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Abstract. A dihedral (trihedral) wedge is the intersection of two (resp. three) half-spaces
in R3. It is called α-fat if the angle (resp., solid angle) determined by these half-spaces is
at least α > 0. If, in addition, the sum of the three face angles of a trihedral wedge is
at least γ > 4π/3, then it is called (γ, α)-substantially fat. We prove that, for any fixed
γ > 4π/3, α > 0, the combinatorial complexity of the union of n (a) α-fat dihedral wedges,
and (b) (γ, α)-substantially fat trihedral wedges is at most O(n2+ε), for any ε > 0, where the
constants of proportionality depend on ε, α (and γ ). We obtain as a corollary that the same
upper bound holds for the combinatorial complexity of the union of n (nearly) congruent
cubes in R3. These bounds are not far from being optimal.

1. Introduction

The combinatorial complexity (or, simply, complexity) of a polyhedral set is the total
number of its faces of all dimensions. To obtain an upper bound on the complexity of a
polyhedral set in R3, by Euler’s Polyhedral Formula, it is sufficient to bound the number
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of its vertices. The problem of bounding the combinatorial complexity of the union
of various geometric objects has a long history. It is partly motivated by questions in
robot motion planning and manufacturing. Specifically, let A1, . . . , An be n pairwise
disjoint convex objects (“obstacles”), and let B be another convex body (“robot”), free
to translate amid the obstacles and constrained not to intersect any of them. The space
of all collision-free translations of B (at which it does not intersect any obstacle) is the
complement of

⋃n
i=1 Ai ⊕ (−B), where Ki = Ai ⊕ (−B) = {x− y | x ∈ Ai , y ∈ B} is

the Minkowski sum of the two objects Ai and−B. Hence, the problem of computing the
space of all free positions of B reduces to that of computing the union of these Minkowski
sums. The first task towards the design of an efficient algorithm for this problem is to
obtain a sharp bound on the combinatorial complexity of the union.

In the plane the complexity of the union of Minkowski sums was shown to be linear
by Kedem et al. [12]. In R3 we know the following. (i) If the Ai ’s and B are convex
polyhedra, then the complexity of the union is O(Nn log n), where N denotes the overall
complexity of the Minkowski sums Ki [3]; see also [4]. A slightly sharper bound of
O(n2α(n)) is given in [11], for the case where B is a box and each Ai is assumed to
have constant complexity. (ii) If the Ai ’s are convex polyhedra consisting of a total of n
faces, and B is a ball, then the complexity of the union is O(n2+ε), for any ε > 0 [1]. In
other words, all known results concerning unions of Minkowski sums yield linear upper
bounds in the plane and near-quadratic upper bounds in 3-space.

The above results cannot be extended to the union of general convex objects without
imposing any further restriction on their shapes or relative position. Indeed, it is easy to
see that the union of n triangles in the plane (tetrahedra in 3-space) can have quadratic
(resp., cubic) complexity. Since all constructions realizing these bounds use very “thin”
objects, it is a natural question to ask what happens if we restrict our attention to unions
of “fat” convex polytopes. For bounded objects, fatness means that the ratio between the
circumradius and the inradius of any input object is bounded by a fixed constant. For
unbounded objects, another definition is needed—see Definition 1.1 below.

The case of planar fat objects has been studied extensively in [2], [7]–[10], [14], and
[15]. It was shown that the complexity of the union of n fat triangles is O(n log log n)
[14], [15] and that of n fat wedges is O(n) [2], [9]. For general convex fat objects of
“constant description complexity,” the combinatorial complexity of the union is O(n1+ε),
for any ε > 0 [10] (see also [7] and [8] for slight improvements and extensions).

In contrast, in three and higher dimensions, very few nontrivial bounds are known.
It is an easy consequence of the Upper Bound Theorem for convex polytopes that the
combinatorial complexity of the union of n balls in Rd is O(n
d/2�). Asymptotically the
same upper bound is known for the complexity of the union of n axis-parallel hypercubes
[5], which can be improved to O(n�d/2
) when all cubes have the same size.

In spite of many efforts, even in three dimensions no nontrivial (i.e., subcubic) upper
bound was known for the complexity of the union of n congruent cubes, not necessarily
in parallel position. The aim of this paper is to establish a nearly quadratic upper bound
on this quantity. Actually, we will prove a more general result. For this we need some
preparation.

Definition 1.1. The intersection of two (three) half-spaces is called a dihedral (resp. tri-
hedral) wedge. The boundary of a dihedral wedge consists of a straight line edge and
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two half-planes. The boundary of a trihedral wedge consists of a vertex (apex), three
edges and three faces that are half-lines and two-dimensional wedges, respectively.

For any α > 0, a dihedral (trihedral) wedge is called α-fat if its dihedral angle (resp.,
solid angle) is at least α. For any γ > 4π/3, an α-fat trihedral wedge is said to be
(γ, α)-substantially fat if the sum of the angles of its three faces is at least γ > 4π/3.

Note that a right-angle octant, obtained by taking the intersection of three half-spaces
bounded by mutually orthogonal planes, is (3π/2, π/2)-substantially fat. However, a
trihedral wedge defined by three planes supporting different faces of a regular tetrahedron
is not (γ, α)-fat for any γ > 4π/3, because the angles of its faces are too small. The
requirement that γ > 4π/3 is technical, made in order to facilitate our proof.

All families studied in this paper consist of n convex polyhedral objects in R3, each
having a constant number of vertices, edges, and faces. As we pointed out earlier, to
give an upper bound for the combinatorial complexity of the union of such families, it is
sufficient to bound the number of vertices of the union. Such a vertex is either a vertex of
an input polyhedron, or it can be obtained as the intersection of an edge of a polyhedron
with a face of another, or it is the intersection point of three faces belonging to three
distinct polyhedra. Clearly, the number of vertices of the first two types is O(n2), so the
main task is to estimate the number of vertices of the third type.

We prove the following three results. In all of them, the constants of proportionality
hidden in the O-notation depend on the relevant fixed parameters (ε, α, γ ), and, in
Theorem 1.4, also on the additional fixed parameter λ.

Theorem 1.2. For any α, ε > 0, the combinatorial complexity of the union of n α-fat
dihedral wedges in 3-space is O(n2+ε).

Theorem 1.3. For any γ > 4π/3, α, ε > 0, the combinatorial complexity of the
union of n (γ, α)-substantially fat trihedral wedges in 3-space is O(n2+ε).

In Section 5 we apply Theorem 1.3 to deduce

Theorem 1.4. Let λ > 1, ε > 0. The combinatorial complexity of the union of any
family of n cubes in 3-space, whose edge lengths differ only by a factor of at most λ, is
O(n2+ε).

All of these results are nearly tight in the worst case. That is, an�(n2) lower bound can
be easily established in each of these cases.

An important new tool in our analysis is the concept of special cubes.

Definition 1.5. Given a family P of convex polyhedra in 3-space, a special cube C
(with respect to P) is the intersection of three members of P such that (i) C is disjoint
from every other member of the family, and (ii) C has the combinatorial structure of a
cube, with each of the three polyhedra contributing two opposite faces to C .

Cubes that satisfy only condition (ii) are referred to as quasi-special cubes. The level
of a quasi-special cube C is the number of members of P that intersect C , other than the
three members whose intersection equals C .
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This notion is related to the concept of special quadrilaterals used in [3] and [4]. The
significance of special cubes, which extends beyond the applications given in this paper,
is shown by the following theorem, whose somewhat technical proof is postponed to
Section 7.

Theorem 1.6. LetP be a family of n convex polyhedra in 3-space, each having at most
some constant number of faces. Suppose that the number of special cubes determined
by any m members of P is O(mγ ), for some γ > 2. Then the number of vertices on the
boundary of the union of P is O(nγ ).

Here is a brief overview of the approach we follow. Consider a family of fat dihedral
wedges. First, we “deform” the wedges to new “canonical” wedges, without losing
more than quadratically many special cubes in the process. We reduce the problem to
the case when there exists a plane P intersecting every (three-dimensional) wedge in
a fat two-dimensional wedge, whose bounding rays belong to a fixed set of constantly
many “canonical” directions. In this way we obtain a constant number of families, each
consisting of wedges with isothetic cross sections (i.e., whose cross sections are translates
of each other, lying in planes parallel to P), and it suffices to bound the complexity of
the union of at most three such families. This is done in Section 3, by first handling
the (trivial) case of a single family, then passing to the case of two families, and finally
tackling the general case.

