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Abstract. The city Voronoi diagram is induced by quickest paths in the L1 plane, made
faster by an isothetic transportation network. We investigate the rich geometric and algorith-
mic properties of city Voronoi diagrams, and report on their use in processing quickest-path
queries. In doing so, we revisit the fact that not every Voronoi-type diagram has interpreta-
tions in both the distance model and the wavefront model. Especially, straight skeletons are
a relevant example where an interpretation in the former model is lacking. We clarify the
relationship between these models, and further draw a connection to the bisector-defined
abstract Voronoi diagram model, with the particular goal of computing the city Voronoi
diagram efficiently.

1. Introduction and Results

Imagine a large modern-style city, with streets arranged in north–south and east–west
directions. The city is equipped with a public transportation network such as a subway or
a bus system. Time is precious and people intend to follow the quickest path from their
homes to their desired destinations, using the network whenever appropriate. For some
people several facilities of the same kind are equally attractive (think of post offices or
hospitals), and their wish is to find out which facility is reachable first. There may also
be commercial interest (from real estate agents or from a tourist office) to make the area
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which can be reached in, say 1 hour, from a given location in the city (the apartment for
sale or the recommended hotel) visible. Neuralgic places lying within this 1-hour zone,
like the main square, train stations, shopping centers, or tourist attraction sites, should
be displayed to the customer.

This paper offers a geometric and algorithmic study of questions of this kind. Their
geometric complexity (and appeal) becomes apparent when noticing that quickest paths
are inherently complex: once having accessed the transportation network, it may be
too slow simply to follow it to an exit point close to the desired destination; taking
intermediate shortcuts by foot may be advantageous at several places. Still, quickest
paths induce a metric in the plane. We call the resulting Voronoi diagram for a given city
transportation network C and a given set S of point sites in the plane, the city Voronoi
diagram, VC(S), for C and S. For each individual site, the city Voronoi diagram makes
explicit the region of all points reached first when starting from this site.

One of our results is that, under rather general assumptions, the size of the city
Voronoi diagram is as small as can be hoped for: linear in the size of S and C . We
further show how VC(S) can be augmented (without asymptotic increase of storage) to
return the quickest paths from arbitrary query points to S in the optimal time. Finally,
a construction algorithm is developed whose running time is optimal up to an additive
term which is independent from the number of sites.

Computing a city Voronoi diagram is a highly non-standard task. Cyclic site bisectors
may occur, and a single bisector may be as complex as the whole transportation net-
work. To achieve a satisfactory performance we have to touch upon powerful concepts
like straight skeletons and abstract Voronoi diagrams, the former not being Voronoi
diagram interpretable (even in the abstract sense) unless certain conditions are fulfilled.
Characterizing these conditions in a general setting is considered a result of separate
interest to this paper.

1.1. Model Concretization

The kind of transportation network we consider is a planar straight line graph C with
isothetic (horizontal or vertical) edges. No additional requirements are imposed on the
network. In particular, C may be composed of many connected components and may
contain cycles. We let c denote the number of nodes of C . The �(c) edges of C are
termed segments to distinguish them from edges arising from other structures later.

By assumption, we are free to enter C at any point, be it at a node or on a segment. (This
is not unrealistic for a bus system with densely arranged stops, and exactly meets the
situation for shared taxis which regularly drive on predetermined routes and will stop for
every customer.) In fact, postulating fixed entry points eases the problem considerably;
see Section 2.2. Once having accessed C we travel at an arbitrary but fixed speed v in
one of the (at most four) available directions. Movement off the network takes place
with unit speed with respect to the L1 metric. (Again, this is realistic when walking in
a modern city.) Let v > 1 to ensure that C is of use at all. The problems in question
simplify to standard proximity problems in the L1 metric, otherwise.

In this form, the model was first introduced by Abellanas et al. [1] who derived basic
properties of the quickest-path metric; we revisit some of them in Section 4. They also
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made observations on networks C which are both horizontally and vertically monotone.
Moreover, for the case where C is a single straight line, an O(n log n) time construction
algorithm is given for the city Voronoi diagram VC(S) of a set S containing n sites.
We are not aware of other work on this model. More general related models have been
studied earlier, the most similar in [12]; see Section 2.1.

The present paper solves the problem of constructing VC(S) in the full generality
of the model. By interpreting VC(S) as the straight skeleton of polygonal figures, we
show the size of VC(S) to be O(n + c). In fact, VC(S) is only a subgraph of this
straight skeleton; see Fig. 10 for an illustration. Skeleton edges further refine VC(S)
such that it allows the retrieval of quickest paths from query points to sites (multiple
source quickest-path queries) in time O(log(n + c) + k), where k is the complexity
of the path. By exploiting the special structure of such straight skeletons, we obtain an
O(n log n + c2 log c) algorithm for their construction. The key observation is that the
machinery of abstract Voronoi diagrams—which fails for straight skeletons in general—
applies in this case, after careful adaption of the skeleton figures.

