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Abstract. Suppose that X is a finite set and let RX denote the set of functions that map
X to R. Given a metric d on X , the tight span of (X, d) is the polyhedral complex T (X, d)
that consists of the bounded faces of the polyhedron

P(X, d) := { f ∈ RX : f (x)+ f (y) ≥ d(x, y)}.

In a previous paper we commenced a study of properties of T (X, d) when d is antipodal,
that is, there exists an involution σ : X → X : x 	→ x so that d(x, y)+ d(y, x) = d(x, x)
holds for all x, y ∈ X . Here we continue our study, considering geometrical properties of
the tight span of an antipodal metric space that arise from a metric with which the tight span
comes naturally equipped. In particular, we introduce the concept of cell-decomposability
for a metric and prove that the tight span of such a metric is the union of cells, each of
which is isometric and polytope isomorphic to the tight span of some antipodal metric. In
addition, we classify the antipodal cell-decomposable metrics and give a description of the
polytopal structure of the tight span of such a metric.
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1. Introduction

We begin by reviewing some basic definitions on polyhedral complexes from [14]. For
n ≥ 1 an integer, a polyhedron in Rn is the intersection of a finite collection of half-
spaces in Rn and a polytope is a bounded polyhedron. A face of a polyhedron P is
the empty-set, P itself, or the intersection of P with a supporting hyperplane and, if P
is d-dimensional, then its 0-, 1- and (d − 1)-dimensional faces are called its vertices,
edges and facets, respectively. The collection of all faces of a polytope forms a lattice
with respect to the ordering given by set inclusion, and we say that two polytopes are
polytope isomorphic if their face-lattices are isomorphic. A polyhedral complex C is a
finite collection of polytopes such that each face of a member of C is itself a member of
C, and the intersection of two members of C is a face of each. We call the members of C
cells.

Now, suppose that (X, d) is a metric space, i.e. a set X together with a map d: X×X →
R that, for all x, y, z ∈ X , satisfies (i) d(x, y) = 0 ⇐⇒ x = y, (ii) d(x, y) = d(y, x)
and (iii) d(x, y) ≤ d(x, z)+ d(z, y). We call the map d a metric1 and, when it is clear
from the context, we will use (X, d) or d interchangeably. If X is finite, in which case
we call (X, d) a finite metric space, we can associate a polyhedral complex T (X, d) to
(X, d) as follows. LetRX denote the set of functions that map X toR. To the pair (X, d)
associate the polyhedron

P(X, d) := { f ∈ RX : f (x)+ f (y) ≥ d(x, y) for all x, y ∈ X},

and let T (X, d) consist of the bounded faces of P(X, d). We call T (X, d) the tight span
of (X, d). This fundamental mathematical construction was introduced by Isbell in [13],
and was subsequently rediscovered and studied by Dress in [4] and by Chorbak and
Lamore in [2].

In [11] we commenced a study of properties of the tight span of an antipodal metric
space, that is, a finite metric space (X, d) together with an involution σ : X → X : x 	→ x
so that, for all x, y ∈ X , d(x, y) + d(y, x) = d(x, x) (see also [10]). In particular,
amongst other things, we proved that a finite metric space (X, d) is antipodal if and only
if T (X, d) has a unique maximal cell, and presented a way to parameterize the facets of
the tight span of such a metric space.

These results are mainly concerned with combinatorial properties of the tight span of
an antipodal metric space (i.e. properties of its face-lattice). However, the tight span also
has a rich geometrical structure. For example, in [4] it is shown that if (X, d) is a finite
metric space, then the map d∞: T (X, d)× T (X, d)→ R defined, for f, g ∈ T (X, d),
by

d∞( f, g) := max
x∈X
| f (x)− g(x)|

is a metric, and also that (X, d) embeds canonically and isometrically into T (X, d) via
the map

h = hX : X → T (X, d): x 	→ (hx = hX
x : X → R : y 	→ d(x, y)).

1 Note that d is sometimes called a proper metric.
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Here, we build on the results presented in [11], considering geometrical properties of
the tight span of an antipodal metric space that arise from the metric d∞. Although we
concentrate mostly on antipodal metric spaces, our main results also have implications
for the structure theory of the tight span of a general finite metric space and so we now
present them in a broader context.

In general, combinatorial and geometrical properties of the tight span of a finite metric
space are intimately linked and difficult to understand, although much progress has been
made in understanding the tight span of a totally split-decomposable2 metric (see, e.g.
[6]). Deriving features of the tight span of such a metric has proven especially useful and,
indeed, a whole theory has been built up to deal with totally split-decomposable metrics
and their applications within phylogenetic analysis (see, e.g. [1], [8], and [12]). Even
though much is known about the cells and cell-structure of the tight span of a totally
split-decomposable metric [6], a complete description of these structures still remains
somewhat elusive. However, we have found that antipodal metric spaces will probably
form an essential part of any such description. To explain why this is the case, we begin
with some definitions.

Suppose that (X, d) is a finite metric space and that f is some element in T (X, d).
We denote by [ f ] the minimal cell in T (X, d) that contains f (under cell inclusion) and,
for x ∈ X , we call g ∈ [ f ] a gate in [ f ] for x if, for all h ∈ [ f ],

d∞(hx , h) = d∞(hx , g)+ d∞(g, h).

If such an element g exists, then it is necessarily unique, and we denote it by f x . In
addition, we call the cell [ f ] X-gated if there is a gate f x in [ f ] for every x ∈ X . In
Fig. 1 we present an example of the tight span of a six-point totally split-decomposable
metric space, in which the “central” three-dimensional cell is X -gated. In fact it can be
shown that every cell in this tight span is X -gated and, motivated by examples such as
this, we call a finite metric space (X, d) cell-decomposable if every cell in T (X, d) is
X -gated.

The following result, that we prove in Section 3, indicates the importance of antipodal
metrics to the structure theory of the tight span. In particular, it implies that every cell
in the tight span of a cell-decomposable metric can be basically regarded as being the
tight span of an antipodal metric space.

