thus, any rotation class in the set Wi =
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〈1〉
W

〈κi〉

Wi

Fig. 9. For each crossing edge, there is a constant-radius cap on the sphere of rotation classes. A constant
number of rotation classes stab all these caps.

{〈w ◦ κi 〉 | 〈w〉 ∈ W } relaxes the i th crossing edge. Wi is a circular cap of angular radius θ
on the sphere of rotation classes, centered at the point 〈κi 〉.

Since each of these m caps has constant angular radius, we can stab them all with a
constant number of points. Specifically, let � = {〈π1〉, 〈π2〉, . . . , 〈πk〉} ⊂ S2 be a set of
k = O(1/θ2) points on the sphere of rotation classes, such that any point in S2 is within
angular distance θ of some point in�. (In surface reconstruction terms,� is a θ -sample
of the sphere.) Each disk Wi contains at least one point in �, which implies that each
crossing edge is relaxed by some rotation class 〈πj 〉 ∈ �. Finally, to satisfy the theorem,
we choose an arbitrary rotary map πj from each rotation class 〈πj 〉 ∈ �.

It follows immediately that P ∪ Q has O(r3) crossing edges.

3.4. Charging Delaunay Edges to Volume

In the last step of our proof, we count the Delaunay edges in an arbitrary point set S by
decomposing it into a collection of subset pairs and counting the crossing edges for each
pair.

Let S be an arbitrary set of points with diameter�, where the closest pair of points is
at unit distance. S is contained in a cube�S of width�. We call an edge of the Delaunay
triangulation of S short if its length is less than 5 and long otherwise. A simple packing
argument implies that S has at most O(�3) short Delaunay edges.

To count the long Delaunay edges, we construct a well-separated pair decomposition
of S [23], based on a simple octtree decomposition of the bounding cube �S. (See [2]
for a similar decomposition into subset pairs.) Our octtree has "log2�# levels. At each
level �, there are 8� cells, each a cube of width w� = �/2�. Our well-separated pair
decomposition � = {(P1, Q1), (P2, Q2), . . . , (Pm, Qm)} contains the points in every
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pair of cells that are at the same level � and are separated by a distance between 3w�
and 6w�.

Every subset pair (Pi , Qi ) ∈ � is well-separated: if the pair is at level � in our
decomposition, then for some ri = �(w�), the sets Pi and Qi lie in a pair of balls
of radius ri separated by distance 2ri . Thus, by our earlier arguments, the Delaunay
triangulation of Pi ∪ Qi has at most O(w3

�) crossing edges.
For any points p, q ∈ S such that |pq| ≥ 5, there is a subset pair (Pi , Qi ) ∈

� such that p ∈ Pi and q ∈ Qi . In particular, every long Delaunay edge of S is
a crossing edge between some subset pair in �. A straightforward counting argument
immediately implies that the total number of crossing edges, summed over all subset pairs
in �, is O(�3 log�) [54]. However, not every crossing edge appears in the Delaunay
triangulation of S. We remove the final logarithmic factor by charging crossing edges to
volume as follows.

Say that a subset pair (Pi , Qi ) ∈ � is relevant if some pair of points pi ∈ Pi and
qi ∈ Qi are Delaunay neighbors in S. For each relevant pair (Pi , Qi ), we define a large
empty witness ball Bi , close to Pi and Qi , as follows. Choose an arbitrary crossing edge
pi qi of Pi ∪ Qi . If Pi and Qi are at level � in our decomposition, then the distance
between pi and qi is at most (6 + 2

√
3)w�. Let βi be the smallest ball with pi and qi on

its boundary and no point of S in its interior; the radius of βi is at least 3w�/2. Let β ′
i be

a ball concentric with βi with radius smaller byw�/2. Finally, let Bi be the ball of radius
w� inside β ′

i whose center is closest to the midpoint m of segment pi qi . See Fig. 10.
Bi is clearly empty. The distance from any point in Bi to any point in S is at least

w�/2, since Bi ⊂ β ′. On the other hand, the triangle inequality implies that every point
in Bi has distance less than (7+2

√
3)w�/2 < 10.465w� either to pi or to qi , and thus to

some cell at level � in the octtree. It follows that if two witness balls overlap, their levels
differ by at most "lg(7+ 2

√
3)# = 4. Moreover, since any ball of radius (7+ 2

√
3)w�/2

intersects only a constant number of cells at level �, at most a constant number of level-�
witness balls overlap at any point.

