Some Characterizations of Ellipsoids by Sections*

Javier Alonso and Pedro Martín

Departamento de Matemáticas,
Universidad de Extremadura,
06071 Badajoz, Spain
\{jalonso,pjimenez\}@unex.es

Abstract. We characterize ellipsoids among convex bodies in E^{d} looking at the sections parallel to two or three hyperplanes.

1. Introduction

Let D be a convex body (i.e., a compact convex set with non-empty interior) in the d-dimensional Euclidean space $E^{d}(d \geq 3)$ and let S be the boundary of D. Let P be a homogeneous hyperplane in E^{d}. We say that D (indistinctly, S) is
(i) P-homothetic if for every $u, v \in \operatorname{Int}(D)$ the sections $(u+P) \cap S$ and $(v+P) \cap S$ are homothetic (up to translations),
(ii) P-elliptic if for every $u \in \operatorname{Int}(D)$ the section $(u+P) \cap S$ is ellipsoidal.

Roughly speaking, S is P-homothetic (P-elliptic) if all the sections of S by hyperplanes parallel to P are identical up to size (are ellipsoidal).

It is obvious that S is an ellipsoid if it is P-elliptic for every homogeneous hyperplane P. Not so obvious, but also true, is that S is an ellipsoid if it is P-homothetic for every P (see, e.g., [6] and [8]). Improvements of these results are at the origin of an important family of characterizations of ellipsoids. An example is the proof by Aitchison [1] that it is sufficient for S to be an ellipsoid, that for every P, property (i) holds when the hyperplanes $u+P$ and $v+P$ are sufficiently close to a parallel supporting hyperplane. Other results in this line can be found in [2]-[4], [7] and [9].

[^0]The aim of this present paper is to provide some answers to the following question: What if S is P-homothetic or P-elliptic for a limited number of hyperplanes P ? Theorem 1 will show that only two planes are necessary to characterize ellipsoids if both properties are satisfied. Then, in Theorem 2, we will see that three planes are enough to characterize ellipsoids via the P-elliptic property, among centrally symmetric convex bodies.

2. Results

Theorem 1. Let S be the boundary of a convex body in $E^{d}(d \geq 3)$. If there exist two different homogeneous hyperplanes P_{1}, P_{2}, such that S is P_{i}-homothetic and P_{i}-elliptic for $i=1,2$, then S is an ellipsoid.

Obviously, if in Theorem 1 we were to consider only the P-homothetic property, then S need not be an ellipsoid. A simple counterexample is the cube. On the other hand, Example 1 shows that neither is the P-elliptic property alone sufficient to characterize ellipsoids.

Example 1. The sets $A=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}+x^{2} y^{2} \leq 1\right\}$ and $B=$ $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}-x^{2} y^{2} \leq 1,|x| \leq 1,|y| \leq 1\right\}$ are symmetric convex bodies in \mathbb{R}^{3} which are P-elliptic with respect to the planes $x=0$ and $y=0$. Neither A nor B is an ellipsoid (see Fig. 1).

Thus, if we want to characterize ellipsoids via only the P-elliptic property, we must add at least one hyperplane more. Nevertheless, Example 2 shows that even this is not enough.

Fig. 1. $\quad P$-elliptic with respect to two planes.

Fig. 2. $\quad P$-elliptic with respect to three planes.

Example 2. Let $\alpha \in \mathbb{R},|\alpha| \leq 2$. The set

$$
C_{\alpha}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}+\alpha x y z \leq 1, \max \{|x|,|y|,|z|\} \leq 1\right\}
$$

is a convex body in \mathbb{R}^{3} which is P-elliptic with respect to the planes $x=0, y=0$ and $z=0$. If $\alpha \neq 0, C_{\alpha}$ is not ellipsoidal (see Fig. 2).

Observe that if $\alpha \neq 0$, then the sets C_{α} in Example 2 are not centrally symmetric. This leads to the following result.

Theorem 2. Let S be the boundary of a centrally symmetric convex body in $E^{d}(d \geq 3)$, and let P_{1}, P_{2}, P_{3} be three different homogeneous hyperplanes. If S is P_{i}-elliptic for $i=1,2,3$, then S is an ellipsoid.

It is well known that if S is the boundary of a symmetric convex body in E^{d} centered at the origin, then we can define a norm over E^{d} such that its unit sphere is S. Conversely, the unit ball of any d-dimensional normed space is a symmetric convex body whose boundary is the unit sphere. Moreover, a d-dimensional normed space is an inner product space if and only if its unit sphere is ellipsoidal. Thus, the results in this paper can also be seen in the context of normed spaces.

3. Proofs

Proof of Theorem 1. Assume that S is the boundary of the convex body D. We can consider without loss of generality that the origin of E^{d} is an interior point of D.
$(d=3)$ Let us suppose first that $d=3$. Let $l_{3}=P_{1} \cap P_{2}$ and let p and q be the two points at which l_{3} intersects S. Let o be the center of the segment $p q$. We can assume that o is the origin of the space. From the hypothesis we know that $C_{1}=P_{1} \cap S$ and $C_{2}=P_{2} \cap S$ are ellipses that intersect in p and q. For $i=1,2$ let l_{i} be the line in the plane P_{i} that meets the center of C_{i} and that has the conjugate direction of l_{3} with respect to C_{i}. Then l_{i} also meets o. Let P_{3} be the plane generated by l_{1} and l_{2}. Then

$$
l_{1}=P_{1} \cap P_{3}, \quad l_{2}=P_{2} \cap P_{3}, \quad l_{3}=P_{1} \cap P_{2}
$$

In each line $l_{i}, i=1,2,3$, we can take a vector e_{i} in such a way that if $\left(x_{1}, x_{2}, x_{3}\right)$ are the coordinates of a point $x \in E^{3}$, relative to the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, then

$$
\begin{aligned}
& C_{1}=\left\{x \in E^{3}:\left(x_{1}-c_{1}\right)^{2}+x_{3}^{2}=r_{1}^{2}, x_{2}=0\right\} \\
& C_{2}=\left\{x \in E^{3}:\left(x_{2}-c_{2}\right)^{2}+x_{3}^{2}=r_{2}^{2}, x_{1}=0\right\}
\end{aligned}
$$

for certain $c_{1}, c_{2}, r_{1}, r_{2} \in \mathbb{R}$. In short, we can identify E^{3} with \mathbb{R}^{3} in such a way that C_{1} and C_{2} are circumferences.