Theorem 1.1. Suppose that (X, d) is a finite metric space. If f ∈ T (X, d) with [ f ] �=
{ f } and [ f ] is X-gated, then

(A := { f x ∈ [ f ] : x ∈ X}, d ′ := d∞|A)

is an antipodal metric space. Moreover, the map

ϕ: [ f ]→ T (A, d ′): g 	→ g̃,

2 A finite metric d: X × X → R is totally split-decomposable if, for all t, u, v, w, x ∈ X , αd
{t,u},{v,w} ≤

αd
{t,x},{v,w} + αd

{t,u},{v,x}, where, for all a, a′, b, b′ ∈ X , αd
{a,a′},{b,b′} := 1

2 (max(d(a, a′)+ d(b, b′), d(a, b)+
d(a′, b′), d(a, b′)+ d(a′, b))− d(a, a′)− d(b, b′)).
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Fig. 1. The 1-skeleton (i.e. the union of the zero- and one-dimensional cells) of the tight span of the six-point
metric on the set X = {a, b, c, d, e, f } induced by taking the usual graph metric between the appropriately
labelled vertices. The tight span consists of a “central” three-dimensional cell, that is polytope isomorphic
to a 3-cube and that is bordered by twelve two-dimensional cells. Six of these two-dimensional cells are, in
turn, adjacent to a one-dimensional cell or “antenna”. For each element x ∈ X , the vertex x ′ is the gate in the
three-dimensional cell for x .

where g̃ is defined, for each a ∈ A and any x ∈ X with a = f x , by putting

g̃(a) := g(x)− f x (x),

is a bijective isometry that induces a polytope isomorphism between [ f ] and T (A, d ′).

In [1] it is shown that every metric on four or less points is totally split-decomposable.
It is not hard to check, using the description of the structure of the tight span of a generic
metric on five or less points contained in [4], that every metric on four or less points is
also cell-decomposable and that a five-point metric is totally split-decomposable if and
only if it is cell-decomposable. The main result of this paper states that this latter result
also holds for an antipodal metric.

Before giving the precise statement of this result, we recall some definitions. Given
a finite metric space (X, d), the underlying graph U G(X, d) associated with (X, d) is
the graph with vertex set X and edge set consisting of those pairs {x, y} ∈ (X

2

)
for which

there is no z ∈ X distinct from x and y with d(x, y) = d(x, z)+d(z, y). In addition, we
denote by K3×2 the graph with six vertices that is the complement of the disjoint union
of three edges, and, for n ≥ 3 an integer, we let Cn denote the n-cycle.

Theorem 1.2. Suppose that (X, d) is an antipodal metric space so that, in particular,
#X = 2n with n ≥ 3 an integer.

(a) If n = 3, then d is both totally split-decomposable and cell-decomposable. More-
over, U G(X, d) equals C6 (K3×2) if and only if T (X, d) is polytope isomorphic
to a 3-cube (a rhombic dodecahedron).
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(b) If n ≥ 4, then the following statements are equivalent:
(i) U G(X, d) equals C2n .

(ii) d is cell-decomposable.
(iii) d is totally split-decomposable.
(iv) T (X, d) is polytope isomorphic to an n-cube.

Remark 1.3. An explicit description of the class of antipodal totally split-decom-
posable metrics is given in [7].

In light of this theorem and preceding discussions, we make the following conjecture.

Conjecture 1.4. A finite metric space (X, d) is cell-decomposable if and only if it is
totally split-decomposable.

If this conjecture were true, then it would imply, for example, that the tight span
of a totally split-decomposable metric space would consist of cells that are polytope
isomorphic to either n-cubes or rhombic dodecahedra (see Remark 5.3 of [11]). This is
in accordance with [1], results from which imply that these cells must be zonotopes.

The rest of the paper is organized as follows. In Section 2 we summarize some well-
known results concerning the tight span. In Section 3 we prove Theorem 1.1, and in
Section 4 we prove Theorem 1.2. Note that we frequently make use of results contained
in [11].

2. Preliminaries

In this section we present a list of results concerning the tight span of a metric space that
we use throughout the paper. For proofs and more detailed explanations of these results
see [4], [5] and [9].

Suppose that (X, d) is a finite metric space. Given a function f in T (X, d), we define
its tight-equality graph to be the graph K ( f ) with vertex set X and edge set consisting
of those {x, y} ∈ (X

2

)
with f (x)+ f (y) = xy.

(TS1) If f ∈ T (X, d), then the minimal cell in T (X, d) containing f equals

[ f ] := {g ∈ T (X, d) : K ( f ) ⊆ K (g)}.
(TS2) As a consequence of (TS1), for f, g ∈ T (X, d) we have [g] ⊆ [ f ] if and only

if K ( f ) is a subgraph of K (g).
(TS3) If f ∈ T (X, d), then the dimension of the cell [ f ] equals the number of

connected bipartite components of K ( f ).
(TS4) If #X ≥ 2, then f ∈ T (X, d) if and only if for all x ∈ X there is some y ∈ X

distinct from x with {x, y} ∈ E(K ( f )).
(TS5) As a consequence of (TS3) and (TS4), the dimension of T (X, d) (i.e. the largest

dimension for any cell in T (X, d)) is bounded by �#X/2�.
(TS6) If Y ⊆ X , and f ∈ T (Y, d|Y ), then there exists some g ∈ T (X, d) with

g|Y = f .
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(TS7) If f ∈ T (X, d) and f (x) = 0 for some x ∈ X , then f = hx .
(TS8) For all x ∈ X and all f ∈ T (X, d),

d∞( f, hx ) = f (x).

3. Proof of Theorem 1.1

Suppose that (X, d) is a finite metric space and f ∈ T (X, d) with [ f ] �= { f }. Since f
is in T (X, d), for each x ∈ X there must exist some y ∈ X with f (x)+ f (y) = xy by
(TS4) and (TS7). Hence, for each x ∈ X the set

ρ(x) := {y ∈ X : f (x)+ f (y) = xy}
is non-empty. We divide the rest of the proof into a series of claims from which the
theorem immediately follows.

Define a map σ : A → A as follows: given a ∈ A and x any element of X with
a = f x , put σ(a) := b where b := f y with y any element of ρ(x).

Claim 1. The map σ is well defined.

Proof. We begin by making some preliminary observations. Suppose x ∈ X , y ∈ ρ(x)
and g ∈ [ f ]. Note that, since K ( f ) ⊆ K (g) by (TS2), by (TS8) we must have

d∞(hx , hy) = xy = g(x)+ g(y) = d∞(hx , g)+ d∞(g, hy).

In addition, since f x and f y are gates, we have

d∞(hx , g) = d∞(hx , f x )+ d∞( f x , g)

and

d∞(g, hy) = d∞(g, f y)+ d∞( f y, hy),

from which it follows that

d∞( f x , g)+ d∞(g, f y) = d∞( f x , f y) (1)

must hold.
Now we show that for z ∈ X with f z = f x , we must haveρ(z) ⊆ {t ∈ X : f t = f y}.