For any relevant subset pair at level �, we can charge its O(w3
�) crossing edges to

its witness ball, which has volume �(w3
�). Thus, the total number of relevant crossing

edges is at most the sum of the volumes of all the witness balls. Since the witness balls
have only constant overlap, the sum of their volumes is only a constant factor larger

m

βi
’

βi

pi qi

Bi

Fig. 10. Defining the witness ball Bi for a relevant subset pair.
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than the volume of their union. Finally, every witness ball fits inside a cube of width 8�
concentric with �S. It follows that S has at most O(�3) long Delaunay edges.

This completes the proof of Theorem 3.1.

4. Extensions and Implications

4.1. Generalizing Spread

Unfortunately, the spread of a set of points is an extremely fragile measure. Adding a
single point to a set can arbitrarily increase its spread, either by being too close to another
point, or by being far away from all the other points. However, intuitively, adding a few
points to a set does not drastically increase the complexity of its Delaunay triangulation.
(In fact, adding points can make the Delaunay triangulation considerably simpler [27],
[19].) Clearly, our results can tolerate a small number of outliers in the point set—up to
O(�3/n), to be precise—but this is not very satisfying.

We can obtain a stronger result by generalizing the notion of spread. For any integer
k, define the order-k spread of a set S to be the ratio of the diameter of S to the radius
of the smallest ball that contains k points of S.

Theorem 4.1. The Delaunay triangulation of any set of points in R3 with order-k
spread �k has complexity O(k2�3

k).

Proof. The proof of Theorem 3.1 needs little modification to prove this result; in fact,
the only required changes are in the proofs of Lemmas 3.5 and 3.6.

Let P and Q be two sets of points contained in balls of radius r separated by distance
2r , where any unit ball contains at most k points. As before, we separate P and Q with
a grid of O(r2) circular pixels of constant radius ε. Lemma 3.4 applies verbatim.

A simple modification of the proof of Lemma 3.5 implies that if ε < 1
16 , then each

point of P is the endpoint of at most k relaxed edges through each pixel π . Specifically,
if p is the endpoint of k + 1 edges pq0, pq1, . . . , pqk that all intersect π , then some pair
of points qi and qj would be more than distance 1 apart, which implies that either pqi

or pqj is not relaxed. Similarly, since at most k unit-diameter balls overlap at any point,
the set of relaxed endpoints E ⊂ P contains at most O(kr) points; the rest of the proof
of Lemma 3.6 is unchanged.

It follows that at most O(k2r) relaxed edges intersect any pixel, so there are O(k2r3)

relaxed crossing edges overall. Lemmas 3.7 and 3.8 now imply that there are O(k2r3)

crossing edges, and the well-separated pair decomposition argument in Section 3.4 com-
pletes the proof.

This generalization immediately implies the following high-probability bound for
random points.

Corollary 4.2. Let S be a set of n points generated independently and uniformly in
a cube in R3. The Delaunay triangulation of S has complexity O(n log n) with high
probability.
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Proof. Let C be a cube of width (n/ln n)1/3. If we generate S uniformly at random inside
C , the expected number of points in any unit cube inside C is exactly ln n, and Chernoff’s
inequality [84] implies that every unit cube inside C contains O(log n) points with high
probability. Thus, with high probability, �k = O((n/ln n)1/3) for some k = O(log n).
The result now follows immediately from Theorem 4.1.

4.2. Unions of Several Dense Sets

We can also generalize our upper bound to sets that do not have small spread, provided
they can be decomposed into a few subsets, where each subset has low spread. If all the
subsets have the same “scale,” the upper bound is almost immediate.

Theorem 4.3. Let P1, P2, . . . , Pk be sets of points inR3, each with closest pair distance
at least 1 and diameter at most�. The Delaunay triangulation of P1 ∪ P2 ∪ · · · ∪ Pk has
complexity O(k2�3).