We denote by x^{\prime} the orthogonal projection of $x \in E^{3}$ onto P_{3}, i.e., $x^{\prime}=\left(x_{1}, x_{2}, 0\right)$. Let D^{\prime} be the projection of D onto P_{3} and we denote by $\operatorname{Int}_{P_{3}} D^{\prime}$ the interior of D^{\prime} in P_{3}. From the hypothesis it follows that for every $x^{\prime} \in \operatorname{Int}_{P_{3}} D^{\prime}$ the sets

$$
C_{1}\left(x_{2}\right)=\left(x_{2} e_{2}+P_{1}\right) \cap S, \quad C_{2}\left(x_{1}\right)=\left(x_{1} e_{1}+P_{2}\right) \cap S
$$

are circumferences. We denote by $c_{1}\left(x_{2}\right)$ and $c_{2}\left(x_{1}\right)$ the centers of these circumferences.
We perform the rest of the proof in three steps. In the first we shall see that $c_{1}\left(x_{2}\right)$ and $c_{2}\left(x_{1}\right)$ are in P_{3} for every $x^{\prime} \in \operatorname{Int}_{P_{3}} D^{\prime}$; in the second, that all the points $c_{1}\left(x_{2}\right)$ (respectively, $c_{2}\left(x_{1}\right)$) are aligned; in the third, that S is an ellipsoid.

Step 1. Let $x \in S$ be such that $x^{\prime} \in \operatorname{Int}_{P_{3}} D^{\prime}$ and let H_{0}, \ldots, H_{n} be open rectangles in P_{3} with sides parallel to l_{1} and l_{2} such that
(a) $H_{i} \subset D^{\prime}, i=0, \ldots, n$,
(b) $o \in H_{0}, x^{\prime} \in H_{n}$,
(c) $H_{i} \cap H_{i-1} \neq \emptyset, i=1, \ldots, n$.

Let H be any rectangle H_{i} and let $u^{\prime}=\left(u_{1}, u_{2}, 0\right) \in H$. Since $H \subset D^{\prime}$, there exist two points $u, \bar{u} \in S$ whose projection onto P_{3} is u^{\prime}. Therefore $u=\left(u_{1}, u_{2}, u_{3}\right)$ for some u_{3}. The circumferences $C_{1}\left(u_{2}\right)$ and $C_{2}\left(u_{1}\right)$ meet in u and \bar{u}. Let $P_{u^{\prime}}$ be the plane parallel to P_{3} that meets the midpoint of the segment $u \bar{u}$. All the circumferences passing through u and \bar{u} have their centers in $P_{u^{\prime}}$. In particular, $c_{1}\left(u_{2}\right), c_{2}\left(u_{1}\right) \in P_{u^{\prime}}$.

Let now $v^{\prime}=\left(v_{1}, v_{2}, 0\right)$ be another point in H, different from u^{\prime}, and let v_{3} be such that $v=\left(v_{1}, v_{2}, v_{3}\right) \in S$. Then we have $c_{1}\left(v_{2}\right), c_{2}\left(v_{1}\right) \in P_{v^{\prime}}$. Assume, without loss of generality, that $v_{1} \neq u_{1}$ and let $w^{\prime}=\left(v_{1}, u_{2}, 0\right)$. Then $w^{\prime} \in H$ and $c_{1}\left(u_{2}\right), c_{2}\left(v_{1}\right) \in P_{w^{\prime}}$. Bearing in mind that the planes $P_{u^{\prime}}, P_{v^{\prime}}$ and $P_{w^{\prime}}$ are parallel and that

$$
c_{1}\left(u_{2}\right) \in P_{u^{\prime}} \cap P_{w^{\prime}}, \quad c_{2}\left(v_{1}\right) \in P_{w^{\prime}} \cap P_{v^{\prime}}
$$

we get that $P_{u^{\prime}}=P_{w^{\prime}}=P_{v^{\prime}}$.
From the above it follows that $P_{u^{\prime}}$ is constant for every $u^{\prime} \in H$. We denote that plane by P_{H}. From (b) and (c) it follows that

$$
P_{x^{\prime}}=P_{H_{n}}=P_{H_{n-1}}=\cdots=P_{H_{0}}=P_{3}
$$

In sum, if $x \in S$ is such that $x^{\prime} \in \operatorname{Int}_{P_{3}} D^{\prime}$, then the circumferences $C_{1}\left(x_{2}\right)$ and $C_{2}\left(x_{1}\right)$ have their centers in P_{3}.

