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Abstract. We characterize ellipsoids among convex bodies in Ed looking at the sections
parallel to two or three hyperplanes.

1. Introduction

Let D be a convex body (i.e., a compact convex set with non-empty interior) in the
d-dimensional Euclidean space Ed (d ≥ 3) and let S be the boundary of D. Let P be a
homogeneous hyperplane in Ed . We say that D (indistinctly, S) is

(i) P-homothetic if for every u, v ∈ Int(D) the sections (u+ P)∩ S and (v+ P)∩ S
are homothetic (up to translations),

(ii) P-elliptic if for every u ∈ Int(D) the section (u + P) ∩ S is ellipsoidal.

Roughly speaking, S is P-homothetic (P-elliptic) if all the sections of S by hyperplanes
parallel to P are identical up to size (are ellipsoidal).

It is obvious that S is an ellipsoid if it is P-elliptic for every homogeneous hyperplane
P . Not so obvious, but also true, is that S is an ellipsoid if it is P-homothetic for every
P (see, e.g., [6] and [8]). Improvements of these results are at the origin of an important
family of characterizations of ellipsoids. An example is the proof by Aitchison [1] that
it is sufficient for S to be an ellipsoid, that for every P , property (i) holds when the
hyperplanes u + P and v + P are sufficiently close to a parallel supporting hyperplane.
Other results in this line can be found in [2]–[4], [7] and [9].

∗ This research was partially supported by Junta de Extremadura-Consejerı́a de Educación y Juventud and
Fondo Social Europeo, IPR98C012 and IPR99C008.
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The aim of this present paper is to provide some answers to the following question:
What if S is P-homothetic or P-elliptic for a limited number of hyperplanes P? The-
orem 1 will show that only two planes are necessary to characterize ellipsoids if both
properties are satisfied. Then, in Theorem 2, we will see that three planes are enough
to characterize ellipsoids via the P-elliptic property, among centrally symmetric convex
bodies.

2. Results

Theorem 1. Let S be the boundary of a convex body in Ed (d ≥ 3). If there exist two
different homogeneous hyperplanes P1, P2, such that S is Pi -homothetic and Pi -elliptic
for i = 1, 2, then S is an ellipsoid.

Obviously, if in Theorem 1 we were to consider only the P-homothetic property, then
S need not be an ellipsoid. A simple counterexample is the cube. On the other hand,
Example 1 shows that neither is the P-elliptic property alone sufficient to characterize
ellipsoids.

Example 1. The sets A = {(x, y, z) ∈ R3 : x2 + y2 + z2 + x2 y2 ≤ 1} and B =
{(x, y, z) ∈ R3 : x2 + y2 + z2 − x2 y2 ≤ 1, |x | ≤ 1, |y| ≤ 1} are symmetric convex
bodies in R3 which are P-elliptic with respect to the planes x = 0 and y = 0. Neither
A nor B is an ellipsoid (see Fig. 1).

Thus, if we want to characterize ellipsoids via only the P-elliptic property, we must
add at least one hyperplane more. Nevertheless, Example 2 shows that even this is not
enough.
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Fig. 1. P-elliptic with respect to two planes.
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Fig. 2. P-elliptic with respect to three planes.

Example 2. Let α ∈ R, |α| ≤ 2. The set

Cα = {(x, y, z) ∈ R3 : x2 + y2 + z2 + αxyz ≤ 1, max{|x |, |y|, |z|} ≤ 1}
is a convex body in R3 which is P-elliptic with respect to the planes x = 0, y = 0 and
z = 0. If α �= 0, Cα is not ellipsoidal (see Fig. 2).

Observe that if α �= 0, then the sets Cα in Example 2 are not centrally symmetric.
This leads to the following result.

Theorem 2. Let S be the boundary of a centrally symmetric convex body in Ed (d ≥ 3),
and let P1, P2, P3 be three different homogeneous hyperplanes. If S is Pi -elliptic for
i = 1, 2, 3, then S is an ellipsoid.