From this it immediately follows that σ is well defined (indeed, if z is such that f z = f x

and t ∈ ρ(z), then f t = f y follows).
Suppose t ∈ ρ(z), then—by replacing g by f t in (1)—we must have

d∞( f x , f t )+ d∞( f t , f y) = d∞( f x , f y),

and—by replacing g by f y , f x by f z and f y by f t , in (1)—we must have

d∞( f z, f y)+ d∞( f y, f t ) = d∞( f z, f t ).

Hence, since f x = f z , by adding the last two equations we have d∞( f t , f y) = 0, so
that f t = f y . This completes the proof of Claim 1.
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Claim 2. The metric d ′ on A is antipodal with respect to the map σ .

Proof. It is clear from the definition of σ that σ ◦σ = I d|A. Moreover—as can be seen
by replacing f y by σ( f x ) in (1)—for all x ∈ X and g ∈ [ f ],

d∞( f x , g)+ d∞(g, σ ( f x )) = d∞( f x , σ ( f x )). (2)

Now by replacing g by f z for any z ∈ X in this last equation, we immediately see that
d ′ is an antipodal metric.

Claim 3. The map ϕ is a bijective isometry.

Proof. First note that the map g̃ is well defined. Indeed, suppose x ∈ X and g ∈ [ f ].
Then since d∞(hx , g) = d∞(hx , f x ) + d∞( f x , g), it immediately follows from (TS8)
that d∞( f x , g) = g(x)− f x (x). Hence if x, y ∈ X with f x = f y , then g(x)− f x (x) =
g(y)− f y(y). Thus g̃ is well defined.

We now show that g̃ = ϕ(g) is contained in T (A, d ′) for any g ∈ [ f ]. Since g(x) =
d∞(g, hx ) = d∞(g, f x )+ f x (x) for all x ∈ X , for g any element in [ f ], we have

g̃( f x )+ g̃( f y) = g(x)− f x (x)+ g(y)− f y(y)

= d∞(g, f x )+ f x (x)− f x (x)+ d∞(g, f y)+ f y(y)− f y(y)

= d∞( f x , g)+ d∞(g, f y)

for all x, y ∈ X . Hence it immediately follows by the triangle inequality that g̃( f x ) +
g̃( f y) ≥ d∞( f x , f y) holds for all x, y ∈ X and so g̃ ∈ P(A, d ′). By (2), it then follows
that g̃( f x ) + g̃(σ ( f x )) = d∞( f x , σ ( f x )) holds for all x ∈ X , whence, by (TS8),
g̃ ∈ T (A, d ′) as required.

To see that ϕ is surjective, suppose q ∈ T (A, d ′), and define a map q ′: X → R

by q ′(x) := q( f x ) + f x (x). We show q ′ ∈ [ f ] and, since ϕ(q ′) = q clearly holds, it
follows that ϕ is surjective. To this end, suppose x, y ∈ X . Then

q ′(x)+ q ′(y) = q( f x )+ q( f y)+ f x (x)+ f y(y)

≥ d∞( f x , f y)+ d∞( f x , hx )+ d∞( f y, hy)

≥ d∞(hx , hy) = xy.

Moreover, since (A, d ′) is antipodal, it follows from Lemma 4.1(ii) of [11] (applied
to the map q ∈ T (A, d ′) and the points f x and f y = σ( f x )) and the fact that f x

and f y are gates, that equality holds in the last two inequalities for all x, y ∈ X with
f (x)+ f (y) = xy. Hence, q ′ is contained in [ f ].

It is now straightforward to see that the map ϕ preserves distances. From this it
immediately follows that ϕ is a bijective isometry.

Claim 4. The map ϕ induces a polytope isomorphism.

Proof. We show that if f ∈ T (X, d), then ϕ([ f ]) = [ f̃ ] from which the claim follows
in view of Claim 3.
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Suppose f ∈ T (X, d). From the above considerations it follows that for all g ∈
[ f ] and all x, y ∈ X we have d∞( f x , g) + d∞(g, f y) = d∞( f x , f y) if and only if
g̃( f x )+ g̃( f y) = d∞( f x , f y) if and only if d∞(h f x , g̃)+ d∞(g̃, h f y ) = d∞(h f x , h f y ).
Hence for all g ∈ [ f ], we see that {x, y} is an edge of K (g) if and only if { f x , f y} is an
edge of K (g̃). Using this, it is straightforward to check that ϕ([ f ]) = [ f̃ ] holds.

Remark. Suppose that (X, d) is a finite metric space, and that C is a cell in T (X, d)
with dimension greater than zero. If C is X -gated, then, by the last theorem, there exists
a bijective isometry from C to the tight span of the metric induced by d∞ on the gates
of C that induces a polytope isomorphism. However, the condition that C is X -gated
is not necessary for this conclusion to hold. For example, the conclusion holds for all
one-dimensional cells in the tight span of any metric space. Note also that in case C is
polytope isomorphic to the tight span of a subset S of its vertices with the metric induced
by d∞, then (S, d∞|S) is necessarily antipodal by Theorem 4.2 of [11] since T (S, d∞|S)
has only one maximal cell. It is still an open problem to determine whether in this case
C and T (S, d∞|S) are isometric.

It would also be interesting to prove a converse of Theorem 1.1. In particular, suppose
that for all x ∈ X , there exists an element gx of C with

d∞(hx , gx ) = d∞(hx ,C) := inf{d∞(hx , g) : g ∈ C}

so that the metric space (Y := {gx : x ∈ X}, d∞|Y ) is antipodal, then does it follow that
C can be mapped isometrically onto T (Y, d∞|Y ) so as to induce a polytope isomorphism?
Moreover, if in addition gx is the only such element of C for each x ∈ X , then does it
follow that C is X -gated?

4. Proof of Theorem 1.2

For clarity, we state four theorems that we prove later, and use these to prove Theorem 1.2.

Theorem 4.1. Suppose that (X, d) is an antipodal metric space with #X = 2n, n ≥ 2
an integer.

(i) If T (X, d) is polytope isomorphic to an n-cube, then U G(X, d) equals C2n .
(ii) If n = 3 and T (X, d) is polytope isomorphic to a rhombic dodecahedron, then

U G(X, d) equals K3×2.