The situation changes if the model is even slightly altered. Non-isothetic networks,
individual traveling speeds on network segments, or the Euclidean distance instead of
L1 as the underlying metric, are scenarios all leading to city Voronoi diagrams of size
�(n·c), as will be shown by simple examples. Some results for a single-line transportation
network under the Euclidean metric are discussed in [13]. In view of the prohibitive (i.e.,
quadratic) diagram size, we refrain from further considering such models. In certain
situations, our model may serve as a (rough) linear-size approximation of the seemingly
most interesting alternative, the Euclidean city Voronoi diagram.

2. Related Concepts

2.1. Weighted Region Problems

The weighted region problem is based on a partition of the plane into polygonal regions,
each associated with an individual weight that expresses the internal traveling speed
(or the reciprocal, the cost per unit distance). Regions may be entered and left at any
point. For two given points p and q, the quickest (Euclidean) path between p and q is
sought. Mitchell and Papadimitriou [19] originally posed the problem and provided an
interesting solution based on Snell’s law of refraction. The query time is O(c7 ·�), where
c is the complexity of the polygonal partition and � denotes the precision of the problem
instance. Allowing only weights 0 and 1 leads to the shortest obstacle-avoiding path
problem (geodesic path problem) for which much more efficient solutions are known;
see, e.g., [18].

For a given transportation network C , quickest-path queries can be viewed as a one-
dimensional instance of the weighted region problem. Choose a weight ve for each
network segment e, and weight 1 on all connected parts of the complement of C in the
plane. This variant (and others) have been studied by Gewali et al. [12], who construct
the quickest path between two given points p and q in time O(c2). Our model constitutes
the special case where C is isothetic and of constant speed v, and where the underlying
metric is L1. Although we need O(c2 log c) time for finding a quickest path between p
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and q (by constructing VC({p}) and performing point location for q), we can retrieve
multiple source quickest paths of complexity k in optimal time O(k+ log(c+ n)), once
the city Voronoi diagram VC(S) for a set S of n point sites (sources) has been constructed.
We mention that Voronoi diagram (and wavefront expansion) techniques not unlike the
methods in this paper have been used, e.g., in [17], for solving multiple source shortest
path problems in polygonal domains.

2.2. Airlift Voronoi Diagrams

Another related concept is the airlift distance considered in [6]. Here an arbitrary graph
A on c points (airports) in the plane is given, with positive edge weights (flight durations)
that need not fulfill the triangle inequality. The graph may be entered and exited only
at the airports. Given, in addition, a set S of n sites, we are interested in the Voronoi
diagram that results from the distance function induced by quickest paths in the plane
using A.

Though showing disconnected regions, compared with VC(S) this is a considerably
simpler diagram. In fact, denying access to the transportation network C except at des-
ignated points yields an instance of the airlift Voronoi diagram, where the weight of a
segment of C is its length divided by the network speed v. Note that such weights do
obey the triangle inequality.

We argue below that the airlift Voronoi diagram (in its general form) can be constructed
for any fixed L p metric, p ≥ 1, in time O(n log n+ c2) by a reduction to an L p Voronoi
diagram for n+ c circles in this metric. This has been also observed by Berman [7] who
posed the question of whether a worst-case runtime sensitive to the number of edges of
A can be achieved. L p circles induce a so-called nice metric, so their Voronoi diagram
is computable in time O((n + c) log(n + c)); see [14]. To specify the circles, the sites
in S get assigned a radius of zero. For each airport a its radius is

d(a) = −min{d(s, a) | s ∈ S},
for d(s, a) being the minimum time needed to reach a from site s, be it via A or not.
(All radii can be made positive by adding a fixed constant; this does not change the
resulting Voronoi diagram.) The airport radii can be calculated from the complete graph
A′ obtained from A by adding edges whose weights are their L p lengths. Thereby, we
initially determine which airports are reached first—without using A′—by each particular
site, by locating all airports in the (standard) L p Voronoi diagram of S. Starting with
these first access times to A′, we conduct a simultaneous breadth-first search in A′ to see
how and when the sites conquer the airports.

Note that the reduction, rather than the diagram construction for the L p circles, yields
the dominant time factor.

3. Straight Skeletons

Straight skeletons are the key concept for a proper geometric and algorithmic understand-
ing of the city Voronoi diagram. Originally intended as a linearization of the medial axis,
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the concept has been introduced in [2] and has been generalized to planar straight-line
graphs in [3] and [4]. Various applications exist, some being seemingly unrelated; see [4],
[8], [9], [11], [20], and references therein. The present paper adds to this list.