Step 2. We return to the rectangle H, but assume now that u^{\prime} and v^{\prime} are such that $u_{1} \neq v_{1}$ and $u_{2} \neq v_{2}$. We say in that case that $u^{\prime} \# v^{\prime}$. We consider the circumferences $C_{1}\left(u_{2}\right)$,
$C_{2}\left(u_{1}\right), C_{1}\left(v_{2}\right)$ and $C_{2}\left(v_{1}\right)$, whose centers are, respectively,

$$
\begin{aligned}
c_{1}\left(u_{2}\right) & =\left(c_{11}\left(u_{2}\right), u_{2}, 0\right), & c_{2}\left(u_{1}\right) & =\left(u_{1}, c_{22}\left(u_{1}\right), 0\right) \\
c_{1}\left(v_{2}\right) & =\left(c_{11}\left(v_{2}\right), v_{2}, 0\right), & c_{2}\left(v_{1}\right) & =\left(v_{1}, c_{22}\left(v_{1}\right), 0\right) .
\end{aligned}
$$

Let $w \in C_{1}\left(u_{2}\right) \cap C_{2}\left(v_{1}\right)$ and $t \in C_{2}\left(u_{1}\right) \cap C_{1}\left(v_{2}\right)$. Then

$$
w=\left(v_{1}, u_{2}, w_{3}\right), \quad t=\left(u_{1}, v_{2}, t_{3}\right)
$$

for certain $w_{3}, t_{3} \in \mathbb{R}$. The four circumferences we are dealing with are linked to each other by the following identities:

$$
\begin{align*}
u, w \in C_{1}\left(u_{2}\right) & \Rightarrow \quad\left(u_{1}-c_{11}\left(u_{2}\right)\right)^{2}+u_{3}^{2}=\left(v_{1}-c_{11}\left(u_{2}\right)\right)^{2}+w_{3}^{2} \tag{1}\\
w, v \in C_{2}\left(v_{1}\right) & \Rightarrow \quad\left(u_{2}-c_{22}\left(v_{1}\right)\right)^{2}+w_{3}^{2}=\left(v_{2}-c_{22}\left(v_{1}\right)\right)^{2}+v_{3}^{2} \tag{2}\\
v, t \in C_{1}\left(v_{2}\right) & \Rightarrow \quad\left(v_{1}-c_{11}\left(v_{2}\right)\right)^{2}+v_{3}^{2}=\left(u_{1}-c_{11}\left(v_{2}\right)\right)^{2}+t_{3}^{2} \tag{3}\\
t, u \in C_{2}\left(u_{1}\right) & \Rightarrow \quad\left(v_{2}-c_{22}\left(u_{1}\right)\right)^{2}+t_{3}^{2}=\left(u_{2}-c_{22}\left(u_{1}\right)\right)^{2}+u_{3}^{2} . \tag{4}
\end{align*}
$$

Summing (1)-(4) we get

$$
\begin{aligned}
u_{1} c_{11}\left(u_{2}\right)+ & u_{2} c_{22}\left(v_{1}\right)+v_{1} c_{11}\left(v_{2}\right)+v_{2} c_{22}\left(u_{1}\right) \\
& =v_{1} c_{11}\left(u_{2}\right)+v_{2} c_{22}\left(v_{1}\right)+u_{1} c_{11}\left(v_{2}\right)+u_{2} c_{22}\left(u_{1}\right)
\end{aligned}
$$

from which follows

$$
\frac{c_{11}\left(u_{2}\right)-c_{11}\left(v_{2}\right)}{u_{2}-v_{2}}=\frac{c_{22}\left(u_{1}\right)-c_{22}\left(v_{1}\right)}{u_{1}-v_{1}}
$$

The left-hand side of the above identity depends only on u_{2} and v_{2}, whereas the right-hand side depends only on u_{1} and v_{1}. Therefore,

$$
\begin{equation*}
\frac{c_{11}\left(u_{2}\right)-c_{11}\left(v_{2}\right)}{u_{2}-v_{2}}=\frac{c_{22}\left(u_{1}\right)-c_{22}\left(v_{1}\right)}{u_{1}-v_{1}}=\text { constant }:=a_{H}, \tag{5}
\end{equation*}
$$

for every $u^{\prime}, v^{\prime} \in H, u^{\prime} \# v^{\prime}$. Taking now as H any H_{i}, we get again from (c) that $a_{H_{n}}=a_{H_{n-1}}=\cdots=a_{H_{0}}:=a$. A straightforward calculation repeatedly applying the identity (5) shows that this identity also holds for every $u^{\prime}, v^{\prime} \in \bigcup_{i=0}^{n} H_{i}, u^{\prime} \# v^{\prime}$. In particular, remembering that $o \in H_{0}$ and that $x^{\prime} \in H_{n}$, we get that

$$
\begin{equation*}
c_{11}\left(x_{2}\right)=a x_{2}+c_{1}, \quad c_{22}\left(x_{1}\right)=a x_{1}+c_{2} \tag{6}
\end{equation*}
$$