Theorem 4.2. Suppose that (X, d) is an antipodal metric space with #X = 2n, n ≥ 2
an integer. If U G(X, d) equals C2n , then d is cell-decomposable and T (X, d) is polytope
isomorphic to an n-cube.

Theorem 4.3. Suppose that (X, d) is an antipodal metric space with #X = 6. If
U G(X, d) equals K3×2, then d is cell-decomposable and T (X, d) is polytope isomorphic
to a rhombic dodecahedron.
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Theorem 4.4. Suppose that (X, d) is an antipodal metric space with #X = 2n, n ≥ 4
an integer. If d is cell-decomposable, then U G(X, d) equals C2n .

We now use these results to prove Theorem 1.2.
(a) In Theorem 5.1 of [11] we prove that if (X, d) is an antipodal metric space with

#X = 2n, n ≥ 2 an integer, then d is totally split-decomposable if and only if U G(X, d)
is C2n or n = 3 and U G(X, d) equals K3×2. Moreover, in Corollary 3.3 of [11] we prove
that a graph H is the underlying graph of a six-point antipodal metric space if and only
if H is C6 or K3×2.

Now, suppose that (X, d) is an antipodal metric space with #X = 6. In view of the
results just stated, it immediately follows that d is totally split-decomposable and, as a
consequence of Theorem 4.2 (with n = 3) and Theorem 4.3, that d is cell-decomposable.
Moreover, Theorem 4.1(i) and Theorem 4.2 (with n = 3) imply that U G(X, d) equals
C6 if and only if T (X, d) is polytope isomorphic to a 3-cube, and Theorem 4.1(ii)
and Theorem 4.3 imply that U G(X, d) equals K3×2 if and only if T (X, d) is polytope
isomorphic to a rhombic dodecahedron.

(b) (i) ⇔ (ii) follows immediately from Theorems 4.2 and 4.4. (i) ⇔ (iv) follows
immediately from Theorems 4.1(i) and 4.2. To complete the proof of (b), note that (i)
⇔ (iii) follows immediately from Theorem 5.1 of [11], the statement of which we gave
in the proof of (a) above.

4.1. Proof of Theorem 4.1

Suppose that (X, d) is an antipodal metric space with #X ≥ 2n, n ≥ 2 an integer. Put
EX := {{x, x} : x ∈ X}. In Proposition 3.2 of [11] we proved that U G(X, d) must be
2-connected,3 and in Theorem 6.1 of [11] we showed that

{K ( f ) : [ f ] is a facet of T (X, d)}
= {(X, EX ∪ {x, y}) : {x, y} is an edge of U G(X, d)}

must hold. Thus, if T (X, d) is polytope isomorphic to an n-cube, then U G(X, d)
must be a 2-connected graph with 2n-vertices and 2n-edges. Hence U G(X, d) equals
C2n and so (i) holds. Moreover, if n = 3 and T (X, d) is polytope isomorphic to a rhombic
dodecahedron, then U G(X, d)must have six vertices and twelve edges and so U G(X, d)
equals K3×2.

4.2. Proof of Theorem 4.2

Suppose that (X, d) is an antipodal metric space with #X = 2n, n ≥ 2 an integer, and
that U G(X, d) is the 2n-cycle x0, x1, . . . , x2n−1, x2n = x0. For all 1 ≤ i ≤ 2n put
ai := d(xi−1, xi ), noting that ai = an+i for all 1 ≤ i ≤ n.

3 A connected graph G = (V, E) with at least three vertices is called 2-connected if there exists no single
vertex whose removal from V (together with all its incident edges) results in a disconnected graph.
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Consider Rn with the standard basis, and denote the coordinates for any z ∈ Rn by
zj , 1 ≤ j ≤ n. Define a metric d1 on Rn by, for any z,w ∈ Rn , putting d1(z,w) =∑n

j=1 |zj − wj |. Also, put

P(a1, . . . , an) := {y ∈ Rn : 0 ≤ yj ≤ aj for j = 1, . . . , n},

a polytope in Rn that is clearly polytope isomorphic to an n-cube.
Now, for each 0 ≤ i ≤ n, define the vector zi in Rn by

zi
j :=

{
aj if 1 ≤ j ≤ i,
0 else

and for each n + 1 ≤ i ≤ 2n − 1, define the vector zi in Rn by

zi
j :=

{
0 if j ≤ i − n,
aj else.

Put Z := {z0, . . . , z2n−1}. Clearly, Z ⊆ P . Also, it is straightforward to see that
d1(zi , z j ) = d(xi , xj )holds for all 0 ≤ i < j ≤ 2n−1, so that (X, d) and (Z , d ′ := d1|Z )
are isometric metric spaces.

Consider the map

ϕ: P → R
Z : y 	→ (ϕy: Z → R: z 	→ d1(y, z)).

We will show that ϕ maps P bijectively onto T (Z , d ′) and induces a polytope iso-
morphism between P and T (Z , d ′). From this it immediately follows that T (X, d) is
polytope isomorphic to an n-cube.

Claim 1. ϕ maps P bijectively onto T (Z , d ′).

Proof. Suppose s ∈ P . The definition of d1 and the triangle inequality immediately
imply ϕs ∈ P(Z , d ′). Moreover, the definition of Z implies

d1(zi , zn+i ) = ϕs(zi )+ ϕs(zn+i )

for all i = 0, . . . , n − 1. Hence, ϕ(P) ⊆ T (Z , d ′).
For f ∈ T (Z , d ′), put ψ( f )i := (ai + f (zi−1) − f (zi ))/2 for all 1 ≤ i ≤ n and

define a map

ψ : T (Z , d ′)→ P: f 	→ (ψ( f )i )1≤i≤n.

Note that ψ is well defined since, for all 1 ≤ i ≤ n and all f ∈ T (Z , d ′),

| f (zi−1)− f (zi )| ≤ ai .

We now show that ϕ ◦ ψ and ψ ◦ ϕ equal the identity map on T (Z , d ′) and P ,
respectively. Claim 1 then follows immediately.

We first prove that ϕ ◦ ψ is the identity map on T (Z , d ′). Suppose f ∈ T (Z , d ′).
We show ϕψ( f )(z) = f (z) for all z ∈ Z . Since (Z , d ′) is an antipodal metric space, it is
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straightforward to see that f (zi )+ f (zn+i ) = d ′(zi , zn+i ) holds for all i = 0, 1, . . . , n−1
(see Lemma 4.1(ii) of [11]). Hence, without loss of generality, we may assume z = zk

for some 0 ≤ k ≤ n − 1. Thus, since 0 ≤ ψ( f )i ≤ ai for all 1 ≤ i ≤ n, we have

|ψ( f )i − zi | = |ψ( f )i − zk
i | =

{
(ai + f (zi )− f (zi−1))/2 if 1 ≤ i ≤ k,
(ai + f (zi−1)− f (zi ))/2 if k + 1 ≤ i ≤ n,

and so

ϕψ( f )(z) = 1

2

[
n∑

i=1

ai − f (z0)− f (zn)

]
+ f (z).