For trihedral wedges, the analysis is more elaborate, since our current machinery
works only when, for any vertex v of the union, there exists a (canonical) plane P , so
that all three wedges incident to v intersect P in unbounded regions. The reason for
this is quite technical, and it originates in the method developed in [14] and [15] for
studying the case of fat triangles in the plane. This is why we can handle only trihedral
wedges that are substantially fat (with the sum of their face angles being greater than
4π/3). Even with this assumption, the canonization process is more involved than for
dihedral wedges. We eventually manage to transform each trihedral wedge to a new
canonical wedge, all of whose cross sections by planes of some canonical direction are
either empty or isothetic to some canonical two-dimensional wedge. This allows us to
apply the arguments used for dihedral wedges, with only minor modifications.

The case of nearly equal cubes is an easy consequence of the result for substantially
fat trihedral wedges, specialized to right-angle octants. More specifically, we lay a grid
whose size is slightly smaller than that of the cubes, consider the union within each cell
of the grid separately, replace each cube whose boundary crosses such a cell by an octant,
and apply the bound on the complexity of the union of such octants.

We also consider the algorithmic problem of efficient construction of the union of a
family of, say, n nearly equal cubes. Using the algorithm of Aronov et al. [4], together
with our new combinatorial bounds, we obtain a randomized algorithm that computes
the union in expected time O(n2+ε).

Three interesting problems remain unsolved: In the first two we wish to obtain near-
quadratic upper bounds for the combinatorial complexity of the union of (1) any col-
lection of n cubes (of wildly different sizes), and (2) any collection of n α-fat (rather
than substantially fat) trihedral wedges in 3-space. (3) Is there a superquadratic lower
bound for any of the functions discussed above? As noted above, quadratic lower bounds
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are known for each of them. We expect that positive answers to (1) and (2) will lead
to a near-quadratic bound on the complexity of the union of any family of fat convex
polytopes in 3-space.

2. Canonization of Dihedral Wedges

LetW be a family of n α-fat dihedral wedges in 3-space. Let UW denote the union of
W , and let A(W) denote the arrangement of the (faces bounding the) wedges inW .

For a constant parameter σ , let D(σ ) be a set of O(1) directions (points on the unit
sphere) such that any spherical cap of radius larger than σ contains a direction d ∈ D(σ ).

The following lemma holds for all triples of (not necessarily fat) wedges.

Lemma 2.1. There exists an absolute constant σ > 0 such that for any three dihedral
wedges w1, w2, w3, there exists a direction d ∈ D(σ ) such that |〈d, ewi 〉| ≥ 1

4 , for
i = 1, 2, 3, where ewi denotes the unit vector in the direction of the edge ewi of wi .

Proof. Consider the set of directions d such that |〈d, u〉| ≤ 1
4 for a fixed direction u.

This set is a band of width π − 2 arccos 1
4 centered at the great circle orthogonal to u.

The area of such a band is 4π · 1
4 = π . Hence, the area of the set of directions d where

the asserted condition on d is not satisfied is at most 3π . Thus, the complement set of
“good” directions is of area at least π . Since the union of three such bands (each around
a great circle) has at most eight holes, there exists at least one hole of area larger than
π/8. Since any such hole is bounded by at most a constant number of circular arcs, the
claim readily follows.

Lemma 2.2. Let w1, w2, w3 be three dihedral wedges, and let d be a direction that
satisfies the conditions in the previous lemma for these three wedges. Let Pd be a plane
orthogonal to d . If w1, w2, w3 are all α-fat, then the three planar wedges wi ∩ Pd , for
i = 1, 2, 3, are all (α/4)-fat.

Proof. Let w be one of these wedges. It is a routine exercise in stereometry to show
that the angle of the cross-sectional wedgew∩ Pd is minimized when the bisector plane
ofw is orthogonal to Pd . Assume thatw does indeed attain this minimum. Let α′ denote
the angle of w∩ Pd . Let e′ denote the orthogonal projection of ew onto Pd . Let γ denote
the angle between ew and e′; note that sin γ = 〈ew, d〉. Denote by A the point ew ∩ Pd ;
let B be a point on e′ at distance 1 from A, let C be the foot of the perpendicular from
B onto ew, and let D, E be the points of intersection between ∂w and the line within Pd

passing through B and orthogonal to e′; see Fig. 1.
We have BC = sin γ , BD = BC tan(α/2) = sin γ · tan(α/2), and thus tan(α′/2) =

sin γ ·tan(α/2), orα′ = 2 arctan(sin γ ·tan(α/2)). We claim that arctan(ζ x) ≥ ζ arctan x
for any x ≥ 0 and ζ ≤ 1. Indeed, the function f (x) = arctan(ζ x)− ζ arctan x vanishes
at 0, and its derivative is

f ′(x) = ζ

1+ ζ 2x2
− ζ

1+ x2
≥ 0,
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Fig. 1. The setup in the proof of Lemma 2.2.

from which the preceding inequality follows. We thus obtain

α′ ≥ 2 sin γ · α
2
= α sin γ = α|〈ew, d〉| ≥ α

4
.

This completes the proof of the lemma.

A direction satisfying the properties of Lemma 2.1 (and of Lemma 2.2) is called a
good direction for the triple w1, w2, w3 ∈W .

For each d ∈ D, letWd ⊆W denote the subfamily consisting of all members ofW
that cross the planes orthogonal to d in (α/4)-fat two-dimensional wedges, i.e., in angles
of size at least α/4. For simplicity, we refer to these planes as horizontal. Construct on
a horizontal unit circle O(1/α) pairwise disjoint “canonical” arcs, each of length �(α)
(say, α/16), so that (i) each horizontal line through the origin meets at most one of these
arcs, and (ii) each arc of length at least α/4 on the unit circle fully contains at least one
of these arcs.

For each wedgew ∈Wd , rotate its faces inwards about its edge (which remains fixed)
until the directions of their horizontal cross sections coincide with the endpoints of one
of these arcs. Let W ′d denote the resulting collection of wedges. By this process, we
decomposeW ′d into O(1/α) canonical subfamilies so that the horizontal cross sections
of any two wedges belonging to the same subfamily are isothetic.

The proof of the following lemma, which justifies the canonization process, hinges
on the fact that the edges of the given wedges are not moved during the deformation.

Lemma 2.3. The number of special cubes for Wd is smaller than or equal to the
number of special cubes forW ′d .

Proof. Let C be a special cube for Wd , formed by the intersection of three wedges
w1, w2, w3 ∈ Wd . Let w′i denote the canonical image of wi , for i = 1, 2, 3. Put C ′ =
w′i ∩ w′2 ∩ w′3. We claim that after the canonization, C ′ remains a (nonempty) special
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cube (forW ′d ). This is shown as follows:

(i) The canonization process ensures that w′ ⊂ w for any w ∈ W , from which it
follows that C ′ ⊂ w1 ∩w2 ∩w3 = C . Moreover, since C , being a special cube,
is disjoint from all other wedges, it follows that the same holds for C ′.

(ii) Let h1, h2, h3 be three half-planes such that hi is bounded by ewi and lies fully
in wi , for i = 1, 2, 3. The intersection point v = h1 ∩ h2 ∩ h3 lies in C ,
by construction. Since the new faces of each wedge are both half-planes of this
kind, this implies that during the canonization process, each special cube shrinks
but does not disappear (C ′ �= ∅).

(iii) The boundary ∂C ′ does not meet any of the edges of the wi ’s, because C does
not meet them and they do not move during the canonization process. Thus, C ′

must have the combinatorial structure of a cube and the two faces bounding each
wedge wi contribute opposite faces to C ′.

In the next section we prove the following theorem.

Theorem 2.4. The number of special cubes forW ′d is O(n2+ε), for any ε > 0.

Combined with Lemma 2.3, this theorem implies that the number of special cubes for
Wd is also O(n2+ε). This, combined with Theorem 1.6, implies that the complexity of
the union ofWd is O(n2+ε), for any ε > 0. Finally, since each vertex v ∈ UW is also a
vertex of UWd , for some canonical d, it follows that the complexity of the union ofW
is also O(n2+ε), for any ε > 0, thus establishing Theorem 1.2.

3. The Complexity of the Union of Fat Dihedral Wedges

The aim of this section is to prove Theorem 2.4. As we have argued above, it is sufficient
to bound the number of special cubes determined by at most three canonical subfamilies
ofW ′d .

The Union of One Canonical Family. In this case it is easy to see that a single canonical
family admits no special cubes. Indeed, let C be the intersection of three wedges from
the same subfamily ofW ′d . Then any intersection of C with a plane orthogonal to d is
unbounded, which is impossible for a special cube.

The Union of Two Canonical Families. Let R and B be two canonical subfamilies of
W ′d . We refer to their wedges as red and blue, respectively.