It is well known that if S is the boundary of a symmetric convex body in Ed centered at
the origin, then we can define a norm over Ed such that its unit sphere is S. Conversely,
the unit ball of any d-dimensional normed space is a symmetric convex body whose
boundary is the unit sphere. Moreover, a d-dimensional normed space is an inner product
space if and only if its unit sphere is ellipsoidal. Thus, the results in this paper can also
be seen in the context of normed spaces.

3. Proofs

Proof of Theorem 1. Assume that S is the boundary of the convex body D. We can
consider without loss of generality that the origin of Ed is an interior point of D.

(d = 3) Let us suppose first that d = 3. Let l3 = P1 ∩ P2 and let p and q be the two
points at which l3 intersects S. Let o be the center of the segment pq . We can assume
that o is the origin of the space. From the hypothesis we know that C1 = P1 ∩ S and
C2 = P2 ∩ S are ellipses that intersect in p and q . For i = 1, 2 let li be the line in the
plane Pi that meets the center of Ci and that has the conjugate direction of l3 with respect
to Ci . Then li also meets o. Let P3 be the plane generated by l1 and l2. Then

l1 = P1 ∩ P3, l2 = P2 ∩ P3, l3 = P1 ∩ P2.
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In each line li , i = 1, 2, 3, we can take a vector ei in such a way that if (x1, x2, x3)

are the coordinates of a point x ∈ E3, relative to the basis {e1, e2, e3}, then

C1 = {x ∈ E3 : (x1 − c1)
2 + x2

3 = r2
1 , x2 = 0},

C2 = {x ∈ E3 : (x2 − c2)
2 + x2

3 = r2
2 , x1 = 0},

for certain c1, c2, r1, r2 ∈ R. In short, we can identify E3 with R3 in such a way that C1

and C2 are circumferences.
We denote by x ′ the orthogonal projection of x ∈ E3 onto P3, i.e., x ′ = (x1, x2, 0).

Let D′ be the projection of D onto P3 and we denote by IntP3 D′ the interior of D′ in P3.
From the hypothesis it follows that for every x ′ ∈ IntP3 D′ the sets

C1(x2) = (x2e2 + P1) ∩ S, C2(x1) = (x1e1 + P2) ∩ S

are circumferences. We denote by c1(x2) and c2(x1) the centers of these circumferences.
We perform the rest of the proof in three steps. In the first we shall see that c1(x2)

and c2(x1) are in P3 for every x ′ ∈ IntP3 D′; in the second, that all the points c1(x2)

(respectively, c2(x1)) are aligned; in the third, that S is an ellipsoid.

Step 1. Let x ∈ S be such that x ′ ∈ IntP3 D′ and let H0, . . . , Hn be open rectangles in P3

with sides parallel to l1 and l2 such that

(a) Hi ⊂ D′, i = 0, . . . , n,
(b) o ∈ H0, x ′ ∈ Hn ,
(c) Hi ∩ Hi−1 �= ∅, i = 1, . . . , n.

Let H be any rectangle Hi and let u′ = (u1, u2, 0) ∈ H . Since H ⊂ D′, there exist
two points u, ū ∈ S whose projection onto P3 is u′. Therefore u = (u1, u2, u3) for some
u3. The circumferences C1(u2) and C2(u1)meet in u and ū. Let Pu′ be the plane parallel
to P3 that meets the midpoint of the segment uū. All the circumferences passing through
u and ū have their centers in Pu′ . In particular, c1(u2), c2(u1) ∈ Pu′ .

Let now v′ = (v1, v2, 0) be another point in H , different from u′, and let v3 be such
that v = (v1, v2, v3) ∈ S. Then we have c1(v2), c2(v1) ∈ Pv′ . Assume, without loss of
generality, that v1 �= u1 and letw′ = (v1, u2, 0). Thenw′ ∈ H and c1(u2), c2(v1) ∈ Pw′ .
Bearing in mind that the planes Pu′ , Pv′ and Pw′ are parallel and that

c1(u2) ∈ Pu′ ∩ Pw′ , c2(v1) ∈ Pw′ ∩ Pv′

we get that Pu′ = Pw′ = Pv′ .
From the above it follows that Pu′ is constant for every u′ ∈ H . We denote that plane

by PH . From (b) and (c) it follows that

Px ′ = PHn = PHn−1 = · · · = PH0 = P3.