Thus, since
∑n

i=1 ai = d1(z0, zn) = f (z0)+ f (zn), it follows that ϕψ( f )(z) = f (z), as
required.

We now show that ψ ◦ ϕ is the identity map on P . Clearly, it suffices to show that
for y ∈ P , ψ(ϕy)j = yj holds for all 1 ≤ j ≤ n. However, this follows by a direct
computation using the fact that for all i ∈ {1, . . . , n} and for all j ∈ {1, . . . , n} − i , we
have zi−1

j = zi
j which implies

|yi − zi−1
j | − |yi − zi

j | = 0,

and zi−1
i = 0, zi

i = ai which imply

|yi − zi−1
i | − |yi − zi

i | = yi − ai + yi .

This concludes the proof of Claim 1.

Suppose y ∈ P . Clearly, the minimal cell in P that contains y equals

[y] := {u ∈ P : uj = yj for all j ∈ {1, . . . , n} with yj ∈ {0, aj }}.

Claim 2. ϕ induces a polytope isomorphism between P and T (Z , d ′).

Proof. We show that for all y ∈ P , the minimal cell in T (Z , d ′) containing ϕy equals
ϕ([y]), that is, [ϕy] = ϕ([y]). The claim follows immediately from this and Claim 1.

Suppose y ∈ P . We first show [ϕy] ⊆ ϕ([y]). Suppose f ∈ [ϕy]. By Claim 1, there
exists some s ∈ P with ϕs = f , and so it suffices to show s ∈ [y]. Suppose not. Then
there exists some 1 ≤ k ≤ n with yk ∈ {0, ak} and sk �= yk . If yk = 0, then let u, v ∈ Rn

with ui = ai if i < k and ui = 0 else, and vi = 0 if i ≤ k and vi = ai else. Clearly,
u, v ∈ P and it is straightforward to show that {u, v} is an edge of K (ϕy). By assumption,
ϕs ∈ [ϕy] and so, by (TS2), {u, v} ∈ E(K (ϕs)). However, then

|0− sk | + |0− sk | = |uk − sk | + |vk − sk | = |uk − vk | = 0

and so sk = 0, a contradiction. Similar arguments show that if yk = ak and u, v ∈ Rn

with ui = ai if i ≤ k and ui = 0 else and vi = 0 if i < k and vi = ai else, then we also
arrive at a contradiction.
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We now show ϕ([y]) ⊆ [ϕy]. Suppose f ∈ ϕ([y]). Then there exists some element
s ∈ [y] with f = ϕs. We will show E(K (ϕy)) ⊆ E(K (ϕs)). It then immediately follows
by (TS2) that [ f ] = [ϕs] ⊆ [ϕy], and so, in particular, f ∈ [ϕy], as required.

Suppose u, v ∈ Z with {u, v} an edge of K (ϕy). Note first that uj �= vj , for all
j ∈ {1, . . . , n} with yj �∈ {0, aj }. Indeed, if there exists some j ∈ {1, . . . , n} with
uj = vj and yj �∈ {0, aj }, then since {u, v} ∈ E(K (ϕy)),

0 = |uj − vj | = |uj − yj | + |yj − uj |
and thus vj = uj = yj which, in turn, implies uj = vj �∈ {0, aj }, a contradiction.
Next note yj = sj for all j ∈ {1, . . . , n} with yj �∈ {0, aj } and |uj − vj | = aj =
|uj−sj |+|vj−sj | for all yj �∈ {0, aj }. Showing {u, v} ∈ E(K (ϕs)) is now straightforward
using the definition of the tight-equality graph. This concludes the proof of Claim 2.

To show that d is cell-decomposable we introduce a new concept. If (S, ρ) is a metric
space, then we call a sequence of elements s1, . . . , sm ∈ S, m ≥ 2 an integer, a geodesic
if ρ(s1, sm) =

∑m−1
i=1 ρ(si , si+1). We now show that ϕ maps certain geodesics in P to

geodesics in T (Z , d ′).

Claim 3. If z, s ∈ Z and u, v,w ∈ P with z,u, v,w, s a geodesic in P , then ϕz,

ϕu, ϕv, ϕw, ϕs is a geodesic in T (Z , d ′).

Proof. We begin by observing that if z, x ∈ Z and y ∈ P are such that

|d1(x, z)− d1(y, x)| = max
s∈Z
|d1(s, z)− d1(y, s)|,

then

d1(z, y) =
n∑

j=1

|zj − yj |

=
n∑

j=1

(|xj − zj | − |xj − yj |)

= |d1(x, z)− d1(y, x)|
= max

s∈Z
|d1(s, z)− d1(y, s)|

= d∞(ϕz, ϕy).

Now suppose z, s ∈ Z and u, v,w ∈ P with z,u, v,w, s a geodesic in P . Then
using the observation just mentioned together with the fact that for all a,b ∈ P we
have d∞(ϕa, ϕb) ≤ d1(a,b) by the triangle-inequality, it is straightforward to check that
ϕz, ϕu, ϕv, ϕw, ϕs is a geodesic in T (Z , d ′). This concludes the proof of Claim 3.

We now prove that d is cell-decomposable. We must show that any cell in T (Z , d ′)
is Z -gated. Suppose F ⊆ T (Z , d ′) is a cell, f is contained in T (Z , d ′) with F = [ f ],
g ∈ [ f ] and z ∈ Z . By Claim 1, there exist vectors y, v ∈ P with ϕy = f and ϕv = g
and, by Claim 2, v ∈ [y].
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Consider the vectors u,w ∈ Rn defined by

uj :=
{

zj if yj �∈ {0, aj },
yj else,

and wj :=
{

aj − zj if yj �∈ {0, aj },
yj else,

1 ≤ j ≤ n, and the vector s ∈ Rn defined by putting sj := aj − zj for all 1 ≤ j ≤ n.
A straightforward computation shows that z,u, v,w, s is a geodesic in P . Hence, by
Claim 3, ϕz, ϕu, ϕv, ϕw, ϕs is a geodesic in T (Z , d ′). It follows that ϕu is a gate for z in
[ f ] = [ϕy]. Indeed, if this was not the case, then, since ϕz = hz and ϕv ∈ [ f ],

d∞(ϕz, ϕs) = d∞(ϕz, ϕu)+ d∞(ϕu, ϕv)+ d∞(ϕv, ϕw)+ d∞(ϕw, ϕs)

> d∞(ϕz, ϕv)+ d∞(ϕv, ϕw)+ d∞(ϕw, ϕs)

≥ d∞(ϕz, ϕs),

which is impossible. This concludes the proof of the theorem.