Proof. It suffices to consider the case k = 2; for larger values of k, we separately count
Delaunay edges for all

(k
2

)
pairwise unions.

Let P and Q be two sets, each with closest pair distance at least 1 and diameter at most
�. We say that an edge in the Delaunay triangulation of P ∪ Q is bichromatic if it joins
a point in P to a point in Q, and monochromatic otherwise. Theorem 3.1 immediately
implies that there are O(�3) monochromatic edges.

If P and Q are well-separated, every bichromatic edge is a crossing edge, so by our
earlier analysis, there are O(�3) bichromatic edges. Otherwise, we can define a well-
separated pair decomposition by building an octtree over the bounding box of P ∪ Q,
which has width at most 4�, so that every bichromatic edge is a crossing edge for some
well-separated subset pair. By charging bichromatic edges to empty witness balls exactly
as before, we conclude that the number of bichromatic edges is still O(�3).

This also provides an alternate proof of Theorem 4.1, since any point set whose
order-k spread is �k can be partitioned into O(k) subsets satisfying the conditions of
the theorem.

With more effort, we can establish a similar upper bound for unions of arbitrary low-
spread sets with arbitrarily different scales. As usual, we start by considering the case
of two sets contained in disjoint balls. Let P be a set of points with closest pair distance
1 inside a ball ©P of radius r , and let Q be a set of points with closest pair distance
δ $ 1 inside a ball ©Q of radius R. We say that P and Q are well-separated if the
distance between ©P and ©Q is at least r + R.

First suppose P and Q are well-separated. To analyze the number of crossing edges,
we follow precisely the same outline as our earlier proof. After an appropriate rigid
motion, ©P is centered at (2r, 0, 0) and that ©Q is centered at (−2R, 0, 0). We place
a grid of O(r2) circular pixels of radius ε = O(1) on the plane x = 0, so that every
crossing edge passes through a pixel. The proof of Lemma 3.4 immediately implies that
the crossing edges passing through any pixel lie in a slab of width O(R/r) between two
parallel planes.
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Say that a crossing edge is relaxed if its endpoints lie on an empty sphere of radius
O(R + r). The proof of Lemma 3.5 immediately implies that each point in Q is an
endpoint of at most one relaxed edge passing through any pixel. (However, a point in P
might be an endpoint of more than one relaxed edge if R/δ < r .) Lemma 3.6 generalizes
as follows.

Lemma 4.4. The relaxed edges passing through any pixel π are incident to at most
O(R/δ + R2/rδ2) points in Q.

Proof. Let σ be the slab of width O(R/r) containing the crossing edges through π ,
and let σ ′ be a parallel slab of width O(R/r + δ) with the same central plane. We
define the “Swiss cheese holes” H exactly as in the proof of Lemma 3.6. For each
relaxed endpoint q ∈ Q, let Uq be a ball of radius δ/2 centered at q; these balls are
disjoint. After an appropriate scaling, Claim 3.6.1 implies that the surface area of H is
O((R + r)(R/r + δ)) = O(R2/r + Rδ), and Claim 3.6.2 implies that each ball Uq

contains �(δ2) of this surface area.

Since there are O(r2) pixels, there are O(r2 R/δ + r R2/δ2) relaxed crossing edges
between P and Q. Lemmas 3.7 and 3.8 hold without modification, so the total number
of crossing edges is O(r2 R/δ + r R2/δ2).

Now suppose P and Q are not well-separated. We want to count the crossing edges—
Delaunay edges with one endpoint in each set. Let�P be a cube of width r containing P ,
let C be a concentric cube of width 8r . Say that a crossing edge is short if both endpoints
are in C and long otherwise. Since the spread of Q ∩ C is O(r/δ) = O(r), our earlier
well-separated pair decomposition argument implies that there are O(r3) short crossing
edges.