In sum, if x ∈ S is such that x ′ ∈ IntP3 D′, then the circumferences C1(x2) and C2(x1)

have their centers in P3.

Step 2. We return to the rectangle H , but assume now that u′ and v′ are such that u1 �= v1

and u2 �= v2. We say in that case that u′#v′. We consider the circumferences C1(u2),
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C2(u1), C1(v2) and C2(v1), whose centers are, respectively,

c1(u2) = (c11(u2), u2, 0), c2(u1) = (u1, c22(u1), 0),

c1(v2) = (c11(v2), v2, 0), c2(v1) = (v1, c22(v1), 0).

Let w ∈ C1(u2) ∩ C2(v1) and t ∈ C2(u1) ∩ C1(v2). Then

w = (v1, u2, w3), t = (u1, v2, t3),

for certain w3, t3 ∈ R. The four circumferences we are dealing with are linked to each
other by the following identities:

u, w ∈ C1(u2) ⇒ (u1 − c11(u2))
2 + u2

3 = (v1 − c11(u2))
2 + w2

3, (1)

w, v ∈ C2(v1) ⇒ (u2 − c22(v1))
2 + w2

3 = (v2 − c22(v1))
2 + v2

3, (2)

v, t ∈ C1(v2) ⇒ (v1 − c11(v2))
2 + v2

3 = (u1 − c11(v2))
2 + t2

3 , (3)

t, u ∈ C2(u1) ⇒ (v2 − c22(u1))
2 + t2

3 = (u2 − c22(u1))
2 + u2

3. (4)

Summing (1)–(4) we get

u1c11(u2)+ u2c22(v1)+ v1c11(v2)+ v2c22(u1)

= v1c11(u2)+ v2c22(v1)+ u1c11(v2)+ u2c22(u1),

from which follows

c11(u2)− c11(v2)

u2 − v2
= c22(u1)− c22(v1)

u1 − v1
.

The left-hand side of the above identity depends only on u2 and v2, whereas the right-hand
side depends only on u1 and v1. Therefore,

c11(u2)− c11(v2)

u2 − v2
= c22(u1)− c22(v1)

u1 − v1
= constant := aH , (5)

for every u′, v′ ∈ H , u′#v′. Taking now as H any Hi , we get again from (c) that
aHn = aHn−1 = · · · = aH0 := a. A straightforward calculation repeatedly applying
the identity (5) shows that this identity also holds for every u′, v′ ∈ ⋃n

i=0 Hi , u′#v′. In
particular, remembering that o ∈ H0 and that x ′ ∈ Hn , we get that

c11(x2) = ax2 + c1, c22(x1) = ax1 + c2, (6)

which is also true if either x1 or x2 are 0.

Step 3. At this point we have that for i = 1, 2, all the sections of S by planes parallel to
Pi are circles whose centers are in a line, Li . It is easy to see that for every x, y ∈ S, the
composition of rotations about L1 with rotations about L2 allow us to get a linear map
that fixes S and sends x into y. Busemann [5] proved that this property is characteristic
of the ellipsoids.
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(d ≥ 4) Assume now that d ≥ 4. To see that S is an ellipsoid it is enough to show that
if P is a two-dimensional plane through the origin, then P ∩ S is ellipsoidal (see, e.g.,
[5]). If P ⊂ Pi for i = 1 or 2, then P ∩ S is ellipsoidal because so is Pi ∩ S. On the other
hand, if P �⊂ P1 and P �⊂ P2, then, since P1 �= P2, we can take x ∈ P1\(P2 ∪ P). Let
E = P⊕〈x〉. Therefore, dim E = 3, dim P1∩E = dim P2∩E = 2 and P1∩E �= P2∩E .
We shall show that E ∩ S is (Pi ∩ E)-elliptic and (Pi ∩ E)-homothetic for i = 1, 2. Let
u, v ∈ E be interior points of the convex body whose boundary is S. From the hypothesis
we know that (u+ Pi )∩ S and (v+ Pi )∩ S are homothetic ellipsoids. Hence the sections
by E , (u + Pi ) ∩ S ∩ E and (v + Pi ) ∩ S ∩ E , are also homothetic ellipsoids. Since
[u + (Pi ∩ E)] ∩ (E ∩ S) = (u + Pi ) ∩ S ∩ E (similarly with v) we have that E ∩ S is
(Pi ∩ E)-elliptic and (Pi ∩ E)-homothetic. Hence we are in the case d = 3 and we
get that E ∩ S is ellipsoidal, from which it follows that P ∩ S is also ellipsoidal. We
must note that we cannot simplify the proof taking as E an arbitrary three-dimensional
subspace because in that case we cannot assure that P1 ∩ E �= P2 ∩ E .