Let us revisit the basic properties of straight skeletons in some detail for later use.
Consider a simple polygon f in the plane. The polygon f is called a figure if each edge
of f can be assigned an individual speed such that, when moving the boundary of f
inwards at these speeds and in a self-parallel fashion, f contracts to a point without prior
self-intersection. Viewing this process backwards, each figure f can be associated with
a place x0 and a time t0 of birth, and with a parametrized set Wt ( f ) of polygons, for
t ≥ t0, called the wavefront sent out by f . We define Wt ( f ) = ∅ for t < t0.

Let F be an arbitrary set of figures. The common wavefront Wt (F) of F is defined as
follows. For all t where the individual wavefronts Wt ( f ), f ∈ F , are pairwise disjoint,
we set Wt (F) =

⋃
f ∈F Wt ( f ). For larger t , the movement of wavefronts ceases at all

points in the plane where wavefronts come into contact or self-contact. That is, two
polygons of Wt (F) merge into one in the former case, and a polygon of Wt (F) splits
into two in the latter case (one polygon shrinking when t increases). Note that Wt (F)
consists of a single polygon for sufficiently large t .

Wt (F)uniquely describes an interference pattern of the individual wavefronts Wt ( f )—
which is called the straight skeleton SK(F) of F—in the following way. The vertices
of Wt (F) trace out the edges of SK(F), and the edges of Wt (F) sweep out the faces of
SK(F). The edges of SK(F) are portions of (weighted) polygon angle bisectors, and thus
are straight line segments. The faces of SK(F) are connected polygonal regions, which
define a partition of the plane with vertex degree at least 3. As each skeleton face stems
from some figure edge, the size of SK(F) is O(e), where e counts the total number of
figure edges.

Despite these “Voronoi-like” properties, SK(F) does not admit any distance-from-
site definition, in general. This justifies the (less convenient) procedural definition given
above. Due to the same unpleasant fact, all construction algorithms for SK(F) known
to date are mere simulations of the wavefront expansion. The most (time) efficient
implementation, by Eppstein and Erickson [11], runs in worst-case time O(e8/5+ε), for
any fixed ε > 0. For k-oriented figures, their algorithm takes O(k4e log2 e) time (and
superlinear space) by a reduction to O(k4) orthogonal range query problems in three
dimensions.

Interestingly, Voronoi diagram behavior is retained when F consists of so-called non-
piercing figures. We prove in Section 7 that, for this case, SK(F) is an abstract Voronoi
diagram in the sense of Klein [14]. Beside these and other related general findings, the
merit of Sections 5–7 is a reduction of the city Voronoi diagram to the straight skeleton
of a set of non-piercing (and convex) figures, whose birth times, shapes, and edge speeds
have been carefully chosen.

4. The City Voronoi Diagram

We continue with basic observations on quickest paths and the city Voronoi diagram;
they partially found an earlier mention in [1].
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Fig. 1. Quickest path for v = 3.

4.1. Quickest Paths

Let a network C as described in Section 1.1 be given. For two points x and y in the plane,
let QC(x, y) denote a quickest path between them, that is, a path minimizing the travel
duration between x and y. Let dC(x, y) be the time for traversing QC(x, y). Observe
that dC induces a metric (which we call the city metric) in the plane: dC is non-negative,
symmetric, and obeys the triangle inequality because, for each point z ∈ QC(x, y), the
concatenation of QC(x, z) and QC(z, y) gives QC(x, y).

Figure 1 displays a quickest path (shown dashed) whose linear pieces are labeled with
their durations of traversal. The simple-shaped network C (shown in bold) enforces two
shortcuts, i.e., intermediate pieces leaving C , as well as a non-monotonic behavior of
the path. It is obvious that QC(x, y) is an isothetic polygonal line which, apart from
special cases, is not unique. Note further that QC(x, y) may contain �(c) pieces on C
plus �(c) shortcuts.

The number of potential shortcuts for C may be �(c2), in the sense that removal of
any such shortcut disables all possible paths QC(x, y) between certain points x and y in
the plane. For instance, in Fig. 2, every quickest path that connects a network segment
to the left with a network segment to the right and below, has to run via an individual
shortcut. On the other hand, we face the fact that any non-trivial limitation on the number
of accesses to C results in a loss of triangle inequality. These observations do not imply an
�(c2) lower bound on computing quickest paths or the city Voronoi diagram, however.

The complexity of the city metric dC is also apparent from the shape of the induced
circles:

K (x, r) = {y | dC(x, y) = r}.

x

y

Fig. 2. Many shortcuts between terminals.
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Fig. 3. City Voronoi diagram for two sites.

Not only may K (x, r) break into �(c) pieces, its shape also varies with its radius r , as
well as with the relative position of its center x to C ; see Fig. 5. Still, the “disk” interior
to K (x, r) is a connected set, being the union of quickest paths.