Let �Q be a cube of width R containing Q. To count the long crossing edges, we
construct an octtree over �Q, subdividing any cell that does not lie entirely inside C ,
whose width is greater than r , and whose distance to�P is less than its width plus r . See
Fig. 11. Let Q� be the subset of Q\C inside a leaf cell �. If the width of � is R/2i , then
the spread of Q� is at most R/2iδ. If Q� is non-empty, then P and Q� are well-separated.

Fig. 11. Counting long crossing edges when P and Q are not well-separated.



Dense Point Sets Have Sparse Delaunay Triangulations 105

By our earlier analysis, there are O(r2 R/2iδ + r R2/4iδ2) crossing edges between
P and Q�. Every leaf cell of width R/2i in our octtree lies inside a ball of radius
2R/2i + 2r < 4R/2i around �P , so there are only a constant number of leaf cells of
any particular width. This implies that there are fewer than

∞∑
i=1

O

(
r2 R

2iδ
+ r R2

4iδ2

)
= O

(
r2 R

δ
+ r R2

δ2

)
long crossing edges between P and Q\C . Thus, the total number of crossing edges is
O(r3 + r2 R/δ + r R2/δ2).

The spread of P is O(r), and the spread of Q is O(R/δ). If r ≤ � and R/δ ≤ �,
then our upper bound on the number of crossing edges simplifies to O(�3). Theorem 3.1
implies that there are also O(�3) non-crossing Delaunay edges, so the overall complexity
of the Delaunay triangulation of P ∪ Q is O(�3).

Generalizing this analysis to more than two sets is trivial.

Theorem 4.5. Let P1, P2, . . . , Pk be sets of points in R3, each with spread �. The
Delaunay triangulation of P1 ∪ P2 ∪ · · · ∪ Pk has complexity O(k2�3).

4.3. Regular Triangulations

Regular triangulations are perhaps the most natural generalization of Delaunay triangu-
lations. Let p̂ = (p, r(p)) denote the ball centered at point p with radius r(p); we can
also think of p̂ as a point p with an associated weight r(p). Let Ŝ be a set of balls (or,
equivalently, a set of weighted points), and let S be the set of centers of balls in Ŝ. The
power from a point x to a ball p̂ ∈ Ŝ is |xp|2 − r2(p). The power diagram of Ŝ is the
Voronoi diagram with respect to this distance function. The dual of the power diagram
is called the regular triangulation of Ŝ. The vertices of this triangulation are all points in
S; however, some points may not be vertices, as the corresponding region in the power
diagram is empty. Regular triangulations can be equivalently defined as the orthogonal
(or stereographic) projection of the lower convex hull of a set of points in one higher
dimension [45].

The empty circumsphere criterion for Delaunay triangulations generalizes as follows.
We say that two balls p̂ and q̂ are orthogonal if |pq| = r2(p)+ r2(q), and further than
orthogonal if |pq| > r2(p) + r2(q). Any sphere that is orthogonal to a set of balls is
called an orthosphere of that set. A subset of balls in Ŝ form a simplex in the regular
triangulation of Ŝ if it has an empty orthosphere, that is, an orthosphere that is further
than orthogonal from every other ball in Ŝ.

Theorem 4.6. The regular triangulation of any set of disjoint balls inR3 whose centers
have spread � has complexity O(�3).

Proof. Let Ŝ be a set of pairwise-disjoint balls, where the minimum distance between
any two centers is 1, and the maximum distance between any two centers is �. Note



106 J. Erickson

that the largest ball in Ŝ has radius less than�, which implies that Ŝ lies inside a ball of
radius 2�.

Say that an edge pq in the regular triangulation of Ŝ is local if |pq| < 8 min{r(p), r(q)}.
We can charge each local edge to whichever endpoint has the larger radius. By a straight-
forward packing argument, each ball p̂ ∈ Ŝ is charged at most O(r(p)3) times. The
volume of each ball p̂ is �(r(p)3). Since the balls are disjoint, the number of local
edges is bounded by the total volume of the balls, which is O(�3).