Theorem 3.1. The number of special cubes in the union of two canonical subfamilies
of n α-fat dihedral wedges in W ′d is O(n2α(n)), where α(·) is the inverse Ackermann
function.

Proof. We refer to the actual wedges as 3-wedges (not to be confused with trihedral
wedges), and to their horizontal cross sections as 2-wedges (as above, d is assumed to be
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Fig. 2. The cross section of a two-colored special cube, at the time when the top edges of r, r ′ overlap. The
bottom vertices w1, w2 lie inside r ′ only and on the boundaries of r and b.

the direction of the z-axis). We also assume that the red 2-wedges point to the right (in
the horizontal planes containing them, so that the apex of a red 2-wedge is its rightmost
point and its symmetry axis is parallel to the x-axis) and that the blue 2-wedges point
upwards (the apex of a blue 2-wedge has maximum y-coordinate and its symmetry axis
is parallel to the y-axis). We thus refer to the two edges of a red 2-wedge (and to the
corresponding faces of the 3-wedge) as the “top” and “bottom” edges (and faces) and
similarly use “left” and “right” for the blue wedges; see Fig. 2 for an illustration.

It suffices to estimate the number of red–red–blue special cubes of the union (i.e.,
cubes formed by two red wedges and one blue wedge).

We regard the z-axis as the “time-axis” and regard the 2-wedges as translating in
the xy-plane at constant (though possibly different) velocities. The vertices (of the third
kind; see the remark before Theorem 1.2) of the union then become critical events, at
which three edges bounding the moving 2-wedges become concurrent.

Let C be a special cube formed by the intersection of two red wedges r, r ′, and of
one blue wedge b. Thus, C has six faces: each of r, r ′, b contributes one pair of opposite
faces to its boundary. Four faces of C are red, and are arranged in a cycle. As is easily
verified, up to the possible permutation of r and r ′, the cycle has the form (top face of r ,
top face of r ′, bottom face of r , bottom face of r ′). In other words, the cube has an edge
where the two top faces of r and r ′ meet. The two endpoints of this edge are vertices of
C that are also vertices of the union. We refer to them as special vertices.

Let v1, v2 be two special red–red–blue vertices, so that v1 is top–top–right, v2 is
top–top–left, and both are vertices of the same special cube (and are the endpoints of
a common edge of that cube). Then v1, v2 lie on the top boundaries e, e′ of two red
2-wedges r, r ′ (which are overlapping) and on the right and left boundaries f1, f2 of a
blue 2-wedge b. We classify the blue 2-wedges as being “short” or “long,” where b is
short if the portion of f1 between its apex u and v1 does not meet any red 2-wedge, and
is long otherwise.
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We first bound the number of special red–red–blue cubes, for which the corresponding
blue 2-wedge b is short. We use a two-dimensional coordinate frame Ff1 to represent
points on f1 by (t, ξ), where t is the time and ξ is the distance along f1 from its apex u.
Each red 2-wedge r shows up in Ff1 as a (portion of a) wedge—its top and bottom edges
trace straight-line segments in Ff1 , where the trace of the top (resp., bottom) edge of r
is the bottom (resp., top) segment of the traced wedge in Ff1 . In general, vertices of the
union of the 3-wedges along f1 appear as vertices of the boundary of the union of these
representing wedges in Ff1 . However, when b is short, the vertex v1 under consideration
is a vertex of the lower envelope of the traced wedges in Ff1 . Thus, the number of such
vertices is O(nα(n)) (see, e.g., [16]). Summing over all blue 2-wedges, we conclude
that the number of (not necessarily special) top–top–right vertices for which the blue
2-wedge is short is O(n2α(n)).

Suppose next that v1, v2 are two special vertices, as above, for which the corresponding
blue 2-wedge b is long. Suppose, with no loss of generality, that at the time when these
vertices appear, r is contained in r ′. Put e1 = f1 ∩ r and e2 = f2 ∩ r . Since v1 and v2

lie on a special cube, e1 and e2 are segments that lie on faces of that cube, and hence, by
definition, they do not meet any other red or blue 2-wedge. Thus, the respective lower
endpoints w1, w2 of e1, e2 lie only in the interior of r ′ (and on the boundaries of r and
b) but are outside all other red and blue wedges. See Fig. 2.

We now apply the analysis of Matoušek et al. [14], developed for studying the com-
plexity of the union of fat planar triangles (see also [15]). Let p denote the apex of r and
let q be the leftmost point on the top edge e of r that does not lie in the interior of any
other red 2-wedge (since the red 2-wedges are homothetic, q is uniquely defined). Let ρ
denote the ray emanating from q to the right in the direction of the bottom edges of the
red 2-wedges. It is easily verified that the apex of any blue 2-wedge b which is long with
respect to r must lie above ρ; see Fig. 3. Consider the collection of long blue 2-wedges
that form special vertices along e. Then, by the preceding observation, the segments
of intersection of these blue 2-wedges with the bottom edge of r are pairwise disjoint.
It now follows from the analysis of Lemma 3.5 of [14] and from its improvement, in
Lemma 2.5 of [15], that the number of such 2-wedges is O((1/α) log(1/α)). Since the
number of overlaps between top edges of red 2-wedges is O(n2), we conclude that the
number of red–red–blue special cubes for which the corresponding blue 2-wedge is long
is O((n2/α) log(1/α)). This completes the proof of Theorem 3.1.

Fig. 3. No red 2-wedge above r can have a point below ρ, the dashed ray amanating from q to the right.
Thus, the apex of any long blue wedge with respect to r lies above ρ.
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r1

r2

b1 b2

Fig. 4. r2 is initial for b2, whereas r1 is not. Each red wedge is semifree within every blue wedge, and vice
versa.

Note that Theorem 3.1, in combination with Theorem 1.6, implies that the combina-
torial complexity of the union of two canonical families of n α-fat dihedral wedges in
W ′d is O(n2+ε), for any ε > 0. This fact is used in the next stage of the analysis.

The Union of Three Canonical Families. Let R,G,B ⊂ W ′d be three canonical sub-
families of α-fat dihedral wedges, and refer to their members as red, green, and blue,
respectively. Our goal is to bound the number of special cubes ofR∪B ∪ G, formed by
the intersection of a red wedge, a blue wedge, and a green wedge.

Definition 3.2. (a) For any r ∈ R, b ∈ B, we say that r is semifree within b (with
respect to R ∪ B) if each of the two sides of r contain a point (a “semifree point”) that
lies inside b and outside all other red and blue 2-wedges.

(b) We say that r is initial for b (with respect toR ∪ B) if there is a side of b that no
other red 2-wedge intersects between the apex of b and r . (See Fig. 4.)

Arguing as in the 2-family case and as in [14], we obtain:

Lemma 3.3. There exists a constant c = O((1/α) log(1/α)) with the property that for
every red 2-wedge r and any fixed time t , the number of blue 2-wedges b for which r is
semifree within b and r is not initial for b at time t , is at most c. Similar properties hold
for all other kinds of (ordered) bichromatic pairs of wedges.

Proof. For a red 2-wedge r , let B denote the collection of all blue 2-wedges b such
that r is semifree within b and r is not initial for b. Order the elements of B in the order
of their containment of semifree points along the upper or lower ray of r (this order is
clearly well defined). Let B ′ be the subsequence of B consisting of every other element.
For each 2-wedge b in B ′, r is not initial for b and b ∩ ∂r consists of two segments that
do not meet any other 2-wedge of B ′. Indeed, if one of these segments intersects another
blue 2-wedge b′ in B ′, then, as is easily verified, no intermediate element b′′ of B can
have any free point on the same ray of r , contrary to assumption (see Fig. 5).

Let e+r denote the edge of r that is closer to the apex of b, and let e−r be the other
edge. Let r ′ be the first red 2-wedge encountered when traversing e+r from the apex of r .
Consider the three lines that contain e−r ′ , e+r , and e−r , respectively. Each b ∈ B ′ crosses
the second line between the apex of r and the intersection vertex e+r ∩ e−r ′ , and no two
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Fig. 5. Since r is semifree within b, the two blue neighbors b′, b′′ cannot overlap along ∂r .

elements of B ′ intersect each other within the slab formed between the first and third
lines; see Fig. 5. Hence, arguing as in the case of two canonical families, we have |B ′| =
O((1/α) log(1/α)). Since |B| ≤ 2|B ′| + 1, we have that |B| = O((1/α) log(1/α))
as well.

Definition 3.4. An ordered pair (r, b) of 2-wedges is called exposed at time t if at least
one of the following two conditions is satisfied (with respect to the union of the two
respective canonical subfamilies): (i) b is initial for r , or (ii) r is semifree within b and
r is not initial for b. See Fig. 6.