which is also true if either x_{1} or x_{2} are 0.
Step 3. At this point we have that for $i=1,2$, all the sections of S by planes parallel to P_{i} are circles whose centers are in a line, L_{i}. It is easy to see that for every $x, y \in S$, the composition of rotations about L_{1} with rotations about L_{2} allow us to get a linear map that fixes S and sends x into y. Busemann [5] proved that this property is characteristic of the ellipsoids.
($d \geq 4$) Assume now that $d \geq 4$. To see that S is an ellipsoid it is enough to show that if P is a two-dimensional plane through the origin, then $P \cap S$ is ellipsoidal (see, e.g., [5]). If $P \subset P_{i}$ for $i=1$ or 2, then $P \cap S$ is ellipsoidal because so is $P_{i} \cap S$. On the other hand, if $P \not \subset P_{1}$ and $P \not \subset P_{2}$, then, since $P_{1} \neq P_{2}$, we can take $x \in P_{1} \backslash\left(P_{2} \cup P\right)$. Let $E=P \oplus\langle x\rangle$. Therefore, $\operatorname{dim} E=3, \operatorname{dim} P_{1} \cap E=\operatorname{dim} P_{2} \cap E=2$ and $P_{1} \cap E \neq P_{2} \cap E$. We shall show that $E \cap S$ is $\left(P_{i} \cap E\right)$-elliptic and $\left(P_{i} \cap E\right)$-homothetic for $i=1$, 2. Let $u, v \in E$ be interior points of the convex body whose boundary is S. From the hypothesis we know that $\left(u+P_{i}\right) \cap S$ and $\left(v+P_{i}\right) \cap S$ are homothetic ellipsoids. Hence the sections by E, $\left(u+P_{i}\right) \cap S \cap E$ and $\left(v+P_{i}\right) \cap S \cap E$, are also homothetic ellipsoids. Since $\left[u+\left(P_{i} \cap E\right)\right] \cap(E \cap S)=\left(u+P_{i}\right) \cap S \cap E$ (similarly with v) we have that $E \cap S$ is ($P_{i} \cap E$)-elliptic and $\left(P_{i} \cap E\right)$-homothetic. Hence we are in the case $d=3$ and we get that $E \cap S$ is ellipsoidal, from which it follows that $P \cap S$ is also ellipsoidal. We must note that we cannot simplify the proof taking as E an arbitrary three-dimensional subspace because in that case we cannot assure that $P_{1} \cap E \neq P_{2} \cap E$.

Proof of Theorem 2. We assume that S is centered at the origin and let $C_{i}=P_{i} \cap S$, $i=1,2,3$. We consider three cases.

Case 1. Assume that $d=3$ and $P_{1} \cap P_{2} \cap P_{3}=\{0\}$. Let

$$
e_{1} \in C_{1} \cap C_{3}, \quad e_{2} \in C_{2} \cap C_{3}, \quad e_{3} \in C_{1} \cap C_{2}
$$

We take $\left\{e_{1}, e_{2}, e_{3}\right\}$ as basis of the space. Then the ellipses C_{1}, C_{2}, C_{3} can be represented as the set of points whose coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ satisfy, respectively,

$$
\begin{array}{lll}
C_{1}: & x_{1}^{2}+x_{3}^{2}+\alpha_{13} x_{1} x_{3}=1, & x_{2}=0 \\
C_{2}: & x_{2}^{2}+x_{3}^{2}+\alpha_{23} x_{2} x_{3}=1, & x_{1}=0 \tag{7}\\
C_{3}: & x_{1}^{2}+x_{2}^{2}+\alpha_{12} x_{1} x_{2}=1, & x_{3}=0,
\end{array}
$$

for certain $\alpha_{12}, \alpha_{13}, \alpha_{23} \in \mathbb{R}$.
Let $H_{0} \subset \operatorname{Int}_{P_{3}} D \cap P_{3}$ be an open rectangle centered at 0 with sides parallel to the vectors e_{1} and e_{2}, respectively. Let $u=\left(u_{1}, u_{2}, u_{3}\right) \in S$ be such that $u^{\prime}=\left(u_{1}, u_{2}, 0\right) \in$ H_{0}. Then $\left(\pm u_{1}, \pm u_{2}, 0\right) \in H_{0}$ and $\left|u_{1}\right|<1,\left|u_{2}\right|<1$. We shall show that u is a point of the quadric Q of equation

$$
\begin{equation*}
Q: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\alpha_{12} x_{1} x_{2}+\alpha_{13} x_{1} x_{3}+\alpha_{23} x_{2} x_{3}=1 \tag{8}
\end{equation*}
$$

Since $C_{i} \subset Q, i=1,2,3$, we can assume without loss of generality that $u_{1} \neq 0, u_{2} \neq 0$.
By hypothesis, $C_{1}\left(u_{2}\right)=\left(u_{2} e_{2}+P_{1}\right) \cap S$ and $C_{2}\left(u_{1}\right)=\left(u_{1} e_{1}+P_{2}\right) \cap S$ are ellipses. We suppose that their equations are, respectively,

$$
\begin{array}{lll}
C_{1}\left(u_{2}\right): & \alpha_{1} x_{1}^{2}+\beta_{1} x_{3}^{2}+\gamma_{1} x_{1} x_{3}+\delta_{1} x_{1}+\lambda_{1} x_{3}=1, & x_{2}=u_{2} \tag{9}\\
C_{2}\left(u_{1}\right): & \alpha_{2} x_{2}^{2}+\beta_{2} x_{3}^{2}+\gamma_{2} x_{2} x_{3}+\delta_{2} x_{2}+\lambda_{2} x_{3}=1, & x_{1}=u_{1}
\end{array}
$$

Since S is symmetric, the equations of the ellipses $C_{1}\left(-u_{2}\right)$ and $C_{2}\left(-u_{1}\right)$ are

$$
\begin{array}{lll}
C_{1}\left(-u_{2}\right): & \alpha_{1} x_{1}^{2}+\beta_{1} x_{3}^{2}+\gamma_{1} x_{1} x_{3}-\delta_{1} x_{1}-\lambda_{1} x_{3}=1, & x_{2}=-u_{2} \\
C_{2}\left(-u_{1}\right): & \alpha_{2} x_{2}^{2}+\beta_{2} x_{3}^{2}+\gamma_{2} x_{2} x_{3}-\delta_{2} x_{2}-\lambda_{2} x_{3}=1, & x_{1}=-u_{1}
\end{array}
$$