4.3. Proof of Theorem 4.3

We use two results to prove Theorem 4.3. The first one allows us to show that an antipodal
metric is cell-decomposable by considering the facets of its tight span.

Proposition 4.5. Suppose that (X, d) is an antipodal metric space. Then d is cell-
decomposable if and only if for every facet F of T (X, d),

(i) F is X-gated, and
(ii) the metric induced by d∞ on the gates of X in F is cell-decomposable.

Proof. Suppose that d is cell-decomposable. Then, by definition, every facet of T (X, d)
is X -gated and thus (i) holds.

We now show that (ii) holds. Note that if the facets of T (X, d) are vertices of T (X, d),
then (ii) clearly holds. Now, suppose F ⊆ T (X, d) is a facet of T (X, d) with dimension
greater than zero, and that C ⊆ F is a cell in F . Let x ∈ X . Then, by assumption, there
exists a gate f x

C for x in C and a gate f x
F for x in F . Thus, if g is in C , then since C is

X -gated, we have

d∞(g, hx ) = d∞(g, f x
C )+ d∞( f x

C , hx ),

and since F is X -gated and C ⊆ F , we have

d∞( f x
C , hx ) = d∞( f x

C , f x
F )+ d∞( f x

F , hx )

as well as

d∞(g, hx ) = d∞(g, f x
F )+ d∞( f x

F , hx ).

It follows that

d∞(g, f x
F ) = d∞(g, f x

C )+ d∞( f x
C , f x

F )
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holds for all g ∈ C . Hence, defining A := { f x
F ∈ F : x ∈ X} and letting ϕ: F →

T (A, d ′ := d∞|A) be the bijection given by Theorem 1.1, it follows that ϕ(C) is A-gated.
Thus d ′ is cell-decomposable and so (ii) holds.

We now prove the converse. Suppose (i) and (ii) hold. Note that T (X, d) has a unique
maximal cell, by Theorem 4.2 of [11], and so this cell is clearly X -gated (for all x ∈ X
the gate x is hx ). Moreover, every vertex in T (X, d) is clearly X -gated. Hence it suffices
to show that any cell C ⊆ T (X, d) with dimension not equal to zero or to the dimension
of T (X, d) is X -gated.

In order to see this, suppose that C is such a cell, x ∈ X and g ∈ C . Then there must
exist some facet F ⊆ T (X, d) containing C , and hence by (i) there exists some gate
f x

F ∈ F for x . In view of Theorem 1.1 and the fact that C is a subset of F , there must
exist some f x

C ∈ C with

d∞( f x
F , g) = d∞( f x

F , f x
C )+ d∞( f x

C , g).

Now since F is X -gated by (i) and C ⊆ F we have

d∞(hx , g) = d∞(hx , f x
F )+ d∞( f x

F , g)

and

d∞(hx , f x
C ) = d∞(hx , f x

F )+ d∞( f x
F , f x

C ).

Hence

d∞(hx , g) = d∞(hx , f x
C )+ d∞( f x

C , g)

holds for all g ∈ C , so that C is X -gated, as required.

The second result, whose proof if straightforward and stated without proof, describes
the possible tight-equality graphs for a vertex of the tight span of a six-point antipodal
metric.

Lemma 4.6. Suppose that (X, d) is an antipodal six-point metric space so that, in
particular, G := U G(X, d) equals C6 or K3×2. Put X = {x, y, z, x, y, z} and EX :=
{{x, x}, {y, y}, {z, z}}. Suppose also that f is a vertex of T (X, d).

(i) If G equals C6 so that, without loss of generality, G equals x, y, z, x, y, z, x ,
then either

E(K ( f )) = EX ∪ E

with E equal to either {{x, y}, {y, z}, {z, x}} or {{y, x}, {x, z}, {z, y}}, or

E(K ( f )) = EX ∪ {{a, b} : b ∈ X} ∪ {{u, v}}
for some a ∈ X and u, v the two vertices that are adjacent to a in G (in which
case f = ha holds).

(ii) If G equals K3×2, so that the edges not contained in G are precisely {x, x}, {y, y}
and {z, z}, then either

E(K ( f )) = EX ∪ {{a, b}, {b, c}, {c, a}}
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with a, b, c ∈ X distinct, b, c ∈ X − {a, a} and b �= c, c, or

E(K ( f )) = EX ∪ {{a, b} : b ∈ X},
for some a ∈ X (in which case f = ha holds).

Proof of Theorem 4.3. Suppose that (X, d) is an antipodal metric space with #X = 6
and U G(X, d) equals K3×2. Put X := {x, y, z, x, y, z}, so that the edges not contained
in U G(X, d) are precisely {x, x}, {y, y} and {z, z}.

We first prove that d is cell-decomposable using Proposition 4.5. To do this we first
describe the facets of T (X, d). Suppose that F is a facet of T (X, d) and f is some
element in T (X, d)with F = [ f ]. In view of the description of the tight-equality graphs
of the facets of an antipodal metric space given in Theorem 6.1 of [11] (see the proof
of Theorem 4.1 for the precise statement of this result), we can assume without loss of
generality that K ( f ) is the disjoint union of the path x, x, z, z and the edge {y, y}. Thus
[ f ] consists precisely of those maps g: X → R≥0 that satisfy

g(x) = xx − g(x), g(z) = xz − g(x),
g(v) = xz + g(x), g(y) = xx − g(y),

(3)

and

xy ≤ g(x)+ g(y) ≤ xz + zy, zy − xz ≤ g(x)− g(y) ≤ xy. (4)

This follows since the inequalities

2xx − x y = 2xx − xy ≥ xz + zy, xy ≥ yz − zx and xy ≥ xz − zy

hold, and since (4) implies 0 ≤ g(x) ≤ xz and

0 <
xy + zy − xz

2
≤ g(y) ≤ xz + zy + xy

2
< xx .