Clearly, Lemma 3.3 implies that for any 2-wedge r ∈ R, the number of exposed pairs
(r, b), for b ∈ B, at any fixed t , is at most c + 1.

As t varies, a pair (r, b)may start or stop being exposed. It follows from the analysis of
the 2-family case that the number of events at which, say, a blue 2-wedge, b, starts or stops
being initial for some red 2-wedge, r , is O(n2α(n)). Indeed, this event corresponds to a
vertex of the lower envelope of blue wedges in the appropriate two-dimensional frame
attached to one of the red edges.

r
0

bb
0

r

Fig. 6. Two instances of exposed pairs: (r, b) satisfy condition (i), and (r, b′) satisfy condition (ii).
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Consider an event at which a red 2-wedge r starts or stops being semifree within a
blue 2-wedge b. It is easily checked that at such an event three sides of red and blue
2-wedges become concurrent at a vertex that is contained only in (the interior of) b.
Clarkson–Shor’s technique [6], combined with the statement at the end of the analysis
of the 2-family subcase, implies that the number of such events is O(n2+ε), for any
ε > 0. Let T denote the sorted list of all critical times at which the overall set of exposed
pairs, with respect to all possible pairs of families, changes. As just argued, we have
|T | = O(n2+ε), for any ε > 0.

We now return to the analysis of “tricolored” special cubes. Let r ∈ R, b ∈ B,
and g ∈ G be three 3-wedges that form such a cube C = r ∩ b ∩ g. Denote the cross
section of C at time t by C(t). Excluding times at which vertices of C occur, C(t) is a
convex polygon with at most six sides, so that each side is a portion of an edge of one of
these 2-wedges, and no two successive sides of C(t) belong to the boundary of the same
2-wedge. It is easily verified that if we sweep a plane through any convex polytope with
the combinatorial structure of a cube, so that the plane is not parallel to any of its facets,
then there always exists a cross section which is either a pentagon or a hexagon. (Such
a cross section arises when the plane has three vertices of the polytope on one side and
five on the other.)

Let C(t0) be a cross section of our cube which is either a pentagon or a hexagon. Then
at least two of the 2-wedges, say r and b, contribute two sides to ∂C(t0).

Lemma 3.5. For each unordered pair w,w′ in {r, b, g}, either (w,w′) or (w′, w) is
exposed at time t0.

Proof. If r contributes two sides to ∂C(t0), then r is semifree both within b and within g
(with respect to corresponding bichromatic collection of 2-wedges). If r is not initial for
b, then, by definition, (r, b) is exposed, and if r is initial for b, then (b, r) is exposed. The
claim thus holds for {r, b} and, arguing similarly, for {r, g}. The case of {b, g} follows
from the fact that either b or g also contributes two sides to ∂C(t0).

We now apply a technique similar to that used in [13]. The list T of critical times
partitions the time-axis into O(n2+ε) atomic intervals. Let C = r ∩ b∩ g be a tricolored
special cube, as above, and let I be some atomic interval containing a time t0 where the
property of Lemma 3.5 holds for C . That is, for each of the unordered pairs {r, b}, {r, g},
{b, g}, (at least) one of its ordered pairs is exposed over I . Hence, up to a permutation
of the 2-wedges r, b, g, either

(a) (r, b) and (r, g) are exposed, or
(b) (r, b), (b, g), and (g, r) are exposed.

We first estimate the number of special cubes of type (a). Fix a red 2-wedge r0, and let
Tr0 denote the sublist of critical times at which some bichromatic pair (r0, w) starts or
stops being exposed.

The following procedure computes a superset of all special cubes of the form r0∩ b∩g
that satisfy the condition in (a). Iterate over the list Tr0 . For each time t in that list, at
which a pair (r0, b0), for some b0 ∈ B, becomes exposed, output all triples (r0, b0, g),
for g ∈ G, for which (r0, g) is currently exposed (there are at most c + 1 such triples).
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Apply a symmetric step when a pair (r0, g0), for g0 ∈ G, becomes exposed. It is easy to
see that every special cube r0 ∩ b ∩ g that satisfies the condition in (a) will be output by
this procedure, and that the total output size is at most (c+ 1)|Tr0 |. This is easily seen to
imply that the number of tricolored special cubes that satisfy (a) is O(n2+ε).

Consider next special cubes of type (b). The following procedure computes a superset
of those cubes. Iterate over the list T . For each time t in that list, at which a pair (r, b),
for r ∈ R, b ∈ B, becomes exposed, output all triples (r, b, g), for g ∈ G, for which
(b, g) is currently exposed (there are at most c+ 1 such triples). Apply an appropriately
symmetric step when any other type of bichromatic ordered pair becomes exposed at t .
It is easy to see that every special cube r ∩ b∩ g that satisfies the condition in (b) will be
output by this procedure, and that the total output size is at most (c+ 1)|T | = O(n2+ε).

This shows that the overall number of tricolored special cubes is O(n2+ε), from which
Theorems 2.4 and 1.2 follow.

4. The Union of Substantially Fat Trihedral Wedges

We next extend the analysis given in the preceding section to the case of (γ, α)-
substantially fat trihedral wedges. Substantial fatness is required to ensure the following
property:

Lemma 4.1. There exists a canonical setD of O(1) directions on the unit sphere with
the following property. Letw1, w2, w3 be three (γ, α)-substantially fat trihedral wedges,
for γ > 4π/3. Then there exists d ∈ D such that, for any plane h orthogonal to d and
for each i = 1, 2, 3, the cross section h ∩ wi is unbounded (any such section is either
a 2-wedge or a truncated 2-wedge), and the angle between its bounding rays is at least
α0, for some constant α0 that depends on α and γ .

Proof. Let w be a trihedral wedge whose edges emanate from its apex in directions
a, b, c. A direction d has the property that any plane orthogonal to d crosses w in an
unbounded region if and only if

the signs of the scalar products 〈a, d〉, 〈b, d〉, 〈c, d〉, are not all equal; (1)

see Fig. 9(a).
Moreover, arguing as in the proof of Lemma 2.1, the angle between the two rays,

bounding any intersection of w with a plane orthogonal to d, will be fat if the following
holds:

min{|〈a, d〉|, |〈b, d〉|, |〈c, d〉|} ≥ δ, (2)

for some fixed δ > 0. A direction d that satisfies (1) and (2) is called good for w.
We next estimate the probability that a randomly selected direction is good for the

3-wedge w. We first calculate the probability that d satisfies (1).
For directions x, y, represented as points on the unit sphere, let Px :y denote the

probability that a plane through the origin 0 separates x from y. Let Px :yz be the probability
that a plane through 0 separates x from y and z.
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Claim 4.2.

(i) Px :y = θx,y/π , where θx,y is the angle between the vectors x and y.
(ii) Px :y = Px :yz + Py:xz .

Indeed, to see (i), consider the plane P spanned by x, y, 0. For any plane h passing
through the origin, h separates x from y if and only if the intersection line � = h ∩ P
separates x from y in P , and the probability for this to happen is θx,y/π , as asserted.

To see (ii), we note that the event that a plane h through the origin separates x from
y is the disjoint union of the events that h separates x from y and z and that h separates
y from x and z.

The Claim implies that the probability that d satisfies (1) is

Pa:bc + Pb:ac + Pc:ab = Pa:b + Pa:c + Pb:c

2
= θa,b + θa,c + θb,c

2π
.

Thus, for a substantially fat trihedral wedge, we have that this probability is at least
γ /(2π), thus a direction violates (1) with probability at most 1− γ /(2π).

As mentioned in the proof of Lemma 2.1, for a given direction x , the measure of the
set of directions d for which |〈d, x〉| ≤ δ is 4πδ. Since the total area of the sphere is 4π ,
a random direction violates the inequality |〈d, x〉| ≤ δ with probability δ. Repeating this
argument for each of the three edges ofw, the probability for violating the inequality (2)
is thus at most 3δ.

It follows that a direction is bad for a substantially fat wedge w with probability at
most 1− γ /(2π)+ 3δ.

Let w1, w2, w3 be three substantially fat wedges. The preceding argument implies
that a direction will be good for all three wedgesw1, w2, w3 with probability larger than
1 − 3(1 − γ /2π + 3δ) = 3γ /2π − 9δ − 2. Hence, assuming that γ > 4π/3 and that
δ < γ/(12π)− 1

9 , the above probability is at least 3γ /(4π)− 1 > 0.
This implies, as above, that there exists a set D of size O(1) (which depends on γ

and increases as γ approaches 4π/3) such that, for any three substantially fat wedges,D
contains a direction that is good for all of them. The cross sections of the three wedges
by any plane orthogonal to d satisfy the properties asserted in the lemma, with α0 > δα,
where the last inequality follows as in the proof of Lemma 2.2.