Let $\left(s, u_{2}, 0\right)$, and $\left(\hat{s}, u_{2}, 0\right)$ be the two points where C_{3} and $C_{1}\left(u_{2}\right)$ meet. From (7) and (9) it follows that

$$
\begin{align*}
s^{2}+\alpha_{12} u_{2} s+u_{2}^{2}-1 & =0, & \hat{s}^{2}+\alpha_{12} u_{2} \hat{s}+u_{2}^{2}-1 & =0, \\
\alpha_{1} s^{2}+\delta_{1} s-1 & =0, & \alpha_{1} \hat{s}^{2}+\delta_{1} \hat{s}-1 & =0 . \tag{10}
\end{align*}
$$

Looking at (10) as two polynomials of second degree that have the same roots, s and \hat{s}, we get

$$
\begin{equation*}
\alpha_{1}=\frac{1}{1-u_{2}^{2}}, \quad \delta_{1}=\frac{\alpha_{12} u_{2}}{1-u_{2}^{2}} \tag{11}
\end{equation*}
$$

In a similar way, considering $C_{2} \cap C_{1}\left(u_{2}\right), C_{3} \cap C_{2}\left(u_{1}\right)$ and $C_{1} \cap C_{2}\left(u_{1}\right)$, we obtain

$$
\begin{gather*}
\beta_{1}=\frac{1}{1-u_{2}^{2}}, \quad \lambda_{1}=\frac{\alpha_{23} u_{2}}{1-u_{2}^{2}} \\
\alpha_{2}=\beta_{2}=\frac{1}{1-u_{1}^{2}}, \quad \delta_{2}=\frac{\alpha_{12} u_{1}}{1-u_{1}^{2}}, \quad \lambda_{2}=\frac{\alpha_{13} u_{1}}{1-u_{1}^{2}} . \tag{12}
\end{gather*}
$$

The same argument followed above but considering $C_{1}\left(u_{2}\right) \cap C_{2}\left(u_{1}\right)$ and $C_{1}\left(u_{2}\right) \cap$ $C_{2}\left(-u_{1}\right)$ gives the identities

$$
\beta_{2}\left(\gamma_{1} u_{1}+\lambda_{1}\right)=\beta_{1}\left(\gamma_{2} u_{2}+\lambda_{2}\right), \quad \beta_{2}\left(\gamma_{1} u_{1}-\lambda_{1}\right)=\beta_{1}\left(\lambda_{2}-\gamma_{2} u_{2}\right)
$$

that jointly with (12) give

$$
\begin{equation*}
\gamma_{1}=\frac{\alpha_{13}}{1-u_{2}^{2}}, \quad \gamma_{2}=\frac{\alpha_{23}}{1-u_{1}^{2}} \tag{13}
\end{equation*}
$$

Now, bearing in mind that $u \in C_{1}\left(u_{2}\right)$, we get from (9), (11) and (12)

$$
\begin{aligned}
1 & =\alpha_{1} u_{1}^{2}+\beta_{1} u_{3}^{2}+\gamma_{1} u_{1} u_{3}+\delta_{1} u_{1}+\lambda_{1} u_{3} \\
& =\frac{u_{1}^{2}+u_{3}^{2}+\alpha_{13} u_{1} u_{3}+\alpha_{12} u_{2} u_{1}+\alpha_{23} u_{2} u_{3}}{1-u_{2}^{2}}
\end{aligned}
$$

Hence, it follows from (8) that $u \in Q$.
Therefore, S and Q coincide at all the points that are projected onto H_{0}. Finally, similar arguments to those followed in Theorem 1 complete the proof.

Case 2. Assume now that $d=3$ and that P_{1}, P_{2} and P_{3} meet in a line. Let $e_{3} \in$ $C_{1} \cap C_{2} \cap C_{3}$. Then there exists only one plane P through the origin such that $e_{3}+P$ supports S in e_{3}. Let $e_{1} \in C_{1} \cap P$ and $e_{2} \in C_{2} \cap P$. We take $\left\{e_{1}, e_{2}, e_{3}\right\}$ as the basis of the space. Taking into account that C_{1} and C_{2} are centered at the origin and that $\left\{e_{1}, e_{3}\right\}$ and $\left\{e_{2}, e_{3}\right\}$ are conjugate pairs of vectors, we can represent these ellipses as the set of points whose coordinates $\left(x_{1}, x_{2}, x_{3}\right)$ satisfy, respectively,

$$
\begin{array}{lll}
C_{1}: & x_{1}^{2}+x_{3}^{2}=1, & x_{2}=0, \\
C_{2}: & x_{2}^{2}+x_{3}^{2}=1, & x_{1}=0 .
\end{array}
$$

The plane P meets P_{3} in a line $\left(x_{1}, \lambda x_{1}, 0\right)$, with $\lambda \neq 0$. Then, since C_{3} is also centered at the origin and $e_{3}+P \cap P_{3}$ supports C_{3} at e_{3}, we have that

$$
C_{3}: \quad \alpha x_{1}^{2}+x_{3}^{2}=1, \quad x_{2}=\lambda x_{1}
$$

for some $\alpha>0$.
It is easy to see that there is only one quadric Q that contains the ellipses C_{1}, C_{2} and C_{3}. It is given by

$$
\begin{equation*}
Q: \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\left(\frac{\alpha-1-\lambda^{2}}{\lambda}\right) x_{1} x_{2}=1 \tag{14}
\end{equation*}
$$

We shall show that $S=Q$.
Let $u=\left(u_{1}, u_{2}, u_{3}\right) \in S$. To see that $u \in Q$, we assume first that

$$
\begin{equation*}
\left|u_{1}\right|<\frac{1}{2+3|\lambda|} \tag{15}
\end{equation*}
$$