Proof of Theorem 2. We assume that S is centered at the origin and let Ci = Pi ∩ S,
i = 1, 2, 3. We consider three cases.

Case 1. Assume that d = 3 and P1 ∩ P2 ∩ P3 = {0}. Let

e1 ∈ C1 ∩ C3, e2 ∈ C2 ∩ C3, e3 ∈ C1 ∩ C2.

We take {e1, e2, e3} as basis of the space. Then the ellipses C1, C2, C3 can be represented
as the set of points whose coordinates (x1, x2, x3) satisfy, respectively,

C1: x2
1 + x2

3 + α13x1x3 = 1, x2 = 0,

C2: x2
2 + x2

3 + α23x2x3 = 1, x1 = 0, (7)

C3: x2
1 + x2

2 + α12x1x2 = 1, x3 = 0,

for certain α12, α13, α23 ∈ R.
Let H0 ⊂ IntP3 D ∩ P3 be an open rectangle centered at 0 with sides parallel to the

vectors e1 and e2, respectively. Let u = (u1, u2, u3) ∈ S be such that u′ = (u1, u2, 0) ∈
H0. Then (±u1,±u2, 0) ∈ H0 and |u1| < 1, |u2| < 1. We shall show that u is a point of
the quadric Q of equation

Q: x2
1 + x2

2 + x2
3 + α12x1x2 + α13x1x3 + α23x2x3 = 1. (8)

Since Ci ⊂ Q, i = 1, 2, 3, we can assume without loss of generality that u1 �= 0, u2 �= 0.
By hypothesis, C1(u2) = (u2e2+ P1)∩ S and C2(u1) = (u1e1+ P2)∩ S are ellipses.

We suppose that their equations are, respectively,

C1(u2): α1x2
1 + β1x2

3 + γ1x1x3 + δ1x1 + λ1x3 = 1, x2 = u2,

C2(u1): α2x2
2 + β2x2

3 + γ2x2x3 + δ2x2 + λ2x3 = 1, x1 = u1.
(9)

Since S is symmetric, the equations of the ellipses C1(−u2) and C2(−u1) are

C1(−u2): α1x2
1 + β1x2

3 + γ1x1x3 − δ1x1 − λ1x3 = 1, x2 = −u2,

C2(−u1): α2x2
2 + β2x2

3 + γ2x2x3 − δ2x2 − λ2x3 = 1, x1 = −u1.
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Let (s, u2, 0), and (ŝ, u2, 0) be the two points where C3 and C1(u2) meet. From (7)
and (9) it follows that

s2 + α12u2s + u2
2 − 1 = 0, ŝ2 + α12u2ŝ + u2

2 − 1 = 0,

α1s2 + δ1s − 1 = 0, α1ŝ2 + δ1ŝ − 1 = 0.
(10)

Looking at (10) as two polynomials of second degree that have the same roots, s and ŝ,
we get

α1 = 1

1− u2
2

, δ1 = α12u2

1− u2
2

. (11)

In a similar way, considering C2 ∩ C1(u2), C3 ∩ C2(u1) and C1 ∩ C2(u1), we obtain

β1 = 1

1− u2
2

, λ1 = α23u2

1− u2
2

,

α2 = β2 = 1

1− u2
1

, δ2 = α12u1

1− u2
1

, λ2 = α13u1

1− u2
1

.