4.1. Canonization of Trihedral Wedges

A significant step in the proof of Theorem 1.3 is the canonization process, which is
considerably more intricate than in the case of dihedral wedges. Here is a brief overview
of the canonical process. We fix a direction d and focus on the subset Wd of wedges
that satisfy the properties in Lemma 4.1 with respect to d. For each w ∈ Wd , we fold
inwards each of the three faces of w, and then replace the shrunk wedge by the union
of O(1) new wedges, so that (i) we lose at most quadratically many special cubes, and
(ii) the intersection of a plane orthogonal to d with any new wedge is either a canonical
2-wedge (as in the case of dihedral wedges) or is empty. This will allow us to apply a
variant of the arguments used for the case of dihedral wedges, from which the asserted
near-quadratic bound will follow.
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In more detail, we proceed as follows. Fix a direction d ∈ D, and consider the family
Wd of wedges for which d is a good direction. The canonization process ofWd has two
stages.

First Canonization Stage: Folding Backward Faces. Letw be a trihedral wedge inWd .
Define the forward face ofw to be the face spanned by those two edges ofw, call them e0

and e1, for which the scalar product with d is of the same sign (say positive), and call the
two other faces ofw the backward faces. In what follows we refer to a rayρ emerging from
the apex o ofw as positive (resp., negative) if the scalar product of a vector along ρ with
d is positive (resp., negative). Thus, the forward face ofw is spanned by the two positive
edges of w (assuming there are two), and each of the two backward faces is spanned by
one positive edge and by the unique negative edge, e2, ofw. These notions are illustrated
in Fig. 9(a), where the face oac is the forward face and the faces oab, obc are backwards.

We fold inwards each of the backward faces of w, so that any intersection of the
modified w by a plane orthogonal to d will be bounded by rays whose orientations
belong to some fixed set of constant size (this property is not enforced on any bounded
segment on the boundary of such a cross section). This deformation creates two new
concave edges, e′, e′′. This folding requires some care, and is done as follows. See Fig. 7
for an illustration.

We first fold each of the backward faces of w inwards along its positive edge (e0

or e1). Let f1 (resp., f4) denote the folded face incident to e1 (resp., e0). Let π1, π4 be
the two planes containing f1, f4, respectively, and put e∗ = π1 ∩ π4 ∩ w. Note that the
orientation of e∗ varies continuously as a function of the folding angles of f1 and f4,
and that the angle between e2 and planes orthogonal to d is at least some fixed constant
(that is, arcsin δ, where δ is as defined in (2)). This implies that we can perform the

Fig. 7. First canonization stage of trihedral wedges. The good direction d is upwards (within the page). (a) A
cross section of w by a plane parallel to d, superimposed on the three edges of w (shown dashed). (b) The
same cross section after the folding.
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folding so that the intersections of f1 and f4 with planes orthogonal to d have canonical
orientations, and e∗ is negative. Letw′ denote the wedge spanned by the edges e0, e1, e∗.
Clearly, the respective portions f ′1, f ′4 of f1 and f4 between e∗ and the respective edges
e1, e0 are backward faces of w′ and f remains its forward face.

Next, fold the two backward faces of w again, but this time about their common
edge e2. Again, using continuity and the fact that the angles that e0 and e1 make with
planes orthogonal to d are bounded away from 0, we can perform this folding so that
the following property holds: Denote the folded faces as f2 and f3, where f2 (resp., f3)
is folded from the face of w between e1 and e2 (resp., between e0 and e2). Let e′1 be
the edge of intersection of f1 and f2, and let e′0 be the edge of intersection of f3 and
f4. Then we require that the intersections of f2 and f3 with planes orthogonal to d be
at canonical orientations, and that the edges e′1 and e′0 be both positive. Let w′′ be the
wedge spanned by e′0, e′1, and e2. It is easily verified that e∗ must be contained in (the
interior of) w′′, and that w∗ = w′ ∪w′′ is a (nonconvex) pentahedral wedge bounded by
the faces f, f ′1, f2, f3, f ′4. Moreover, f2 and f3 are the two backward faces ofw′′ and its
third face, which we denote as f5, is a forward face. See Fig. 7.

We repeat this construction to each wedge w ∈Wd , and consider the collectionW ′d
consisting of all new wedges like w′, w′′, constructed above. The size ofW ′d is at most
twice that ofWd .

We now relate the number of special cubes inWd to those inW ′d . First, arguing as in
the proof of Lemma 2.3, it follows that the total number of special cubes in the collection
of the deformed pentahedral wedges w∗ decreases by at most O(n2). Indeed, a special
cube C = w1 ∩ w2 ∩ w3 inWd can stop being a special cube only if a concave edge of
one of the deformed w∗1, w

∗
2, w

∗
3 appears on the boundary of the cube. In particular, this

edge crosses the original C .
We then bound the number of special cubes inWd crossed by a concave edge t , say of

w1. Since t is contained in w1, by definition, any special cube crossed by t is formed by
w1 and by two other wedges w2, w3. For each other wedge w, let Iw denote the interval
w ∩ t . The endpoints of these intervals partition t into at most 2n atomic intervals, and
the intersection of t with a special cube C consists of one or of several consecutive atomic
intervals. Actually, such an intersection must be a single atomic interval, for otherwise
a fourth wedge would have intersected C , contrary to the properties of special cubes.
For the same reason, no atomic interval can lie in two distinct special cubes. It follows
that the number of special cubes crossed by t is at most 2n, so the total number of such
special cubes, over all possible choices of w1, is O(n2). This establishes the claim.

Next we relate the number of special cubes in the collection of deformed pentahedral
wedges to the number of special cubes inW ′d , through the following lemma.

Lemma 4.3. Let C be a special cube formed by the intersection of w∗ with two other
deformed wedges. Then C is, or contains, a quasi-special cube in W ′d formed by the
intersection of one of the (undeformed) wedges w′, w′′ with two other subwedges, one
of w∗a and one of w∗b .

Proof. Refer to Fig. 9(b). w∗ has five faces. Since the boundary of any special cube
formed by the intersection of w∗ with two other wedges meets exactly two faces of w∗,
there are

(5
2

) = 10 cases to consider.
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Fig. 8. The case where the special cube C has two opposite faces, one contained in a face of w′ and one in a
face of w′′.

Since faces f ′1, f2 form a concave angle between them, no special cube as above can
meet both f ′1 and f2, so this case is impossible. The same argument rules out the pair
f3, f ′4.

The faces f, f ′1, f ′4 are all contained inw′. Thus, any special cube that meets a pair of
these faces is a quasi-special cube equal to w′ ∩ w∗a ∩ w∗b . It is easily seen that w′′ does
not meet C in this case (nor does any other wedge).

The pair of faces f2, f3 are faces of w′′, so a special cube C that meets these faces
will be a quasi-special cube inW ′d defined byw′′ and the only new wedge that intersects
C (but does not define it) is w′.

The remaining four cases involve pairs of faces, one from { f2, f3} and one from
{ f, f ′1, f ′4} (excluding the pairs ( f ′1, f2) and ( f3, f ′4)). Any such special cube C (say,
formed between f2 and f ) must cross the forward face f5 of w′′ and cannot meet any
edge of f5, since those are also edges ofw∗. It now follows easily (see Fig. 8) that C∩w′′
has the structure of a cube, with two opposite faces belonging to w′′ (in the example
being considered, they are subfaces of f2 and of f5, respectively), and two opposite faces
belonging to each ofw∗a, w

∗
b . Thus, C ∩w′′ = w′′ ∩w∗a ∩w∗b is a quasi-special cube, and

the only new wedge that intersects C (but does not define it) is w′.
We have thus shown that C is, or contains, a quasi-special cube involving one of the

subwedgesw′, w′′ and the two other pentahedral wedgesw∗a, w
∗
b . Repeating twice again

the arguments just presented, we conclude that C is, or contains, a quasi-special cube in
W ′d , as asserted in the lemma.

We note that the level of any quasi-special cube constructed in the preceding proof
is at most three: it can be intersected (and not defined) by at most three wedges ofW ′d ,
one subwedge of each of the three pentahedral wedges that formed the original cube.

We have thus transformed the trihedral wedges of Wd into a family W ′d of new
trihedral wedges, whose size is at most 2|Wd | and such that (a) the two backward faces
of any new wedge have cross sections orthogonal to d at canonical orientations; and
(b) the number of special cubes in the original family is at most the number of quasi-
special cubes of level at most three in the new collection W ′d , plus O(n2). Following
Clarkson–Shor’s technique [6], the number of quasi-special cubes at level at most three is
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Fig. 9. The cross sections of a trihedral wedgew by planes in a good direction: (a) for the originalw; (b) after
folding inwards a face of w.

at most proportional to the number of special cubes in an appropriate random subfamily
ofW ′d . Hence, it suffices to bound the number of special cubes inW ′d .