To count non-local edges, we follow the same outline as the proof of Theorem 3.1.
First consider the well-separated case. Let P̂ and Q̂ be two sets of balls whose centers
lie in balls of radius r separated by distance 2r . We claim that the regular triangulation of
P̂∪ Q̂ has O(r3) non-local crossing edges. Without loss of generality, we can assume that
every ball in P̂ ∪ Q̂ has radius at most r/4, since any larger ball has only local crossing
edges. Thus, the empty orthospheres of any crossing edge have radius larger than 3r/4,
and the bounding spheres of P̂ and Q̂ have radius at most 5r/4 and are separated by
distance at least 3r/2. We modify the proof of Theorem 3.1 by using smallest empty
orthospheres instead of empty circumspheres. This replacement increases the constants,
but the proofs of most of the lemmas require no other modification. We describe only
the necessary modifications here; refer to the earlier proofs for notation and definitions.

Edelsbrunner actually proved that regular triangulations have a consistent depth order
from any viewpoint [43], [45]. Thus, Lemma 3.3 holds with no modification.

The proof of Lemma 3.6 requires one qualitative change. First, we shrink each or-
thosphere Bp by only 1

8 (instead of 1
3 ) to obtain bp; this does not substantially affect the

proof of Claim 3.6.1. We define a new ball Up around each endpoint p ∈ E as follows.
If r(p) ≤ 1

2 , then Up is the unit-diameter ball centered at p. Otherwise, Up is any ball of
radius 1

4 inside p̂ whose center lies on Bp; such a ball always exists if r > 10. A simple
modification of the proof of Claim 3.6.2 implies that each ball Up contains�(1) surface
area of the Swiss cheese slice �. It follows that P̂ ∪ Q̂ has O(r3) relaxed non-local
crossing edges.

The abstract complex consisting of the regular and anti-regular7 simplices of P̂ ∪ Q̂
is invariant under almost any conformal transformation. We can easily adapt the proof
of Lemma 3.7 to show that for any rotary transformation π , the spread of the centers of
π(P̂) is at most a constant factor larger than the spread of the centers of P̂ . (Note that the
center of the transformed sphere π( p̂) is not necessarily the image π(p) of the original
center.) Thus, every rotary image π(P̂ ∪ Q̂) has O(r3) relaxed non-local crossing edges.
Lemma 3.8 requires no modification, so P̂ ∪ Q̂ has O(r3) non-local crossing edges.

Finally, we slightly modify our well-separated pair decomposition argument, by defin-
ing a subset pair (P̂i , Q̂i ) to be relevant if and only if it contributes a non-local crossing
edge to the regular triangulation. If this is the case, we define βi to be the smallest empty
orthosphere for any such non-local edge. The remainder of the argument is unchanged.
We conclude that the regular triangulation of Ŝ has O(�3) non-local edges.

We can generalize this upper bound further by allowing the balls to overlap slightly. A
set of balls forms a k-ply system if no point in space is covered by more than k balls [82].

7 Dual to vertices of the furthest-ball power diagram.
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Applying precisely the same modifications as in the proof of Theorem 4.1, we obtain
the following result.

Theorem 4.7. The regular triangulation of any k-ply system of balls in R3 whose
centers have spread � has complexity O(k2�3).

A special case of a k-ply system is the hard sphere model commonly used in molecular
modeling [78]. A set of balls is hard if the largest and smallest radii differ by a constant
factor r and, after shrinking each ball by a constant factor ρ, no ball contains the center
of any other ball. Halperin and Overmars [67] proved that any hard set of balls forms a
k-ply system of balls, where k = O(r3ρ3) = O(1). (See also [68].)

Corollary 4.8. The regular triangulation of any hard set of balls in R3 whose centers
have spread � has complexity O(�3).

Combining the ideas in Theorems 4.1, 4.5, and 4.7, we obtain similar bounds for any
sets of balls that can be partitioned into a constant number of subsets, each of which is
a constant-ply system whose centers have small constant-order spread. We omit further
details.

4.4. Surface Data

A somewhat less obvious implication concerns dense surface data. Specifically, we
consider the asymptotic complexity of the Delaunay triangulation of a set of sample
points on a fixed surface as the number of samples goes to infinity. As in Section 2.2, our
upper bounds depend on geometric parameters of the surface, all of which are considered
constant.