(12)

The same argument followed above but considering C1(u2) ∩ C2(u1) and C1(u2) ∩
C2(−u1) gives the identities

β2(γ1u1 + λ1) = β1(γ2u2 + λ2), β2(γ1u1 − λ1) = β1(λ2 − γ2u2),

that jointly with (12) give

γ1 = α13

1− u2
2

, γ2 = α23

1− u2
1

. (13)

Now, bearing in mind that u ∈ C1(u2), we get from (9), (11) and (12)

1 = α1u2
1 + β1u2

3 + γ1u1u3 + δ1u1 + λ1u3

= u2
1 + u2

3 + α13u1u3 + α12u2u1 + α23u2u3

1− u2
2

.

Hence, it follows from (8) that u ∈ Q.
Therefore, S and Q coincide at all the points that are projected onto H0. Finally,

similar arguments to those followed in Theorem 1 complete the proof.

Case 2. Assume now that d = 3 and that P1, P2 and P3 meet in a line. Let e3 ∈
C1 ∩ C2 ∩ C3. Then there exists only one plane P through the origin such that e3 + P
supports S in e3. Let e1 ∈ C1 ∩ P and e2 ∈ C2 ∩ P . We take {e1, e2, e3} as the basis of
the space. Taking into account that C1 and C2 are centered at the origin and that {e1, e3}
and {e2, e3} are conjugate pairs of vectors, we can represent these ellipses as the set of
points whose coordinates (x1, x2, x3) satisfy, respectively,

C1: x2
1 + x2

3 = 1, x2 = 0,

C2: x2
2 + x2

3 = 1, x1 = 0.
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The plane P meets P3 in a line (x1, λx1, 0), with λ �= 0. Then, since C3 is also centered
at the origin and e3 + P ∩ P3 supports C3 at e3, we have that

C3: αx2
1 + x2

3 = 1, x2 = λx1,

for some α > 0.
It is easy to see that there is only one quadric Q that contains the ellipses C1, C2 and

C3. It is given by

Q: x2
1 + x2

2 + x2
3 +

(
α − 1− λ2

λ

)
x1x2 = 1. (14)

We shall show that S = Q.
Let u = (u1, u2, u3) ∈ S. To see that u ∈ Q, we assume first that

|u1| < 1

2+ 3|λ| . (15)

We need this assumption to be sure that some of the ellipses that we consider meet.
Our aim is to see that the ellipse C2(u1) = (u1e1+ P2)∩ S coincides with the section

of Q determined by the plane u1e1 + P2. Naming this section C , we have

C :

(
1

1− u2
1

)
x2

2 +
(

1

1− u2
1

)
x2

3 +
(
(α − 1− λ2)u1

λ(1− u2
1)

)
x2 = 1,

x1 = u1.

(16)

Assume that

C2(u1): α2x2
2 + β2x2

3 + γ2x2x3 + δ2x2 + ε2x3 = 1, x1 = u1. (17)

Since S is symmetric, the equation of the ellipse C2(−u1) = (−u1e1 + P2) ∩ S is

C2(−u1): α2x2
2 + β2x2

3 + γ2x2x3 − δ2x2 − ε2x3 = 1, x1 = −u1. (18)

Let now P ′3 be the plane parallel to P3 that contains the point (u1,−λu1, 0). Hence,
P ∩ P ′3 is the line (x1, λ(x1− 2u1), 0). From (15) it follows that |u1|+ |λu1| < 1, which
means that the point (u1,−λu1, 0) lies inside the parallelogram of vertices (±1, 0, 0)
and (0,±1, 0). Since S is convex, it follows that P ′3 intersects S. By hypothesis S ∩ P ′3
is an ellipse that we name C ′3. We assume that

C ′3: α3x2
1 + β3x2

3 + γ3x1x3 + δ3x1 + ε3x3 = 1, x2 = λ(x1 − 2u1). (19)

Next we consider what information the intersections of the above ellipses give us.