4.2. The Diagram

Let S be a set of n point sites in the plane. The city Voronoi diagram VC(S) contains, for
each site s ∈ S, the region of all points given by

reg(s) = {x | dC(x, s) < dC(x, t),∀t ∈ S\{s}}.

Because dC is a distance function, VC(S) induces a partition of the plane. See Fig. 10 for
a detailed illustration. Figure 3 displays the city Voronoi diagram induced by two sites.
The regions are separated by a closed line; the region of the lower left site is not simply
connected. However, regions are path-connected, by the observation below.

Observation 1. reg(s) is the union of all quickest paths from x ∈ reg(s) to the site s,
and equivalently, to the set S.

Proof. We have to show that x ∈ reg(s) implies QC(x, s) ⊂ reg(s). Assume there
exists a point y with y ∈ QC(x, s) but y ∈ reg(t) for t �= s. Then dC(x, s) = dC(x, y)+
dC(y, s) > dC(x, y) + dC(y, t). The latter term is at least dC(x, t) by the triangle
inequality, which implies x /∈ reg(s) and gives a contradiction.

Observation 1 does not imply that VC(S) is of size O(n). Vertices of degree 2 may
occur, whose number cannot be bounded by applying the Eulerian theorem to a planar
graph with n faces. A trivial upper bound is O(n · c), by Observation 2 below. The true
complexity of VC(S) is O(n + c); we postpone the proof to Section 5.
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Fig. 4. Non-isothetic networks or different speeds cause many diagram edges.

We consider the bisector of two sites s, t ∈ S in the city metric, which is the set

Bst = {x | dC(x, s) = dC(x, t)}.
Bst is connected by Observation 1. However, due to well-known L1-specific degener-
ations, Bst may fail to be one-dimensional. A canonical one-dimensional form of Bst

(which we use throughout this paper) results from the straight skeleton interpretation
of VC(S) given in Section 5. In this form, Bst is always a piecewise linear curve. The
following property of Bst , exemplified in Fig. 3, is undesirable in view of the algorithmic
construction of VC(S).

Observation 2. Bst is a (possibly) cyclic polygonal curve with�(c) edges in the worst
case.

Note that in Fig. 3 each node and each segment of C , respectively, causes a vertex and
an edge of Bst . Cyclic and non-constant-sized bisectors are known to be a main obstacle
for efficiently applying divide-and-conquer and randomized incremental insertion.

We finally point out that slight alterations to our model lead to diagrams with�(n ·c)
vertices and edges. For example, in both of the situations shown in Fig. 4, n−1 bisectors
each consisting of �(c) linear components arise.

5. Link to Straight Skeletons

5.1. The Reduction

This subsection draws a connection between city Voronoi diagrams and straight skele-
tons. Its implications are manyfold; they fill the contents of the rest of the paper.

To aid the intuition of the reader, we recall a well-known interpretation of the standard
L1 Voronoi diagram in the wavefront model. Imagine each site in the given set S sends
out a wavefront, in the shape of an expanding L1 circle (called a diamond), at time 0
and with translational speed 1/

√
2 for all its edges. Wavefront movement stops at every

point where two diamonds come into contact. In other words, the L1 Voronoi diagram
is a straight skeleton with these diamonds as its defining figures; see Section 3 for a
definition of figures, wavefronts, and the straight skeleton.



Quickest Paths, Straight Skeletons, and the City Voronoi Diagram 25

Fig. 5. Concentric dC circles and figure generation. The small black polygons depict the figures in the
set Fs .

How does the network C influence this wavefront model? The circles expanding
around the sites change their shapes, in a manner determined by C which we want to
explore next. Let s ∈ S be a fixed site, and recall that K (s, t) denotes the circle of radius
t around s in the city metric. Our aim is to interpret K (s, t) as the common wavefront
propagated from a certain set Fs of figures.

See Fig. 5. For sufficiently small t > 0, K (s, t) is a diamond with center s as before.
Let Fs be a set of figures which initially contains this diamond, with place s and time 0 of
birth. Now consider all points x ∈ C where either a vertex of K (s, t) runs into a network
segment, or an edge of K (s, t) slides into a network node. At times t = dC(s, x), and at
no other point in time, the circle K (s, t) changes its combinatorial shape. Accordingly,
we add to the set Fs an appropriate figure with time t and place x of birth, constructed
as below.

Observe that, at time t + ε, a diamond D with center x and diagonal length ε appears
on K (s, t), along with sharp-angled wedges tangent to D, whose peaks move at speed
v in all possible directions on C that point to the exterior of K (s, t). The figure we
construct is simply the union of D and these wedges. Each wedge is an isosceles triangle
with base d and height ε · v, where d is a diagonal of D; see Fig. 6.