Let � be a C2 surface in R3. Recall from Section 2.2 that a point set S is a uniform
ε-sample of � if, for some constant 0 < δ < 1

2 , the distance between any surface point
x ∈ � to the second-closest sample point in S is between δε lfs(x) and ε lfs(x).

Theorem 4.9. Let � be a fixed C2 surface in R3 with finite diameter. The Delaunay
triangulation of any uniform ε-sample of � has complexity O(n3/2), where n is the
number of sample points.

Proof. Let S be a uniform ε-sample of�. This set contains n = �(µ/ε2) points, where
µ is the sample measure of� [54, Lemma 3.1]. The spread of S is�(�/ε), where� is
the spread of �, the ratio between the diameter of � (which is finite) and its minimum
local feature size (which is non-zero since� is C2). Thus, by Theorem 3.1, the Delaunay
triangulation of S has complexity O(�3/ε3) = O(n3/2�3/µ3/2) = O(n3/2).

This bound is tight in the worst case, for example, when � is a circular cylinder with
spherical caps [54]. Note that Theorem 4.9, which applies to any fixed surface, does not
contradict our earlier �(n2/log2 n) lower bound, which requires the surface to depend
on n and ε.
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Attali and Boissonnat [11] recently showed that under certain sampling conditions,
samples of polyhedral surfaces have linear-complexity Delaunay triangulations, improv-
ing earlier subquadratic bounds [11]. Unlike most surface-reconstruction results, their
sampling conditions do not take local feature size into account (since otherwise samples
would be infinite). They define a point set S to be an (ε, κ)-sample of � if the ball of
radius ε centered at any surface point contains at least one and at most κ points in S; they
then show that the Delaunay triangulation of any (ε, κ)-sample of a fixed polyhedral
surface has complexity O(n).

We can analyze the Delaunay complexity of (ε, κ)-samples of more general surfaces
provided they satisfy the following constraint. We say that a fixed surface� is reasonable
if there exist positive values α, β, and δ, such that for any ball B of radius ε < δ centered
on �, we have αε2 ≤ area(B ∩ �) ≤ βε2. Reasonable surfaces exclude features like
infinitely long spikes with finite area or convoluted regions with high fractal dimension.

Any fixed polyhedron or C2 surface is reasonable. Specifically, if � is a fixed poly-
hedron, we can take δ to be half the distance between the closest pair of non-incident
features (vertices, edges, or facets); in this case, α and β depend on the minimum face
and dihedral angles of �. If � is a fixed C2 surface, we can take δ to be the minimum
local feature size of �; in this case, α and β are absolute constants. As usual, for any
fixed reasonable surface, the parameters α, β, and δ are considered constant.

Theorem 4.10. Let� be a fixed reasonable surface inR3 with finite area. The Delaunay
triangulation of any (ε, κ)-sample of� has complexity O(κ2n3/2), where n is the number
of sample points.

Proof. Let S be an (ε, κ)-sample of �. Because � is reasonable, the diameter of
� is finite (and therefore constant), and S contains n = �(1/ε2) points, where the
hidden constant is proportional to the surface area of �. Thus, the order-κ spread of S
is O(1/ε) = O(

√
n). The result now follows immediately from Theorem 4.1.

Again, this bound is tight (at least for constant κ) in the case of a cylinder, but this
is a special case. Attali et al. have proved near-linear upper bounds for both polyhedra
[12] and generic smooth surfaces [13]. The generic-surface bound implies that Theorem
4.10 can be tight only for degenerate surfaces like the cylinder.

Finally, we consider the case of randomly distributed points on surfaces.

Theorem 4.11. Let � be a fixed reasonable surface with surface area 1, and let S be
a set of points generated by a homogeneous Poisson process on� with rate n. With high
probability, the Delaunay triangulation of S has complexity O(n3/2 log1/2 n).