We need this assumption to be sure that some of the ellipses that we consider meet.
Our aim is to see that the ellipse $C_{2}\left(u_{1}\right)=\left(u_{1} e_{1}+P_{2}\right) \cap S$ coincides with the section of Q determined by the plane $u_{1} e_{1}+P_{2}$. Naming this section C, we have

$$
\begin{gather*}
C:\left(\frac{1}{1-u_{1}^{2}}\right) x_{2}^{2}+\left(\frac{1}{1-u_{1}^{2}}\right) x_{3}^{2}+\left(\frac{\left(\alpha-1-\lambda^{2}\right) u_{1}}{\lambda\left(1-u_{1}^{2}\right)}\right) x_{2}=1, \tag{16}\\
x_{1}=u_{1}
\end{gather*}
$$

Assume that

$$
\begin{equation*}
C_{2}\left(u_{1}\right): \quad \alpha_{2} x_{2}^{2}+\beta_{2} x_{3}^{2}+\gamma_{2} x_{2} x_{3}+\delta_{2} x_{2}+\varepsilon_{2} x_{3}=1, \quad x_{1}=u_{1} \tag{17}
\end{equation*}
$$

Since S is symmetric, the equation of the ellipse $C_{2}\left(-u_{1}\right)=\left(-u_{1} e_{1}+P_{2}\right) \cap S$ is

$$
\begin{equation*}
C_{2}\left(-u_{1}\right): \quad \alpha_{2} x_{2}^{2}+\beta_{2} x_{3}^{2}+\gamma_{2} x_{2} x_{3}-\delta_{2} x_{2}-\varepsilon_{2} x_{3}=1, \quad x_{1}=-u_{1} \tag{18}
\end{equation*}
$$

Let now P_{3}^{\prime} be the plane parallel to P_{3} that contains the point $\left(u_{1},-\lambda u_{1}, 0\right)$. Hence, $P \cap P_{3}^{\prime}$ is the line $\left(x_{1}, \lambda\left(x_{1}-2 u_{1}\right), 0\right)$. From (15) it follows that $\left|u_{1}\right|+\left|\lambda u_{1}\right|<1$, which means that the point $\left(u_{1},-\lambda u_{1}, 0\right)$ lies inside the parallelogram of vertices $(\pm 1,0,0)$ and $(0, \pm 1,0)$. Since S is convex, it follows that P_{3}^{\prime} intersects S. By hypothesis $S \cap P_{3}^{\prime}$ is an ellipse that we name C_{3}^{\prime}. We assume that

$$
\begin{equation*}
C_{3}^{\prime}: \quad \alpha_{3} x_{1}^{2}+\beta_{3} x_{3}^{2}+\gamma_{3} x_{1} x_{3}+\delta_{3} x_{1}+\varepsilon_{3} x_{3}=1, \quad x_{2}=\lambda\left(x_{1}-2 u_{1}\right) \tag{19}
\end{equation*}
$$

Next we consider what information the intersections of the above ellipses give us.
The ellipses C_{1} and $C_{2}\left(u_{1}\right)$ meet in the points $\left(u_{1}, 0, \pm \sqrt{1-u_{1}^{2}}\right)$, from which it follows that

$$
\beta_{2}\left(1-u_{1}^{2}\right) \pm \varepsilon_{2} \sqrt{1-u_{1}^{2}}=1
$$

and hence

$$
\begin{equation*}
\beta_{2}=\frac{1}{1-u_{1}^{2}}, \quad \varepsilon_{2}=0 \tag{20}
\end{equation*}
$$

From (15) and the fact that C_{3} is symmetric with respect to the third coordinate, we get that C_{3} and $C_{2}\left(u_{1}\right)$ meet in $\left(u_{1}, \lambda u_{1}, \pm z_{1}\right)$ for some $z_{1} \neq 0$. Then

$$
\alpha u_{1}^{2}+z_{1}^{2}=1
$$

and

$$
\alpha_{2} \lambda^{2} u_{1}^{2}+\left(\frac{1}{1-u_{1}^{2}}\right) z_{1}^{2} \pm \gamma_{2} \lambda u_{1} z_{1}+\delta_{2} \lambda u_{1}=1
$$

Therefore,

$$
\begin{equation*}
\gamma_{2}=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda^{2} u_{1}^{2} \alpha_{2}+\lambda u_{1} \delta_{2}=\frac{(\alpha-1) u_{1}^{2}}{1-u_{1}^{2}} \tag{22}
\end{equation*}
$$

Again from (15) it follows that C_{2} meets C_{3}^{\prime} in the points $\left(0,-2 \lambda u_{1}, \pm \sqrt{1-4 \lambda^{2} u_{1}^{2}}\right)$. Therefore,

$$
\beta_{3}\left(1-4 \lambda^{2} u_{1}^{2}\right) \pm \varepsilon_{3} \sqrt{1-4 \lambda^{2} u_{1}^{2}}=1
$$

and hence

$$
\begin{equation*}
\beta_{3}=\frac{1}{1-4 \lambda^{2} u_{1}^{2}}, \quad \varepsilon_{3}=0 \tag{23}
\end{equation*}
$$

Similarly, C_{1} meets C_{3}^{\prime} in $\left(2 u_{1}, 0, \pm \sqrt{1-4 u_{1}^{2}}\right)$. Therefore,

$$
4 \alpha_{3} u_{1}^{2}+\frac{1-4 u_{1}^{2}}{1-4 \lambda^{2} u_{1}^{2}} \pm 2 \gamma_{3} u_{1} \sqrt{1-4 u_{1}^{2}}+2 \delta_{3} u_{1}=1
$$

from which it follows that

$$
\begin{equation*}
\gamma_{3}=0 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
2 u_{1}^{2} \alpha_{3}+u_{1} \delta_{3}=\frac{2 u_{1}^{2}\left(1-\lambda^{2}\right)}{1-4 \lambda^{2} u_{1}^{2}} \tag{25}
\end{equation*}
$$