Now, let g1, g2 ∈ [ f ] be defined by (3), (4) and

g1(x) = xy + xz − zy

2
, g1(y) = zy + xy − xz

2
,

g2(x) = xy − xz − zy

2
, g2(y) = zy + xy + xz

2
.

Then it immediately follows from (4) that [ f ] is the convex hull of {g1, g2, hx , hz}.
We now show that [ f ] satisfies Proposition 4.5(i) and (ii), from which it immediately

follows that d is cell-decomposable. Since the metric induced on {g1, g2, hx , hz} is
antipodal and

xx = d∞(hx , hz)+ d∞(hz, hx ),

vz = d∞(hz, hx )+ d∞(hx , hz),

yy = zy + xy − xz

2
+ xz +

(
yy − zy + xy + xz

2

)
= d∞(hy, g1)+ d∞(g1, g2)+ d∞(g2, hz),
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Fig. 2. A Schlegel diagram for the rhombic dodecahedron adapted from Fig.1.5B on p.8 of [3]. This is
also a Schlegel diagram for the tight span of a six-point antipodal metric on the set {x, y, z, x, y, z} with the
underlying graph equal to K3×2.

it follows that [ f ] is gated with respect to X . Thus [ f ] satisfies (i). Moreover, (ii) clearly
holds since there are four gates for X in [ f ] and, as remarked in the Introduction, any
metric on a 4-set is cell-decomposable.

To complete the proof of the theorem, we need to show that T (X, d) is polytope
isomorphic to a rhombic dodecahedron. By Theorem 4.2 of [11] T (X, d) is a three-
dimensional polytope. Moreover, using Theorem 6.1 of [11] we can find the tight-equality
graphs corresponding to the facets of T (X, d), of which there are #E(K3×2) = 12, and,
using Lemma 4.6, we can find the tight-equality graphs corresponding to the vertices of
T (X, d), of which there are 14. It follows by Euler’s formula [14, p. 877] that T (X, d)
has 12+ 14− 2 = 24 edges. Using this, the tight-equality graphs corresponding to the
facets and vertices of T (X, d), and (TS2), it is now straightforward to find the tight-
equality graphs corresponding to edges of T (X, d) and then use (TS2) to check that
the face-lattice of T (X, d) is isomorphic to the face-lattice of the rhombic dodeca-
hedron with a Schlegel diagram as pictured in Fig. 2. This completes the proof of the
theorem.

4.4. Proof of Theorem 4.4

Suppose that (X, d) is an antipodal metric space with #X ≥ 2n, n ≥ 4 an integer, and
that d is cell-decomposable. We will prove that U G(X, d) equals C2n using induction
on n.

We first show that the theorem holds for n = 4. Put X = {x, y, u, v, x, y, u, v}. We
must prove that U G(X, d) equals C8. We begin with a claim concerning the structure of
the tight-equality graph of elements in T (X, d).

Claim 1. There is no function f ∈ T (X, d) with

E(K ( f )) = {{x, x}, {y, y}, {u, u}, {v, v}, {x, y}, {y, v}, {v, x}}.
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Proof. Suppose to the contrary that there exists some f ∈ T (X, d) with E(K ( f )) as
stated. Then since x, y, v, x is a 3-cycle in K ( f ), it follows for any g ∈ [ f ] that

g(x) = xy + xv − yv

2
.

Since d is cell-decomposable there is a gate f x for x in [ f ]. However, then if g is any
element of [ f ] we have

f x (x) = xy + xv − yv

2
= g(x)

= d∞(hx , g)

= d∞(hx , f x )+ d∞( f x , g)

= f x (x)+ d∞( f x , g),

and hence f x = g. Thus [ f ] must be a vertex of T (X, d) and hence, by (TS3), K ( f ) is
connected and non-bipartite, a contradiction. This completes the proof of Claim 1.

We now consider what happens when d is restricted to a 6-subset of X and gives rise
to an antipodal metric.

Claim 2. For every 6-subset Y of X with d|Y antipodal, there is a 6-subset U �= Y of
X with d|U antipodal and U G(U, d|U ) equal to C6.

Proof. Let Y be a 6-subset of X with d ′ := d|Y antipodal, so that U G(Y, d ′) equals
either C6 or K3×2. Without loss of generality, we assume Y = {x, y, v, x, y, v}.

Consider T (Y, d ′). Since T (Y, d ′) is a three-dimensional polytope by Theorem 4.2
of [11], it follows that it must have a vertex f that is distinct from hY

y for all y ∈ Y .
Moreover, by Lemma 4.6, without loss of generality we can assume

E(K ( f )) = {{x, x}, {y, y}, {v, v}, {x, y}, {x, v}, {y, v}}.
Hence, by (TS6), T (X, d) contains a vertex g with g|Y = f for which the graph induced
by K (g) on Y equals K ( f ).

We now claim that there exists a pair of distinct elements t1, t2 in {x, y, v} with
{u, t2}, {u, t1} ∈ E(K (g)). We prove this in two steps: we show (a) there exist distinct
elements t1, t2 in Y with {u, t2}, {u, t1} ∈ E(K (g)), and then (b) t1, t2 ∈ {x, y, v}.

Proof of (a). Since g is a vertex of T (X, d), (TS3) implies that K (g) is connected and
so there exists some t1 ∈ Y with {u, t1} ∈ E(K (g)). Moreover, there must exist some
t2 ∈ Y with {u, t2} in E(K (g)) for otherwise there would be some ε > 0 for which the
map g′: X → R≥0 defined by

z 	→



g(u)+ ε if z = u,
g(u)− ε if z = u,
g(z) if z ∈ Y
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is contained in T (X, d), which is impossible in view of Claim 1 and the fact that K (g′) is
the disjoint union of K ( f ) and {u, u}. In addition, t1 and t2 are distinct, since otherwise

t1u = g(t1)+ g(u) and t1u = g(t1)+ g(u),

which implies g(t1) = 0 and hence, by (TS7), g = hX
t1

and so hY
t1
= hX

t1
|Y = g|Y = f ,

which is impossible. This completes the proof of (a).