We categorize the figures in Fs by their number j of wedges and call them j -needles.
Note that 0 ≤ j ≤ 3 holds, because the degree of a network node is at most 4, and
at least one of the four isothetic directions points to the interior of K (s, t). Only for a
0-, 1-, and 2-needle, may its diamond contribute edges to the figure. For such edges,
the translational speed is 1/

√
2 as before, whereas the translational speed of all other

edges amounts to v/
√
v2 + 1. Observe further that all figure vertices move in an isothetic

manner during the expansion of their individual wavefronts.
Let Wt (Fs) denote the common wavefront of all the figures in Fs . By construction,

Wt (Fs) enjoys the following property: Wt (Fs) coincides with K (s, t) at any time t . This
property has an obvious but important consequence.
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Fig. 6. Different types of needles.

Theorem 1. Let F = ⋃
s∈S Fs . The straight skeleton SK(F) of F contains the city

Voronoi diagram VC(S) as a subgraph.

The set F in Theorem 1 contains redundant figures, i.e., figures which do not con-
tribute to SK(F). Their wavefronts solely and always consist of points swept over earlier
(or at the same time) by wavefronts of other figures. It is clear that, for each site s ∈ S, all
figures of Fs whose places of birth lie outside the region reg(s) in VC(S) are redundant
in F . (Even more figures are redundant; we will return to this issue in Section 5.3.) Edges
of SK(F) which are not edges of VC(S) stem from non-redundant figures born in the
same region of VC(S). We alternatively call SK(F) the refined city Voronoi diagram of
S and C , or VC(S) for short. The two-dimensional components of VC(S) are its regions,
which are the regions of VC(S) and are partitioned into faces, the faces of SK(F). See
Fig. 10 for an illustration.

5.2. Path Encoding

We show next that the refined city Voronoi diagram VC(S) encodes, for every point q in
the plane, the quickest path from q to S.

By construction of F , certain edges of VC(S) are (portions of) network segments,
some edges are shortcuts in the network C (or go directly from a site to the network),
and others are of a third type. We orient all these edges in the direction they are traced
out by the vertices of the common wavefront Wt (F) of F . This yields a directed acyclic
graph with the sites in S as sources. When selecting all edges of the first two types in
this graph, a quickest-path tree T (s) for each site s within its region reg(s) is obtained.
Note that T (s) consists of isothetic edges.

Let s be a site with q ∈ reg(s). Then QC(q, s) is the quickest path from q to S. If
q lies on C or in S, then QC(q, s) consists entirely of edges of the quickest-path tree
T (s). Otherwise, q lies in the interior of a face g of VC(S). The face g can be uniquely
associated with its defining feature, β(g). This is the site, network node, or (portion of
a) network segment that contains the place of birth of the unique figure whose wavefront
sweeps out g with one of its edges. In fact, g is just the union of all the quickest paths
between points q ∈ g and x ∈ β(g). This implies that the first edge of the path QC(q, s)
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lies in the interior of g, whereas the second edge of QC(q, s) (if it exists) lies on the
boundary of g and belongs to T (s). We conclude:

Theorem 2. Given an arbitrary query point q , the quickest path from q to S can be
reported by point location in VC(S), in optimal time O(log(n + c) + k) where k is the
path complexity.

5.3. The Linear Size

The diagram VC(S) = SK (F) is a planar graph whose faces are connected and whose
vertices have degree at least 3, as in every straight skeleton. The number of edges and
vertices of VC(S) therefore is linear in the number of its faces. This number, in turn, is
bounded by the total number of edges of all figures which are non-redundant in the set
F , because each such edge (possibly) sweeps out a single face of VC(S).

How many figures are non-redundant? Clearly, each site s ∈ S defines a non-redundant
diamond with birth place s. Moreover, by arguments in Section 5.1, each node of C gives
rise to a single non-redundant j-needle born at this node. This gives n+c relevant figures
so far. It remains to examine the 2-needles born in the interior of network segments. They
are called interior 2-needles, in contrast to the 2-needles born at network nodes. Their
number is �(n · c) in the worst case: each of the n sites may cause c such figures, born
on c parallel segments; see Fig. 5, right lower corner. However, the following fact comes
to our rescue.

Lemma 1. Let f be an interior 2-needle on network segment σ . Then the interior
2-needle f ′ born when the wavefront of f hits some segment parallel to σ is redundant
in the set { f, f ′}.

Proof. Let t be the birth time of f ′. For any time u > t , the wavefronts Wu( f ) and
Wu( f ′) are homothetic rhombs, see Fig. 7, with the common vertex x as the center of
homothety. This vertex coincides, at time t , with the center of f ′.

An interior 2-needle never stems from a contact between a network segment and some
peak (sharp-angled vertex) of a j-needle. So Lemma 1 implies that only the interior
2-needles that stem from contacts with vertices incident to some diamond edge are non-
redundant in the set F . As such vertices disappear from the common wavefront of F after

x

f’

f

Fig. 7. Redundant 2-needle.