From (20), (21), (23) and (24) we get that $C_{2}\left(u_{1}\right)$ and C_{3}^{\prime} are symmetric with respect to the third coordinate. Hence they meet in $\left(u_{1},-\lambda u_{1}, \pm z_{2}\right)$ for some $z_{2} \neq 0$, from which it follows that

$$
\begin{equation*}
\lambda^{2} u_{1}^{2} \alpha_{2}+\left(\frac{1}{1-u_{1}^{2}}\right) z_{2}^{2}-\lambda u_{1} \delta_{2}=1 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1}^{2} \alpha_{3}+\left(\frac{1}{1-4 \lambda^{2} u_{1}^{2}}\right) z_{2}^{2}+u_{1} \delta_{3}=1 \tag{27}
\end{equation*}
$$

Finally, from (15) we have also that $C_{2}\left(-u_{1}\right)$ meets C_{3}^{\prime} in $\left(-u_{1},-3 \lambda u_{1}, \pm z_{3}\right)$ for some $z_{3} \neq 0$. Therefore,

$$
\begin{equation*}
9 \lambda^{2} u_{1}^{2} \alpha_{2}+\left(\frac{1}{1-u_{1}^{2}}\right) z_{3}^{2}+3 \lambda u_{1} \delta_{2}=1 \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{1}^{2} \alpha_{3}+\left(\frac{1}{1-4 \lambda^{2} u_{1}^{2}}\right) z_{3}^{2}-u_{1} \delta_{3}=1 \tag{29}
\end{equation*}
$$

The six equations (22) and (25)-(29) form a non-singular linear system with the unknowns $\alpha_{2}, \delta_{2}, \alpha_{3}, \delta_{3}, z_{2}^{2}$ and z_{3}^{2}. Solving this system, we get in particular

$$
\alpha_{2}=\frac{1}{1-u_{1}^{2}}, \quad \delta_{2}=\frac{\left(\alpha-1-\lambda^{2}\right) u_{1}}{\lambda\left(1-u_{1}^{2}\right)}
$$

that jointly with (20) and (21) give that C coincides with $C_{2}\left(u_{1}\right)$ as we wished to show.
At this point we have seen (remember assumption (15)) that the slice of S defined by the planes $x_{1}= \pm 1 /(2+3|\lambda|)$ coincides with the corresponding slice of Q. Similar arguments to those followed in the proof of Theorem 1 give that the whole of S coincides with Q.
Case 3. Finally, assume that $d \geq 4$. We shall prove by induction on d that S is an ellipsoid. So let us assume that the theorem is true for $(d-1)$-dimensional spaces and let E be a ($d-1$)-dimensional subspace such that $P_{1} \cap P_{2} \cap P_{3} \not \subset E$. Then $\operatorname{dim}\left(E \cap P_{i}\right)=d-2$ for $i=1,2,3, E \cap P_{i} \neq E \cap P_{j}$ for $i \neq j$ and $E \cap S$ is $\left(E \cap P_{i}\right)$-elliptic for $i=1,2,3$. Applying the hypothesis of induction we get that $E \cap S$ is an ellipsoid. Density arguments give that $E \cap S$ is an ellipsoid for any E, $\operatorname{dim} E=d-1$, and therefore S is an ellipsoid.

4. Remarks

Remarks on Example 1. The only thing not trivial in Example 1 is the convexity of the sets A and B. To see that A is convex it is enough to observe that the set $A^{\prime}=$ $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}+x^{2} y^{2}<1\right\}$ is an open convex subset of $(-1,1) \times(-1,1)$ and that the Hessian matrix of the function $z(x, y)=-\sqrt{1-x^{2}-y^{2}-x^{2} y^{2}}$ is positive definite for every $(x, y) \in A^{\prime}$. The first is easy. The second follows from the fact that

$$
\begin{gathered}
\frac{\partial^{2} z}{\partial x^{2}}=\frac{1-y^{4}}{\left(1-x^{2}-y^{2}-x^{2} y^{2}\right)^{3 / 2}}>0 \\
\left|\begin{array}{cc}
\frac{\partial^{2} z}{\partial x^{2}} & \frac{\partial^{2} z}{\partial x \partial y} \\
\frac{\partial^{2} z}{\partial x \partial y} & \frac{\partial^{2} z}{\partial y^{2}}
\end{array}\right|=\frac{\left(1-x^{2} y^{2}\right)^{2}+x^{2}\left(1-y^{2}\right)^{2}+y^{2}\left(1-x^{2}\right)^{2}}{\left(1-x^{2}-y^{2}-x^{2} y^{2}\right)^{2}}>0
\end{gathered}
$$

for every $(x, y) \in A^{\prime}$. The convexity of B follows in a similar way.
It is interesting to note that with B being P-elliptic with respect to two planes, it is not strictly convex.