The ellipses C1 and C2(u1) meet in the points (u1, 0,±
√

1− u2
1), from which it

follows that

β2(1− u2
1)± ε2

√
1− u2

1 = 1,

and hence

β2 = 1

1− u2
1

, ε2 = 0. (20)
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From (15) and the fact that C3 is symmetric with respect to the third coordinate, we
get that C3 and C2(u1) meet in (u1, λu1,±z1) for some z1 �= 0. Then

αu2
1 + z2

1 = 1

and

α2λ
2u2

1 +
(

1

1− u2
1

)
z2

1 ± γ2λu1z1 + δ2λu1 = 1.

Therefore,

γ2 = 0 (21)

and

λ2u2
1α2 + λu1δ2 = (α − 1)u2

1

1− u2
1

. (22)

Again from (15) it follows that C2 meets C ′3 in the points (0,−2λu1,±
√

1− 4λ2u2
1).

Therefore,

β3(1− 4λ2u2
1)± ε3

√
1− 4λ2u2

1 = 1,

and hence

β3 = 1

1− 4λ2u2
1

, ε3 = 0. (23)

Similarly, C1 meets C ′3 in (2u1, 0,±
√

1− 4u2
1). Therefore,

4α3u2
1 +

1− 4u2
1

1− 4λ2u2
1

± 2γ3u1

√
1− 4u2

1 + 2δ3u1 = 1,

from which it follows that

γ3 = 0 (24)

and

2u2
1α3 + u1δ3 = 2u2

1(1− λ2)

1− 4λ2u2
1

. (25)

From (20), (21), (23) and (24) we get that C2(u1) and C ′3 are symmetric with respect
to the third coordinate. Hence they meet in (u1,−λu1, ±z2) for some z2 �= 0, from
which it follows that

λ2u2
1α2 +

(
1

1− u2
1

)
z2

2 − λu1δ2 = 1 (26)

and

u2
1α3 +

(
1

1− 4λ2u2
1

)
z2

2 + u1δ3 = 1. (27)
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Finally, from (15) we have also that C2(−u1) meets C ′3 in (−u1,−3λu1, ±z3) for
some z3 �= 0. Therefore,

9λ2u2
1α2 +

(
1

1− u2
1

)
z2

3 + 3λu1δ2 = 1 (28)

and

u2
1α3 +

(
1

1− 4λ2u2
1

)
z2

3 − u1δ3 = 1. (29)

The six equations (22) and (25)–(29) form a non-singular linear system with the
unknowns α2, δ2, α3, δ3, z2

2 and z2
3. Solving this system, we get in particular

α2 = 1

1− u2
1

, δ2 = (α − 1− λ2)u1

λ(1− u2
1)

,

that jointly with (20) and (21) give that C coincides with C2(u1) as we wished to show.
At this point we have seen (remember assumption (15)) that the slice of S defined

by the planes x1 = ±1/(2+ 3|λ|) coincides with the corresponding slice of Q. Similar
arguments to those followed in the proof of Theorem 1 give that the whole of S coincides
with Q.

Case 3. Finally, assume that d ≥ 4. We shall prove by induction on d that S is an ellipsoid.
So let us assume that the theorem is true for (d − 1)-dimensional spaces and let E be a
(d − 1)-dimensional subspace such that P1 ∩ P2 ∩ P3 �⊂ E . Then dim(E ∩ Pi ) = d − 2
for i = 1, 2, 3, E ∩ Pi �= E ∩ Pj for i �= j and E ∩ S is (E ∩ Pi )-elliptic for i = 1, 2, 3.
Applying the hypothesis of induction we get that E ∩ S is an ellipsoid. Density argu-
ments give that E ∩ S is an ellipsoid for any E , dim E = d − 1, and therefore S is an
ellipsoid.