Second Canonization Stage: Folding Forward Faces. Letw ∈W ′d and let π be a plane
orthogonal to d . The cross sectionw∩π is either a (canonical) 2-wedge (of angle≥ α0)
or a truncated 2-wedge (whose rays have canonical orientations). There is a unique plane
π0 orthogonal to d (passing through the apex of w) so that, as we sweep π parallel to
itself from infinity to π0, the cross section w ∩ π is a 2-wedge that translates at constant
velocity. After reaching π0, the apex of this 2-wedge gets truncated and is replaced by a
new edge that keeps widening as we sweep; see Fig. 9(a). We note though that the above
description fits wedges whose forward face points at the direction of increasing time.
Handling wedges whose forward face points at the direction of decreasing time can be
accomplished in a fully symmetric manner.

We replace the family of the cross sections ofw that are truncated wedges by another
family, as follows. For a planeπ precedingπ0 we leave the cross sectionπ∩w unchanged.
For a plane π succeeding π0, let w′ denote the truncated 2-wedge w∩π , with bounding
rays ρ1, ρ2 and bounding segment e. We replace w′ by two 2-wedges w′1, w′2, whose
apices are at the endpoints of e and whose bounding rays are parallel to ρ1 and ρ2; see
Figs. 9(b) and 10.

Lemma 4.4. There exist three trihedral wedgesw1,w2,w3, all contained inw, so that:

(i) w1 ∪ w2 ∪ w3 has one vertex—the apex o of w.
(ii) w1∪w2∪w3 has four (unbounded) edges, where three of these edges are convex

and coincide with the edges of w and the fourth is concave.
(iii) w1 ∪w2 ∪w3 has four faces, two of which coincide with two faces of w and the

other two are obtained by folding the third face of w inwards about each of its
edges.
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Fig. 10. Replacing a truncated-wedge cross section by two smaller 2-wedges.

(iv) The cross sections π ∩ (w1 ∪ w2 ∪ w3), over all planes π orthogonal to d ,
coincide with the modified cross sections of w.

(v) Each of the intersections π ∩ w1, π ∩ w2, π ∩ w3, for planes π orthogonal to
d , is empty on one side of the apex o, and is a 2-wedge translating at constant
velocity on the other side of o. All three kinds of 2-wedges are homothetic (and
canonical).

Proof. Let a, b, c be unit vectors along the edges of w, as above. We may assume,
without loss of generality, that 〈a, d〉 and 〈c, d〉 have the same sign, and that the sign of
〈b, d〉 is opposite; that is, the face between a and c is the forward face of w.

Let Fx,y denote the planar wedge bounded by the two rays that emanate from the apex
o of w in the directions x, y, respectively. Take the backward face Fa,b (resp., Fb,c) of w
and draw in it the ray u (resp., v) orthogonal to d. Letw1 be the convex hull of the edges
a, u, v, letw2 be the convex hull of the edges c, u, v, and letw3 be the convex hull of the
edges b, u, v. Note that any intersection of Fa,v with a plane orthogonal to d is empty
if the plane lies in the negative side of o, and is a ray parallel to v, otherwise. This, and
a symmetric statement concerning Fc,u , imply that all cross sections orthogonal to d of
each of w1, w2, w3, if nonempty, are all homothetic to each other. This is easily seen to
imply all five properties asserted in the lemma.

LetW ′′d denote the collection of the transformed, canonical wedges, obtained, as in
Lemma 4.4, from the wedges ofW ′d . Arguing as in the proof of Lemma 2.3, and in the
preceding analysis of the first canonization stage, we obtain:

Lemma 4.5. The number of special cubes for W ′d is smaller than or equal to the
number of special cubes forW ′′d plus O(n2).

Proof. Let w1, w2, w3 be three trihedral wedges inW ′d , forming a special cube C , and
let w′1, w

′
2, w

′
3 be their canonical images, that is, the union of the three partial wedges

that replace each original wedge, as in Lemma 4.4. Denote by twi the direction of the
new concave edge of w′i , for i = 1, 2, 3. By definition, C = w1 ∩ w2 ∩ w3. We may
assume that C does not meet any plane orthogonal to d and passing through the apex
of one of the wi ’s. Indeed, since the overall number of such planes is O(n), the number
of special cubes that violate this assumption is O(n2), so we may ignore them. Define
C ′ = w′1 ∩ w′2 ∩ w′3. Since each w′i ⊂ wi , it follows that C ′ ⊂ C . The cube C has two
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opposite faces from the boundary of each wi . Since only one face of wi has been folded
in the canonization process, it follows that C has three faces, one on the boundary of
each wi , such that these faces also lie on the respective boundaries ∂w′i . Let a be the
point of intersection of these faces. Then a is a vertex of C and also a vertex of C ′.

Consider the connected component C ′′ of C ′ that contains a. If C ′′ has the combina-
torial structure of a cube with pairs of opposite faces lying on the boundary of the same
w′i , then, arguing as in the proof of Lemma 4.3, C ′′ is easily seen to be a quasi-special
cube inW ′′d . Hence, each special cube forW ′d of this kind is mapped (in a 1–1 manner)
to a quasi-special cube forW ′′d , whose level is, as above, at most three.

If C ′′ does not have the combinatorial structure of a cube, as above, then ∂C ′′ must
meet one of the new concave rays twi . Suppose, without loss of generality, that tw1 meets
∂C ′′. In particular, tw1 crosses C . Arguing as in the analysis of the first canonization
stage, the overall number of such special cubes is O(n2). This completes the proof of
the lemma.

To recap, we have taken the original family Wd , for a fixed direction d, and have
deformed each wedge w ∈ Wd in two steps. First we have folded inwards its two
backward faces and replaced the “pinched” wedge w∗ by the union of two new wedges,
so that the backward faces of each new wedge have planar cross sections orthogonal
to d with canonical orientations. Then we have taken each new wedge w′ and folded
inwards its forward face, so that this pinched wedge can be replaced by the union of
three other wedges, so that any cross section orthogonal to d of any new wedge is either
empty or is a canonical 2-wedge, and all these canonical 2-wedges (from the same w′)
are homothetic to each other. The resulting setW ′′d is partitioned to O(1) subfamilies,
each consisting of 3-wedges with homothetic cross sections, as above.

4.2. Special Cubes and Complexity of the Union for Canonical Trihedral
Wedges

The estimation of the number of special cubes for W ′′d is similar to that for dihedral
wedges, with the following significant difference. Let w be a trihedral wedge in W ′′d .
From the point of view of the sweeping plane π , the modified cross section π ∩ w is
a 2-wedge translating at some fixed velocity until encountering some critical plane π0,
after which it disappears altogether, or, symmetrically, the intersection is empty until
the 2-wedge suddenly appears in π and then translates at some constant velocity. We
thus need to modify the preceding analysis so that it also handles these appearances and
disappearances.

The case of a single canonical family is trivial, and is handled as in the case of dihedral
wedges.

The Union of Two Canonical Families. For two families, denoted red and blue, we
estimate the number of special red–red–blue cubes.

We first bound the number of special red–red–blue cubes, for which the corresponding
blue 2-wedge is short (see the analysis of dihedral wedges for the definition). Using the
same two-dimensional frames introduced there, it is easily verified that the number of
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such cubes is O(n2α(n)). Indeed, as shown there, this number is proportional to the
overall complexity of the lower envelopes, over time, of the red 2-wedges as seen along
some ray bounding a blue 2-edge, summed over all blue 2-wedges. Since a red 2-wedge r
can appear or disappear at some critical time, it means that r is represented in such a two-
dimensional frame by a segment that may start or stop at that critical time. Hence, each
envelope is still an envelope of O(n) segments and rays, and the claim follows as above.

Consider next special red–red–blue cubes for which the corresponding blue 2-wedge
is long. Any such cube has, as in the dihedral case, a top–top–right vertex. This vertex
lies on a “top–top” red edge (in a cross section where the boundaries of two red 2-wedges
overlap). Since appearances and disappearances of 2-wedges do not affect such overlaps,
the number of overlaps is O(n2), as before.

Consider the planar cross section at the time of a red top–top overlap. This is a
planar arrangement of two families of (α/4)-fat wedges. Thus, there are at most c =
O((1/α) log(1/α)) blue 2-wedges that are long and form a red–red–blue special cube
in this arrangement.