Proof. Let B be a ball of radius ε = √
(log n)/n centered on �. If n is sufficiently

large, the area of � ∩ B is �((log n)/n), so the expected number of points in S ∩ B
is �(log n). Chernoff’s inequality [84] implies that S ∩ B contains between one and
O(log n) points with high probability. Thus, S is an (ε, κ)-sample with high probability,
where κ = O(log n). The result now follows from Theorem 4.10.
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Unlike most of the other results in this paper, this upper bound is almost certainly not
tight; we conjecture that the correct bound is near-linear. Recent experimental results of
Choi and Amenta [31] support this conjecture.

4.5. Algorithms

Finally, our upper bounds immediately imply that several existing algorithms based on
Delaunay triangulations are more efficient if the input point set is dense.

Theorem 4.12. The Delaunay triangulation of any set of n points inR3 with spread�
can be computed in O(�3 log n) expected time, or in O(�3 log2 n) worst-case time.

Proof. To obtain the expected time bound, we apply the standard randomized incre-
mental algorithm of Guibas et al. [66], which inserts the points one at a time in random
order; see also [49] and [35]. The running time of this algorithm can be broken down
into point location and repair phases. In the point location phase the algorithm locates
the Delaunay simplex containing the next point. The total time for all the point location
phases is O(n log n). The repair phase actually inserts the point, repairs the Delaunay
triangulation, and updates the point-location data structure. If the newly inserted point
has degree k in the updated Delaunay triangulation, then its repair phase costs O(k) time.

Inserting a point into a set can only increase its spread, by either increasing the
diameter, decreasing the closest pair distance, or both. Thus, at all stages of the algorithm,
the spread of the points inserted so far is at most �, so every intermediate Delaunay
triangulation has complexity O(�3). It follows that the expected degree of the i th inserted
point, and thus the time for the i th repair phase, is O(�3/ i). Therefore, the total time
for all repair phases is

∑n
i=1 O(�3/ i) = O(�3 log n). This dominates the total point-

location time.
The worst-case bound follows immediately from the deterministic output-sensitive

algorithm of Chan et al. [25].

Since the Euclidean minimum spanning tree of a set of points is a subcomplex of the
Delaunay triangulation, we can also compute it in O(�3 log n) expected time, by first
computing the Delaunay triangulation and then running any efficient minimum span-
ning tree algorithm on its O(�3) edges. This immediately improves the O(n4/3+ε)-time
algorithm of Agarwal et al. [2] whenever � = O(n4/9). We can similarly improve the
running times for computing other Delaunay substructures, such as Gabriel complexes,
α-shapes [47], wrap and flow complexes [46], [57], [58], [92], and cocone triangles [9].

Theorem 4.13. Any set of n points inR3 with spread� can be stored in a data structure
of size O(�3 log n), so that nearest neighbor queries can be answered in O(log2 n) time.

Proof. We construct a bottom-vertex triangulation of the Voronoi diagram of the points,
using a standard randomized incremental algorithm, where the history graph is used as
a point-location data structure. A similar algorithm for building (radial triangulations
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of) two-dimensional Voronoi diagrams is described by Mulmuley [85, Chapter 3.3]. The
running time analysis is almost identical to the proof of Theorem 4.12.

To speed up the search time, we add auxiliary point-location data structures to the
history graph. Each insertion destroys several tetrahedra and creates new ones. We cluster
the new tetrahedra according to which Voronoi cells contain them. For each cluster, we
construct a point-location structure to determine, given a point q inside that cluster, which
tetrahedron contains q . Because each cluster of tetrahedra shares a common vertex, we
can use planar point-location structures with linear size and logarithmic query time [1].
With high probability, the simplex containing any query point q changes O(log n) times
during the incremental construction of the Voronoi diagram. When the simplex containing
q changes, we can determine which cluster to query by a simple distance comparison.
Thus, the total time to locate q in the final Voronoi diagram is O(log2 n) with high
probability. The total space used by the auxiliary structures is bounded by the size of the
history graph, which is O(�3 log n) on average. In particular, some ordering of the points
gives us a data structure of size O(�3 log n) with worst-case query time O(log2 n).

5. Denser Regular Triangulations

Despite our success in the previous two sections, our O(�3) upper bound does not
generalize to arbitrary triangulations, or even arbitrary regular triangulations. Recall that
a regular triangulation in R3 can be defined as the orthogonal projection of the lower
convex hull of a set of points in R4.