4. Remarks

Remarks on Example 1. The only thing not trivial in Example 1 is the convexity of
the sets A and B. To see that A is convex it is enough to observe that the set A′ =
{(x, y) ∈ R2 : x2 + y2 + x2 y2 < 1} is an open convex subset of (−1, 1)× (−1, 1) and
that the Hessian matrix of the function z(x, y) = −

√
1− x2 − y2 − x2 y2 is positive

definite for every (x, y) ∈ A′. The first is easy. The second follows from the fact that

∂2z

∂x2
= 1− y4

(1− x2 − y2 − x2 y2)3/2
> 0,

∣∣∣∣∣∣∣∣
∂2z

∂x2

∂2z

∂x ∂y

∂2z

∂x ∂y

∂2z

∂y2

∣∣∣∣∣∣∣∣
= (1− x2 y2)2 + x2(1− y2)2 + y2(1− x2)2

(1− x2 − y2 − x2 y2)2
> 0,

for every (x, y) ∈ A′. The convexity of B follows in a similar way.
It is interesting to note that with B being P-elliptic with respect to two planes, it is

not strictly convex.
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Remarks on Example 2. As above, the only difficulty in this example is to prove the
convexity of Cα . Assume that α �= 0 and consider the function

F(x, y, z) = x2 + y2 + z2 + αxyz.

We consider the norm ‖(x, y, z)‖ = max{|x |, |y|, |z|}. It is easy to see that F has the
following property:

F(x, y, z) < 1

‖(x, y, z)‖ ≤ 1

}
⇒ ‖(x, y, z)‖ < 1. (30)

Now, let

Dα = {(x, y, z) ∈ R3 : F(x, y, z) < 1, ‖(x, y, z)‖ < 1}.
To prove that Cα is convex we see first that Cα = Dα and then that Dα is convex.
Since Cα is closed and Dα ⊂ Cα , we have Dα ⊂ Cα . Conversely, let (x̄, ȳ, z̄) ∈ Cα . If
F(x̄, ȳ, z̄) < 1, then from (30) it follows that (x̄, ȳ, z̄) ∈ Dα . On the other hand, assume
that F(x̄, ȳ, z̄) = 1 and let f be the function defined by

f (λ) = F(λx̄, λȳ, λz̄), λ ∈ R.
Then

f (1) = 1, , f ′(1) = 2+ α x̄ ȳ z̄ ≥ 0, f ′′(1) = 2+ 4α x̄ ȳ z̄.

If f ′(1) > 0, then f is strictly increasing in a neighborhood of 1 and taking λn → 1,
λn < 1, we get that

‖(λn x̄, λn ȳ, λn z̄)‖ ≤ λn < 1, F(λn x̄, λn ȳ, λn z̄) = f (λn) < 1,

from which it follows that (x̄, ȳ, z̄) ∈ Dα . If f ′(1) = 0, then f ′′(1) = −6. Therefore f
has a local maximun at the point λ = 1, and we can conclude as above.

We proceed to show that Dα is convex. Let u1 = (x1, y1, z1) and u2 = (x2, y2, z2)

be two different points of Dα . Since u1 and u2 are inside the cube of radius 1, we have
that ‖λu1 + (1 − λ)u2‖ < 1 for every 0 ≤ λ ≤ 1, and also that there exist λ1 < 0 and
λ2 > 1 such that

‖λ1u1 + (1− λ1)u2‖ = ‖λ2u1 + (1− λ2)u2‖ = 1.

From (30) it follows that

F(λ1u1 + (1− λ1)u2) ≥ 1, F(λ2u1 + (1− λ2)u2) ≥ 1.

We define now

g(λ) = F(λu1 + (1− λ)u2), λ ∈ R.
The function g is a polynomial function of degree ≤ 3 such that

g(0) = F(u2) < 1, g(1) = F(u1) < 1,

g(λ1) = F(λ1u1 + (1− λ1)u2) ≥ 1, g(λ2) = F(λ2u1 + (1− λ2)u2) ≥ 1.
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This clearly forces that g(λ) < 1 for every 0 ≤ λ ≤ 1, and the proof of convexity is
complete.

We leave it to the reader to verify that IntCα = Dα and that the boundary points of
Cα are those at which F(x, y, z) = 1.

It is also interesting to note here that the sets C2 and C−2 are not strictly convex.
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