Thus, the total number of special cubes for two canonical families is O(n2(α(n) +
(1/α) log(1/α))). This, combined with Theorem 1.6, implies that the complexity of the
union of two canonical families of trihedral wedges is O(n2+ε).

The Union of Three Canonical Families. For three canonical families, denoted red,
green, and blue, we estimate the number of special red–green–blue cubes, following and
adapting the analysis of the dihedral case.

Let C = r ∩ g ∩ b, for r ∈ R, g ∈ G, b ∈ B, be such a “tricolored” special cube.
The following properties, established for the case of dihedral wedges, continue to hold
for the trihedral wedges ofW ′′d , as is easily verified:

(i) There exists a plane π such that π ∩ C has five or six edges.
(ii) At the time (i) occurs, for any w,w′ ∈ {r, g, b}, either (w,w′) is exposed or

(w′, w) is exposed.
(iii) For each wedge w, the number of bichromatic exposed pairs (w,w′), at any

fixed time, is at most some constant c (equal to O((1/α) log(1/α))).

The number of events at which some wedge b starts or stops being initial for some
other wedge r is O(n2α(n)), as follows from the arguments used in the case of two
families of trihedral wedges.

Consider next an event at which some 2-wedge r starts or stops being semifree within
another 2-wedge b. It is easily checked that at such an event either (a) three sides of red
and blue 2-wedges become concurrent at a vertex that is contained only in b (as in the
case of dihedral wedges), or (b) some 2-wedge appears or disappears. Clarkson–Shor’s
technique, combined with the preceding result for two families of trihedral wedges,
implies that the number of events of type (a) is also O(n2+ε). Concerning events of
type (b), we note that the 2-wedge(s) that newly appear coincide at that critical time with
the 2-wedge(s) that disappear. It follows that the status of being semifree can change
at this time only for pairs that involve one of the 2-wedges that appear or disappear.
Since the number of such pairs is O(n) (at the time of appearance/disappearance), and
there are only O(n) events of appearance/disappearance, it follows that the number of
changes of type (b) is only O(n2).
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Let T denote the sorted list of all critical events at which the set of exposed pairs
changes. Following the procedure presented for the case of dihedral wedges, it is easily
verified that the number of special cubes in this case is at most (c + 1)|T |, where c is
the constant given in (iii) above. Since |T | = O(n2+ε), we conclude that the number of
special cubes in the case of three canonical families is O(n2+ε).

Hence, the number of special cubes inW ′′d , and thus also inWd , is O(n2+ε) for any
ε > 0. Summing this over all directions in D, the same asymptotic bound also holds for
the overall number of special cubes in W . This, combined with Theorem 1.6, implies
that the complexity of the union of the originalW is also O(n2+ε) for any ε > 0.

This completes the proof of Theorem 1.3.

Remark. Trying to extend the proof of Theorem 1.3 to the case of wedges that are
not substantially fat faces the difficulty that we might have planar cross sections that
are bounded triangles. In this case it is not necessarily true that the number of exposed
pairs (r, b) involving a fixed 2-wedge r is constant at any given time. This is the main
reason why substantial fatness is needed in our analysis, and an obvious open problem
is to extend the present technique, so that it can also handle bounded cross sections of
wedges.

5. The Union of Nearly Equal Cubes

In this section we apply Theorem 1.3 to derive Theorem 1.4. Without loss of generality,
we may assume that the side length of any cube in the given collection C is between 1 and
λ. Fix some constant parameter t < 1/

√
3. Construct a grid G of cubes with side length

t . Clearly, any cube c ∈ C intersects only a constant number of grid cubes. Consider the
collection G ′ of grid cubes Q, for which the collection CQ of cubes of C that intersect Q
is nonempty. Then |G ′| = O(n) and

∑
Q∈G ′ |CQ | = O(n).

Let Q be a grid cube in G ′, and put nQ = |CQ |. Let c be a cube in CQ . By the choice
of t , Q cannot contain a pair of points that lie on opposite faces of c. It follows that there
exists a vertex v of c so that the intersection of ∂c with Q is contained in the union of the
three faces of c incident to v. Moreover, any edge of c that meets Q must be incident to v.
Replace c by the trihedral wedge w that has v as an apex and is spanned by c (formally,
w = {v+ρ(x−v) | x ∈ c, ρ ≥ 0}). Then c∩Q = w∩Q. LetWQ denote the resulting
collection of trihedral wedges, for all c ∈ CQ . Then any vertex of the union of CQ within
Q is also a vertex of the union ofWQ .

By Theorem 1.3, the complexity of the union of WQ is O(n2+ε
Q ), for any ε > 0.

Summing over all grid cubes Q, Theorem 1.4 follows.
Theorem 1.4 can be extended in several ways, using essentially the same proof.

Theorem 5.1. Let B be a family of n boxes so that the ratio between the side lengths
of any pair of edges belonging to distinct members or to the same member of B is at
most λ, for some constant parameter λ > 1. Then the complexity of the union of B is
O(n2+ε), for any ε > 0.

Theorem 5.2. Let P be a family of n convex polytopes, each bounded by a constant
number of faces, so that the solid angles at the vertices of these polytopes are all (γ, α)-
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substantially fat, for some constants γ > 4π/3, α > 0, and the ratio between any two
distances δ1, δ2, where δi is the distance from a vertex of some polytope Pi ∈ P to a
nonincident edge of Pi , for i = 1, 2 (including the cases where P1 = P2), is at most
λ, for some fixed constant parameter λ ≥ 1. Then the complexity of the union of P is
O(n2+ε), for any ε > 0.

6. Efficient Construction of the Union

In this section we consider the problem of constructing efficiently the (boundary of the)
union of n nearly congruent cubes (or of any of the other kinds of objects studied in
this paper). For this we adapt the randomized algorithm of Aronov et al. [3], [4], which
constructs the boundary of the union along each face of each cube separately, and then
“stitches” together these boundary portions.

Let F be a face of one of the cubes. The algorithm intersects all other cubes with F ,
thereby obtaining a collection of convex polygons, and then computes the union of these
polygons by a straightforward randomized incremental construction that inserts these
polygons one by one in a random order. By adapting the analysis in [4] to the case at
hand, it is easily seen that the expected running time of the algorithm is O(n2+ε), for any
ε > 0. The reader is referred to [4] for further details. In other words, we have shown:

Theorem 6.1. The union of n nearly equal cubes can be computed in randomized
expected time O(n2+ε), for any ε > 0. Similar near quadratic bounds hold for the
computation of the union of fat dihedral wedges or of substantially fat trihedral wedges.

7. The Complexity of the Union and Special Cubes

In this section we conclude the paper by proving Theorem 1.6. This provides a general-
purpose analysis that obtains a bound on the complexity of the union of an arbitrary family
of convex polyhedra in three dimensions, which depends on bounds on the number of
special cubes in any subfamily.

We first recall the technique of Aronov et al. [4] for analyzing the complexity of the
union of arbitrary convex polyhedra in 3-space. We then extend it and show that the
complexity depends on bounding the number of special cubes.

LetP = {P1, . . . , Pn} be a collection of n convex polyhedra in 3-space, each bounded
by a constant number of facets. Let Pi , Pj , Pk be three distinct polyhedra in P . Let Fi

denote a face of Pi . The triple (Fi , Pj , Pk) defines a special quadrilateral Q if the
following conditions hold:

(i) Q = Fi ∩ Pj ∩ Pk is a quadrilateral.
(ii) Each of the intersections Fi ∩∂Pj ∩Pk and Fi ∩∂Pk∩Pj consists of two opposite

edges of Q.
(iii) Q ∩ P� = ∅ for any P� ∈ P\{Pi , Pj , Pk}.

Let Q(P) denote the number of special quadrilaterals for P , and let Q(n) denote the
maximum value for Q(P), taken over all collections of n convex polyhedra with a fixed
constant bound on the number of facets of each polyhedron, as above.
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The level of a vertex v of the arrangementA(P) is the number of polyhedra in P that
contain v in their interiors. We denote by C0(P) the number of vertices on ∂UP (which
is equal to the number of level-0 vertices of A(P)), and by C0(n) the maximum value
of C0(P), taken over all collections P of n convex polyhedra, as above.

Following Aronov et al. [4], we call a triple ( f, e, e′) special if f is a level-1 two-
dimensional face ofA(P), and e, e′ are 0-level edges of f , and we can trace the boundary
of f from e to e′ without passing through any other level-0 edge. We denote by C (1)(P)
the number of special triples in A(P), and by C (1)(n) the maximum value of C (1)(P),
taken over all collections P of n convex polyhedra, as above.