Proof of (b). Suppose that (b) does not hold. Without loss of generality we can assume
t1 = x and, since t1 and t2 are distinct elements of Y , that t2 ∈ {x, y, y}. Put U :=
{x, y, u, x, y, u} and g′ := g|U . Note, by Lemma 4.1(iii) of [11], that g′ ∈ T (U, d|U ).
Since the metric space (U, d|U ) is antipodal and thus consists of a unique maximal cell,
by (TS2) the tight-equality graph K (g′) must be a subgraph of the tight-equality graph
of one of the vertices of T (U, d|U ). Thus, by Lemma 4.6, K (g′) does not contain three
vertices all having degree one and thus K (g′) is a subgraph of K (hU

w) for some w ∈ U .
However, then K (g′) must have a vertex with degree one, and this vertex must be y.
Therefore, K (g′) is a subgraph of K (hU

y ), but this is impossible since {x, u} �∈ E(K (hU
y )).

This concludes the proof of (b).

Without loss of generality, t1 = x and t2 = y. However, then x, y, u, u, x is a 4-cycle
in K (g) and so

xu + yu = g(x)+ g(u)+ g(y)+ g(u) = xy + uu = xy + uy + yu,

which implies xu = xy + yu. Hence, {x, u} is not an edge of U G(U, d|U ). Since
U G(U, d|U ) equals K3×2 or C6 and {z, z} is not an edge of U G(U, d|U ) for any z ∈ U ,
it follows that U G(U, d|U ) equals C6. This concludes the proof of Claim 2.

We now complete the proof of the base case. Since there are four 6-subsets Y of X
with (Y, d|Y ) an antipodal metric space, it follows by Claim 2 that there must exist two
6-subsets Y, Z of X with (Y, d|Y ) and (Z , d|Z ) antipodal metric spaces and U G(Y, d|Y )
and U G(Z , d|Z ) equal to C6.

Without loss of generality, we either have (i) U G(Y, d|Y ) = x, y, u, x, y, u, x
and U G(Z , d|Z ) = x, u, v, x, u, v, x , or (ii) U G(Y, d|Y ) = x, y, u, x, y, u, x and
U G(Z , d|Z ) = x, y, v, x, y, v, x . Before considering these cases, we observe that if
{a, b} is an edge in U G(X, d) for some a, b ∈ X and W is a subset of X containing
{a, b}, then {a, b} must also be an edge of U G(W, d|W ).

Now, suppose (i) holds. Since U G(X, d) is 2-connected [11, Proposition 3.2], it
immediately follows from the observation just mentioned that U G(X, d) contains the
cycle x, y, u, v, x, y, u, v, x . Now suppose that {y, v} is an edge in U G(X, d). Put
W := {x, y, v, x, y, v}. Then, since U G(W, d|W ) is either C6 or K3×2 and it contains
the edge {y, v}, it follows that U G(W, d|W ) equals K3×2. Hence {x, v} is an edge of
U G(W, d|W ) and it is not an edge of U G(X, d) (as it is not an edge in U G(Z , d|Z )).
Hence either d(x, v) = d(x, u)+d(u, v) or d(x, v) = d(x, u)+d(u, v). This contradicts
the fact that {x, v} is not an edge in U G(Z , d|Z ). Hence, {y, v} is not an edge of U G(X, d)
and so, by symmetry, it immediately follows that U G(X, d) equals C8.
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Suppose that (ii) holds. Consider the set W := {x, u, v, x, u, v}. Then U G(W, d|W )
is either C6 or K3×2. If it equals C6, then we are in case (i). So suppose that it equals
K3×2. Then, using similar arguments to case (i), it follows that {x, v} is not an edge of
U G(X, d) and it is an edge of U G(W, d|W ). However, this implies that {x, v} is an edge
of U G(Z , d|Z ). This contradiction completes the proof of case (ii) and the base case.

To complete the proof, suppose that for any cell-decomposable antipodal metric space
(X, d) with #X = 2k, 4 ≤ k < n, the underlying graph U G(X, d) equals C2k . The
inductive step relies on the following claim.

Claim 3. Suppose that (X, d) is an antipodal cell-decomposable metric space. If Z ⊆
X with (Z , d ′ := d|Z ) an antipodal metric space, then d ′ is cell-decomposable.

Proof. We show that for [ f ] ⊆ T (Z , d ′) any cell, the set

D := {g ∈ T (X, d) : g|Z ∈ [ f ]}

(which is non-empty by (TS6)) is a cell in T (X, d). From this it is straightforward to
show that for all z ∈ Z , if f z ∈ T (X, d) is a gate for z in D (which exists since
d is cell-decomposable by assumption), then f z|Z is a gate for z is [ f ], and so d ′ is
cell-decomposable, as required.

To see that D is a cell in T (X, d) choose some g′ in D with #E(K (g′))minimal. We
show D = [g′].

Suppose h ∈ [g′]. Then, by Lemma 4.1(iii) of [11], h|Z ∈ T (Z , d ′). Moreover, since
K (g′) ⊆ K (h) by (TS2), it follows that K (g′|Z ) ⊆ K (h|Z ). Hence, since K ( f ) ⊆
K (g′|Z ) it follows that h|Z ∈ [ f ] and so h ∈ D. Thus [g′] ⊆ D.

To see that the converse set inclusion holds, suppose h ∈ D. Consider the function
g∗ := (g′ +h)/2. Then g∗|Z is contained in [ f ] as every cell in T (Z , d ′) is convex (since
d ′ is antipodal and so T (Z , d ′) is a polytope). Moreover, g∗(x) + g∗(y) = d(x, y) if
and only if g′(x) + g′(y) = d(x, y) and h(x) + h(y) = d(x, y). Hence, E(K (g∗)) ⊆
E(K (g′)), and so E(K (g∗)) = E(K (g′)), by the minimality of #E(K (g′)). However,
then E(K (g′)) ⊆ E(K (h)) and so h ∈ [g′]. Thus D ⊆ [g′]. This completes the proof
of Claim 3.

Now suppose x ∈ X and denote the set of neighbours of x in U G(X, d) by U . In
addition, suppose y ∈ X − {x, x} and put Z := X − {y, y}. By induction and Claim 3,
it follows that U G(Z , d|Z ) is a 2(n− 1)-cycle. Hence, there exists some u ∈ X −{x, x}
with x not adjacent to either u or u in U G(X, d), so that, in particular, u, u �∈ U . Now
consider W := X −{u, u}. Then, using Claim 3 and induction once more, it follows that
U G(W, d|W ) is a 2(n − 1)-cycle, and hence #U ≤ 2. However, by Proposition 3.2 of
[11] U G(X, d) is 2-connected, and so #U = 2. It follows that U G(X, d) is a 2n-cycle.
This concludes the proof the theorem.
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