28 O. Aichholzer, F. Aurenhammer, and B. Palop

their first contact with C , we have at most 4(n + c) figures of this kind. In summary, F
contains at most 5(n + c) non-redundant figures. Each figure is of constant complexity,
which gives a total of O(n + c) figure edges, and with it, skeleton faces.

Theorem 3. The refined city Voronoi diagram VC(S) consists of O(n+c) faces, edges,
and vertices.

We remark that redundant 2-needles as in Lemma 1 are the reason for portions of C
that never need to be used. An unused portion � is characterized by containment in a
face g whose defining feature β(g) is a (portion of a) network segment different from �.
See Fig. 10 where unused portions are shown as dotted bold lines.

6. Conquering the Network

We now turn to algorithmic issues. Our first step in the construction of VC(S) is finding
a set F∗ of non-redundant figures whose straight skeleton gives VC(S). When tolerating
redundancy, this is a quite simple task, leading to a worst-case runtime of �(n · c),
however. We show below that O(n log n + c2 log c) time suffices for computing F∗. In
view of the existence of �(c2) potential shortcuts in the network C (see Section 4.1), it
might be difficult to achieve a subquadratic complexity in c.

The diamonds for the sites in S are calculated in a trivial manner, so we concentrate
on the figures caused by the network C ; see Section 5.1.

6.1. Figures at Nodes

We treat figures born at network nodes first. Consider the grid G obtained by putting a
horizontal and a vertical line through each node of C . Each network segment is now the
union of grid segments. For a site s ∈ S, let G(s) denote the grid box that contains s.
An access point of s to C is a point where C is crossed by one of the two isothetic lines
through s. A primary access point is a first access point as seen from s.

Lemma 2. Let s and x be a site and a network node, respectively. Then QC(s, x) can
be chosen to follow the grid G, except for the first edge e.

Proof. Edge e is an isothetic edge which connects site s to some grid segment g, and
QC(s, x) has to pass through one of the nodes of g. Either g �⊆ C or g ⊆ C . In the
former case, g is chosen to be a segment of G(s), and in the latter case g contains a
primary access point of s to C .

The following algorithm determines when (and from where) each grid node is con-
quered by the sites. This will give us the birth times and shapes of all non-redundand
figures ( j-needles) born at the nodes of C . First, each grid segment is given a weight 1
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or v depending on its containment in C . Then, for each site s ∈ S, the nodes of G(s) are
initialized, as are the nodes of the at most four grid segments on C that contain the pri-
mary access points of s to C in their interior. That is, for each such node x , the minimum
time dC(x, S) (and the corresponding direction) is stored. This takes time O(n log c).
To process the remaining nodes, we simply run the continuous Dijkstra method on the
initialized grid G, in O(c2 log c) additional time.

6.2. Figures on Segments

Now consider figures born on network segments; we called them interior 2-needles in
Section 5.3. Redundancy occurs for two reasons, one made precise in Lemma 1. How-
ever, an interior 2-needle that stems from a contact p with a site diamond (that is, from
a primary access point p whose time t has been implicitly calculated earlier, namely
when initializing G) may still be redundant: there might be a site s whose circle K (s, t)
has swept over p already. To identify all non-redundant interior 2-needles, we proceed
as below.

Consider each grid column (and, later, each grid row) separately. Sweep the column
bottom-up with a horizontal line L , starting below S and C . Keep horizontally sorted
lists A and B of the sites in the column, above and below L , respectively. Whenever L
reaches a grid edge g ⊆ C we do the following. For each primary access point p on g,
and for g’s endpoints, detect all access points on g for sites in A and in B, respectively,
which are time covered by p, that is, which can be reached earlier via p. Remove these
sites from their lists (and file the new access points neighboring p on g, for later use as
sentinels in Section 7). If a primary access point on g is time-covered itself by access
points for sites in A or B, then remove the corresponding site from its list (and update
sentinels accordingly). Note that the access times of all the sites to L can be updated
quickly during the sweep, as these are just the vertical distances of the sites to L . Cor-
rectness is guaranteed because a site s outside the column cannot influence the situation,
not even in a horizontal manner, as quickest paths from s enter the column via some
(correctly initialized) grid node.

The total runtime for processing all columns and rows is O((n+c) log n). This finally
gives a minimal set F∗ with SK(F∗) = VC(S), in time O(n log n + c2 log c).