Theorem 5.1. For any n and� such that n1/3 < � < n, there is a set of n points with
spread � with a regular triangulation of complexity �(n�).

Proof. Any affine transformation ofR3 lifts to an essentially unique affine transforma-
tion of R4 that preserves lines and distances parallel to the added coordinate direction.
Since affine transformations preserve convexity, it follows that any affine transformation
of a regular triangulation is another regular triangulation (but possibly with very different
weights). Thus, to prove the theorem, it suffices to construct a set S of n points whose
Delaunay triangulation has complexity �(n�), such that some affine image of S has
spread O(�).

Without loss of generality, assume that
√

n/� is an integer larger than 1. For each
positive integer i, j ≤ √

n/�, let s(i, j) be the line segment with endpoints (2i, 2 j, 0)±
((−1)i+ j , (−1)i+ j , 1). Let S be the set of n points containing� evenly spaced points on
each segment s(i, j). Straightforward calculations imply that the Delaunay triangulation
of S contains at least�2/4 edges between any segment s(i, j) and any adjacent segment
s(i ± 1, j) or s(i, j ± 1). Thus, the overall complexity of the Delaunay triangulation
of S is �(n�).

Applying the linear transformation f (x, y, z) = (x, y,�z) results in a point set f (S)
with spread O(�). Specifically, the minimum pairwise distance is approximately 2, and
the diameter is O(max{√n/�,�}), which is O(�) since � > n1/3.
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This result does not contradict Theorems 4.6 or 4.7, since the weighted points in our
construction are equivalent to balls that overlap heavily. In fact, the largest ball in our
construction actually contains the centers of a constant fraction of the other balls.

6. Open Problems

Our results suggest several open problems, the most obvious of which is to simplify our
rather complicated proof of Theorem 3.1. The hidden constant in our upper bound is in
the millions; the corresponding constant in the lower bound (which seems much closer
to the true worst-case complexity) is about 10.

We conjecture that Theorem 5.1 is tight for arbitrary triangulations. In fact, we
believe that any complex of points, edges, and triangles, embedded in R3 so that no
triangle crosses an edge, has O(n�) triangles. Even the following special case is still
open: What is the minimum spread of a set of n points inR3 in which every pair is joined
by a Delaunay edge? We optimistically conjecture that the answer is n/π − o(n); this is
the spread of n evenly spaced points on a single turn of a helix with infinitesimal pitch.

What is the worst-case complexity of the convex hull of a set of n points in R4 with
spread�? Our earlier results [54] already imply a lower bound of�(min{�3, n�, n2}).
This bound is not improved by Theorem 5.1, since our construction requires points with
extremely large weights. The only known upper bound is O(n2).

Another interesting open problem is to generalize the results in this paper to higher
dimensions. Our techniques almost certainly imply an upper bound of O(�d) on the
number of Delaunay edges, improving our earlier upper bound of O(�d+1). Unfortu-
nately, this gives a very weak bound on the overall complexity, which we conjecture to be
O(�d). What is needed is a technique to count 'd/2(-dimensional Delaunay simplices
directly: triangles in R4, tetrahedra in R6, and so on.

Standard range searching techniques can be used to answer nearest neighbor queries
in R3 in O(log n) time using O(n2/polylog n) space, or in O(

√
n polylog n) time using

O(n) space [3], [26], [33], [52], [76]. Using these data structures we can compute the
Euclidean spanning tree of a three-dimensional point set in O(n4/3+ε) time [2]. All
these results ultimately rely on the simple observation that the Delaunay triangulation
of a random sample of a point set is significantly less complex (in expectation) than
the Delaunay triangulation of the whole set. Unfortunately, if we try to reanalyze these
algorithms in terms of the spread, this argument falls apart—in the worst case, a random
sample of a point set with spread � has expected spread close to �, so the Delaunay
triangulation of the subset is not significantly simpler after all! Can random sampling be
integrated with our distance-sensitive bounds? Is there a data structure of size O(n) that
supports faster nearest neighbor queries when the spread is, say, O(

√
n)?
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