Remarks on Example 2. As above, the only difficulty in this example is to prove the convexity of C_{α}. Assume that $\alpha \neq 0$ and consider the function

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}+\alpha x y z
$$

We consider the norm $\|(x, y, z)\|=\max \{|x|,|y|,|z|\}$. It is easy to see that F has the following property:

$$
\left.\begin{array}{r}
F(x, y, z)<1 \tag{30}\\
\|(x, y, z)\| \leq 1
\end{array}\right\} \quad \Rightarrow \quad\|(x, y, z)\|<1
$$

Now, let

$$
D_{\alpha}=\left\{(x, y, z) \in \mathbb{R}^{3}: F(x, y, z)<1,\|(x, y, z)\|<1\right\}
$$

To prove that C_{α} is convex we see first that $C_{\alpha}=\overline{D_{\alpha}}$ and then that D_{α} is convex. Since C_{α} is closed and $D_{\alpha} \subset C_{\alpha}$, we have $\overline{D_{\alpha}} \subset C_{\alpha}$. Conversely, let $(\bar{x}, \bar{y}, \bar{z}) \in C_{\alpha}$. If $F(\bar{x}, \bar{y}, \bar{z})<1$, then from (30) it follows that $(\bar{x}, \bar{y}, \bar{z}) \in D_{\alpha}$. On the other hand, assume that $F(\bar{x}, \bar{y}, \bar{z})=1$ and let f be the function defined by

$$
f(\lambda)=F(\lambda \bar{x}, \lambda \bar{y}, \lambda \bar{z}), \quad \lambda \in \mathbb{R}
$$

Then

$$
f(1)=1, \quad, f^{\prime}(1)=2+\alpha \bar{x} \bar{y} \bar{z} \geq 0, \quad f^{\prime \prime}(1)=2+4 \alpha \bar{x} \bar{y} \bar{z}
$$

If $f^{\prime}(1)>0$, then f is strictly increasing in a neighborhood of 1 and taking $\lambda_{n} \rightarrow 1$, $\lambda_{n}<1$, we get that

$$
\left\|\left(\lambda_{n} \bar{x}, \lambda_{n} \bar{y}, \lambda_{n} \bar{z}\right)\right\| \leq \lambda_{n}<1, \quad F\left(\lambda_{n} \bar{x}, \lambda_{n} \bar{y}, \lambda_{n} \bar{z}\right)=f\left(\lambda_{n}\right)<1
$$

from which it follows that $(\bar{x}, \bar{y}, \bar{z}) \in \bar{D}_{\alpha}$. If $f^{\prime}(1)=0$, then $f^{\prime \prime}(1)=-6$. Therefore f has a local maximun at the point $\lambda=1$, and we can conclude as above.

We proceed to show that D_{α} is convex. Let $u_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $u_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ be two different points of D_{α}. Since u_{1} and u_{2} are inside the cube of radius 1 , we have that $\left\|\lambda u_{1}+(1-\lambda) u_{2}\right\|<1$ for every $0 \leq \lambda \leq 1$, and also that there exist $\lambda_{1}<0$ and $\lambda_{2}>1$ such that

$$
\left\|\lambda_{1} u_{1}+\left(1-\lambda_{1}\right) u_{2}\right\|=\left\|\lambda_{2} u_{1}+\left(1-\lambda_{2}\right) u_{2}\right\|=1
$$

From (30) it follows that

$$
F\left(\lambda_{1} u_{1}+\left(1-\lambda_{1}\right) u_{2}\right) \geq 1, \quad F\left(\lambda_{2} u_{1}+\left(1-\lambda_{2}\right) u_{2}\right) \geq 1
$$

We define now

$$
g(\lambda)=F\left(\lambda u_{1}+(1-\lambda) u_{2}\right), \quad \lambda \in \mathbb{R}
$$

The function g is a polynomial function of degree ≤ 3 such that

$$
\begin{aligned}
g(0)=F\left(u_{2}\right)<1, & g(1)=F\left(u_{1}\right)<1 \\
g\left(\lambda_{1}\right)=F\left(\lambda_{1} u_{1}+\left(1-\lambda_{1}\right) u_{2}\right) \geq 1, & g\left(\lambda_{2}\right)=F\left(\lambda_{2} u_{1}+\left(1-\lambda_{2}\right) u_{2}\right) \geq 1
\end{aligned}
$$

This clearly forces that $g(\lambda)<1$ for every $0 \leq \lambda \leq 1$, and the proof of convexity is complete.

We leave it to the reader to verify that $\operatorname{Int} C_{\alpha}=D_{\alpha}$ and that the boundary points of C_{α} are those at which $F(x, y, z)=1$.

It is also interesting to note here that the sets C_{2} and C_{-2} are not strictly convex.

Acknowledgments

We thank Ricardo Faro for his useful hints with regard to Example 1. We also thank the referees for many suggestions which improve the paper.

References

1. P.W. Aitchison, A characterisation of the ellipsoid, J. Austral. Math. Soc. 11 (1970), 385-394.
2. G. Bianchi and P.M. Gruber, Characterizations of ellipsoids, Arch. Math. (4) 49 (1987), 344-350.
3. G.R. Burton, Sections of convex bodies, J. London. Math. Soc. (2) 12 (1976), 331-336.
4. G.R. Burton and P. Mani, A characterization of the ellipsoid in terms of concurrent sections, Comment. Math. Helv. I 53 (1978), 485-507.
5. H. Busemann, The Geometry of Geodesics, Academic Press, New York, 1955.
6. T. Kubota, On the theory of closed convex surface, Proc. London Math Soc. (2) 14 (1915), 230-239.
7. L. Montejano, Convex bodies with homothetic sections, Bull. London. Math. Soc. 23 (1991), 381-386.
8. S. Nakagawa, On theorems regarding ellipsoid, Tôhoku Math. J. 8 (1915), 11-13.
9. C.M. Petty, Ellipsoid, in Convexity and Its Applications (P. M. Gruber and J. M. Wills, eds.), Birkhäuser Verlag, Basel, 1983, pp. 264-276.

[^0]: * This research was partially supported by Junta de Extremadura-Consejería de Educación y Juventud and Fondo Social Europeo, IPR98C012 and IPR99C008.