7. Abstract Voronoi Settings

We are left with the problem of computing the straight skeleton SK(F∗) of the set F∗.
According to Section 5.3, the figures in F∗ have a total of O(n + c) edges. Moreover,
these figures are of simple shape: they are k-oriented (for k = 12, as can be easily
checked). Thus we could apply the algorithm of Eppstein and Erickson [11] which
achieves a runtime of O((n+c) log2(n+c)), though with large constants and superlinear
space; see Section 3. We show below that SK(F∗) can be computed optimally, in time
O((n + c) log(n + c)) and space O(n + c), by a simpler method which comes as a
byproduct of the following more general results.
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7.1. Relationship between Models

During our investigations so far, we have encountered several “Voronoi-like” diagrams,
which are interpretable in one or the other model. In fact, the variety of approaches taken
in the literature to model such diagrams is confusing at first glance, and certain peculiari-
ties are hidden in the relationship between these models. We take the chance to clarify the
situation, with the special goal of resolving the problem of computing SK(F∗) efficiently.

The classical model is, of course, the distance model. Let Id = {1, 2, . . . ,m} be a set
of sites, each being augmented by some distance function d(x, i). The resulting Voronoi
diagram V (Id) divides the plane among the sites, according to the nearest neighbor rule.
Distances may be defined in an abstract way, namely by bivariate functions fi (x) on the
plane. Then V (Id) corresponds to the lower envelope of these functions; see [10].

Another frequently used concept is the wavefront model (or growth model, as it is
sometimes called in the applied natural sciences). Each site i sends out some wave-
front Wt (i), for t measuring time, and the interference pattern of all these wavefronts
constitutes the diagram; compare Section 3.

Wavefronts induce distances, and vice versa, in an obvious way. Simply let d(x, i) be
the time t when Wt (i) reaches x . Conversely, put Wt (i) = {x | d(x, i) = t}, which is the
circle of radius t around i . We denote with�(Id) the interference pattern that arises—in
this way—from the augmented set Id of sites.

Still, the two models above are not equivalent. This becomes apparent when noticing
that Voronoi diagrams with disconnected regions have no interpretation in the wavefront
model. An example is the Voronoi diagram for point sites with multiplicative weights
[5]. Being more important in the present context, straight skeletons are known to admit
no distance-from-site definition, in general; see [3].

We now give characterizing conditions for the equivalence of both models. For fixed t ,
define the interior of a wavefront Wt as

⋃
u<t Wu . Call two sites i, j ∈ Id non-piercing

if, for all times t , the interior of their common wavefront Wt ({i, j}) coincides with
the interior of the union of their individual wavefronts Wt (i) and Wt ( j). For instance,
L p circles for p ≥ 1 witness this property, even if radii are different—a scenario arising
in the construction of airlift Voronoi diagrams, in Section 2.2. The property is lost for
p < 1, and, indeed, disconnected Voronoi regions do arise.

The following general assertion can be made.

Theorem 4. Let Id be a set of pairwise non-piercing sites. Then the two diagrams V (J )
and �(J ) coincide, for all J ⊆ Id . The converse is true, too.

Proof. Let d(x, J ) be the time t when the common wavefront Wt (J ) reaches the
point x . If i and j are non-piercing sites, and only in this case, we have d(x, {i, j}) =
min{d(x, i), d(x, j)}, for all points x in the plane. So, assuming i and j to be piercing
sites implies V ({i, j}) �= �({i, j}). Conversely, if the sites in the set Id are pairwise
non-piercing, then each subset J ⊆ Id has this property, such that

d(x, J ) = min
i∈J

d(x, i)

holds for all points x in the plane. However, this is equivalent to V (J ) = �(J ).
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Fig. 8. Diamonds and needles violating requirements (1) and (2).

A third well-known model is the abstract Voronoi diagram introduced in [14]. In this
setting, a bisector system (Bi j )1≤i< j≤m is given, which is called admissible if it fulfills
the following requirements:

(1) Bi j is homeomorphic to a line.
(2) Bik ∩ Bjk ⊂ Bi j .
(3) Regions are path-connected.

Sometimes, an additional technical condition is postulated,

(4) Bik ∩ Bjk has finitely many components,

which is mostly satisfied—in particular, by all the diagrams mentioned in the present
paper. We therefore exclude (4) from further considerations.

Condition (1) is violated by the (unrefined) city Voronoi diagram VC(S). Straight
skeletons violate both (1) and (2). Figure 8 reveals that even the simple-shaped figures in
the set F∗ yield this behavior. Note that the bisector of two figures i and j is defined as
Bi j = SK ({i, j}) in this case. Violation of (2) is most serious, because “no-mans land”
(shaded) may occur which belong to no site. This leads to anomalies like the expansion
of a site’s region caused by the insertion of another site.

The following result tells us where to place the third model.

Theorem 5. The bisectors Bi j = {x | d(x, i) = d(x, j)}, for an augmented set Id of
sites, constitute an admissible system if and only if V (Id) = �(Id).

Proof. Suppose V (Id) = �(Id) first. To prove that condition (2) holds in any distance
model, observe that x ∈ Bi j ∩ Bik implies d(x, i) = d(x, j) = d(x, k), hence x ∈ Bjk .
Similarly, condition (3) holds in the wavefront model, because no part of a wavefront
lost in the interference process can reappear later.

Condition (1) remains to be proven. From (3) we know that either half-plane defined
by Bi j is path-connected. This implies that Bi j is a connected curve. We show that Bi j is
acyclic. Our assumption V (Id) = �(Id) implies that i and j are non-piercing sites, by
Theorem 4. Hence, in their common wavefront Wt ({i, j}), the two parts Wt ({i, j})∩Wt (i)
and Wt ({i, j}) ∩ Wt ( j) are connected and non-empty, for all times t . However, these
parts touch at Bi j , for all t , which prevents Bi j from being cyclic.



32 O. Aichholzer, F. Aurenhammer, and B. Palop

To prove the converse, assume V (Id) �= �(Id) now. Then, by Theorem 4, there
exists a pair i, j ∈ Id that violates the non-piercing property. That is, there exists some t
such that Wt (i) either disconnects or completely encloses Wt ( j) (or vice versa). In the
former case, Bi j is disconnected, too, whereas Bi j is a closed curve in the latter. Thus
condition (1) is violated.

By Theorems 4 and 5, the well-developed machinery for computing abstract Voronoi
diagrams applies to certain straight skeletons.

Corollary 1. Let F be a set of pairwise non-piercing figures. Then the straight skele-
ton of F is an abstract Voronoi diagram, with the figures in F as its sites, and with
(SK ({ f, g})){ f,g}⊂F as its bisector system.

Interestingly, the city Voronoi diagram can be defined as a straight skeleton of non-
piercing figures, as is shown in the next subsection.

7.2. Figure Adaption

To reach the intended scenario in Corollary 1, we have to modify the figures in the set F∗

(which has been constructed in Section 6) to become pairwise non-piercing, but without
changing their straight skeleton.

In a first step, each j-needle f is replaced by the j individual 1-needles whose union
constitutes f ; compare Fig. 6. This modification clearly has no effect on the straight
skeleton. Secondly, each 1-needle g is domesticated in the following way. We limit the
range of g’s peak p (the unique vertex that moves with network speed v) and let p take
on a diamond shape beyond that point. This defines a new figure g′ whose wavefront
Wt (g′) has the shape of a 1-needle in the beginning and contains six edges when fully
developed; see Fig. 9. Limitation of p is at its first time-covering network node, or at
a sentinel precomputed in Section 6.2. In both cases, p would not have passed further
without domestication, which implies that the skeleton is left unchanged.

To see that peak p does no harm within its range, observe that p might pierce into,
but not through, a wavefront having swept over p’s limitation. When fully developed,
all domesticated figures, together with the original diamonds in F∗, are pairwise non-
piercing: consider any such pair f, g and assume that Wt ( f ) and Wt (g) have their first
contact in, say, the horizontal direction. Then piercing can take place only horizontally.
However, this cannot happen either, because the speed of all vertices of Wt ( f ) and Wt (g),
and particularly of those moving horizontally, is 1.

An abstract Voronoi diagram with m sites and constant bisector complexity can be
computed in O(m log m) time. Particularly attractive is a randomized incremental con-
struction; see [16] and [15]. To adapt this algorithm to our situation, it is sufficient to
have a subroutine that accepts five figures as input and returns their straight skeleton.
Any trivial skeleton algorithm may be implemented in this subroutine, because all input
figures are convex, 12-oriented, and have at most six edges. We conclude a main result
of this paper.
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p

Fig. 9. Domesticated 1-needle.

Fig. 10. A complex transportation network C (bold segments) and the city Voronoi diagram VC (S) (full
edges) for a set S of five sites scattered among C . The diagram is refined to VC (S) by straight skeleton edges
(dashed). Unused portions occur in the network, shown as dotted subsegments. They could be eliminated
without delaying any quickest path to S. One site is isolated from the network (the bottommost site s), in the
sense that for no point q in the region of s does the quickest path QC (q, s) take advantage of C . Outside the
smallest rectangle covering C ∪ S, all edges of VC (S) are isothetic.
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Theorem 6. Let C be an isothetic transportation network with constant speed, and let
S be a set of sites in the plane. The refined city Voronoi diagram VC(S) (Fig. 10) can
be computed in O(n log n + c2 log c) time and optimal space O(n + c), where c and n
denote the size of C and S, respectively.

The time complexity clearly is optimal in the number n of sites. We raise the question
of whether a subquadratic dependency on the network size c can be achieved, preferably
retaining the computational simplicity as in our algorithm. Also, in applications where c
is much larger than n, an output-sensitive algorithm for constructing the (unrefined) city
Voronoi diagram VC(S) is of interest.
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