The following relation is established in [4] between C0(n) and Q(n). First we have

n − 5
3

n
C0(n) ≤ C0(n − 1)+ O(n2)+ 4

n
C (1)(n). (3)

The number of special triples is bounded in turn by the recurrence

n − 2

n
C (1)(n) ≤ C (1)(n − 1)+ 1

n
O(n2 + Q(n)). (4)

Notice that Definition 1.5 implies that every face of a special cube is a special quadri-
lateral. The proof proceeds by charging special quadrilaterals to special cubes or to
vertices at shallow levels in the arrangement A(P). Let Q = F1 ∩ P2 ∩ P3 be a spe-
cial quadrilateral defined by three polyhedra P1, P2, P3 ∈ P , where F1 is a face of P1.
Consider the corresponding intersection C = P1∩ P2∩ P3. We distinguish between two
cases:

Case (a): C has the combinatorial structure of a cube (where each Pi contributes two
opposite faces to C). Let F1

i , F2
i denote the two faces of Pi that contain (opposite) faces

of Q, for i = 1, 2, 3, where F1
1 = F1 is the face that contains Q. Let pij = F1

1 ∩ Fi
2 ∩ F j

3 ,
for i, j = 1, 2, denote the four vertices of Q, and let sij = P1 ∩ Fi

2 ∩ F j
3 denote the edge

of C emanating from pij “away” from Q. Let t denote the total number of intersections
of the edges sij with faces of other polyhedra. Fix some threshold parameter k, to be
specified later, and consider the following two subcases:

Subcase (i): t > k. We charge Q to the first k intersections encountered along the side
edges sij, as we trace them from Q, and note that each of the charged vertices is a vertex
of the arrangement at level at most k. Moreover, any such vertex v can be charged by at
most six special quadrilaterals. Indeed, any such quadrilateral contains a vertex (at level
0) that lies on one of the intersection edges incident to v, and the portion of that edge
between the quadrilateral and v does not contain any other vertex at level 0.

Denote by Cξ (n) (and C≤ξ (n)) the maximum number of vertices at level ξ (resp., at
most ξ ) in an arrangement of n convex polyhedra, as above. Applying Clarkson–Shor’s
probabilistic analysis technique [6], we have

C≤k(n) =
k∑
ξ=0

Cξ (n) = O
(

k3C0

(n

k

))
.

This, and the argument in the preceding paragraph, imply that the number of special
quadrilaterals of this type is O(k2C0(n/k)).



The Union of Congruent Cubes in Three Dimensions 157

Subcase (ii): t ≤ k. Suppose first that C is crossed by an edge of some polyhedron in P
(that is, the edge intersects ∂C at two points). We claim that there exists an intersection
point q between such an edge and ∂C that lies at level ≤ k in A(P). Indeed, if an edge
e crosses ∂C , then, since it does not cross Q, it must cross one of the four “side faces”
of C adjacent to Q. Let F be such a face. There exist at most k polyhedra that cross the
two side edges of F (those that meet Q at a single vertex). The cross section of any other
polyhedron with F must be a convex polygon which is either fully contained in F or
“exits” it only through its bottom edge. It is easily verified that the boundary of the union
of the cross sections F ∩ P , over all such polyhedra P , must contain a vertex v of one
of these cross sections, which is thus an intersection of a polyhedron edge with F that
lies at level at most k in A(P). We then charge Q to v, and note that v can be charged
by at most O(k2) special quadrilaterals Q. Indeed, v determines the face F and thus one
of the three polyhedra that induce Q. The other two must be two of the at most k other
polyhedra that contain v in their interior. The number of intersections between edges and
faces of polyhedra is O(n2), which implies that the number of special quadrilaterals Q
under consideration is O(k2n2).

Suppose next that C is intersected by an edge e of a polyhedron in P which does
not meet any side face of C . Then e must have an endpoint inside C . Moreover, the
polyhedron bounded by e is either fully contained within C or “exits” C only through its
bottom face (the one opposite to Q). As above, the boundary of the union of the portions
within C of all such polyhedra must contain a vertex of one of them, which is thus a
vertex at level at most k inA(P). Arguing as above, the number of special quadrilaterals
Q for which this subcase applies is only O(k2n).

We may thus assume that C is not crossed by any edge of a polyhedron in P , so the
only polyhedra that intersect C are those t ≤ k polyhedra that intersect some of the four
side edges of C . Recall that the level of a cube C that satisfies conditions (i) and (ii) of
Definition 1.5 is the number of polyhedra of P that intersect C , other than those three
that define C . Hence, in the case at hand, C is a cube at level at most k. We charge Q to C
(which can be charged in this manner at most six times). Denote the maximum number
of cubes at level ξ (resp., at most ξ ) in a collection of n convex polyhedra, as above, by
ψξ(n) (resp., by ψ≤ξ (n)). In particular, ψ0 bounds the number of special cubes in the
given collection. Applying again Clarkson–Shor’s technique, we obtain

ψ≤k(n) =
k∑
ξ=0

ψξ(n) = O
(

k3ψ0

(n

k

))
.

Hence, the number of special quadrilaterals in the present subcase is O(k3ψ0(n/k)).

Case (b): C does not have the combinatorial structure of a cube. (This case is easy to
analyze in the case of wedges, and most of the foregoing analysis is not required for
that special case.) Let F1 be the face of P1 that contains Q. Denote by F1

2 , F2
2 the two

faces of P2 that contain two opposite edges of Q and by F1
3 , F2

3 the two faces of P3 that
contain the other two opposite edges of Q. If C is not a cube, then one of the following
subcases has to arise:

(i) One of the four intersection edges P1 ∩ Fi
2 ∩ F j

3 , for i, j = 1, 2, is unbounded.
(ii) One of those four intersection edges ends within the interior of P1.

(iii) Not all four of those intersection edges leave P1 from the same face.
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(Note that subcase (iii) cannot occur for dihedral wedges, since any such wedge has only
two faces.)

In subcases (i) and (ii) we can charge Q to the corresponding intersection edge Fi
2∩F j

3 .
It is clear that any such edge can be charged in this manner at most once. Indeed, if it is
charged by a special quadrilateral Q as above, then the portion of the edge between its
intersection point v with Q and its endpoint, or from v to infinity, is fully contained in
the third polyhedron P1. Since v is a vertex at level 0, the claim is immediate. It follows
that the number of special quadrilaterals in subcases (i) and (ii) is O(n2).

In subcase (iii) at least one of the “side faces” Fi
2 , F j

3 (say, F1
2 ) has the property that

ϕ = C ∩ F1
2 is not a quadrilateral. Moreover, if e is the edge of ϕ that is also an edge of

Q, then the edges of ϕ adjacent to e both lie on ∂P3 and the two (necessarily distinct!)
edges adjacent to these edges at their other endpoints lie on ∂P1; ϕ may have additional
edges that lie on either boundary.

We first assume that neither of the two edges P1 ∩ F1
2 ∩ F j

3 is crossed by more than
k other polyhedra, for the threshold parameter k that we have chosen. If this does occur,
we use the same charging scheme employed in Case (a) above.

Suppose that the remaining portion of ∂ϕ contains two successive edges that lie on
∂P1. Then ϕ has a vertex that is an intersection of an edge of P1 with F1

2 . We can then
charge Q to such an intersection v, and note that v cannot be charged more than 2k
times. Indeed, consider the face K = F1

2 ∩ P1. This is a convex polygon with O(1)
edges and with v as a vertex, and ϕ is obtained by intersecting K with P3. Let P be
another polyhedron in P that contains v and induces a face ϕ′ = K ∩ P with the same
structure as above, so that ϕ′ is adjacent to a special quadrilateral Q′ along some edge
of K . Then, as is easily verified, at least one of the two edges of ϕ lying on ∂P3 and one
of the two edges of ϕ′ lying on ∂P must cross each other (see Fig. 11(a)), which implies
the asserted property. Hence, the number of special quadrilaterals Q in this subcase
is O(n2k).

Consider next the case where ϕ has two successive edges that lie on ∂P3. In this case
ϕ has a vertex that is an intersection of an edge of P3 with F1

2 . We charge Q to such an
intersection v. Given v, we know P3 and F1

2 . Their intersection is a convex polygon K ′

with O(1) sides, and ϕ touches at least three of its sides, so that one of the “chords” of
ϕ, i.e., an edge of ϕ lying in the interior of K ′, is disjoint from any other polyhedron—
this is the edge incident to Q (see Fig. 11(b)). It is easily checked that, once the two
edges of K ′ connected by this chord are fixed (there are O(1) choices for such a pair of
edges), the chord is unique, from which the claim follows. Hence, the number of special
quadrilaterals Q in this subcase is only O(n2).

Otherwise, the edges of ϕ alternate between edges incident to ∂P1 and edges incident
to ∂P3, and their total number is at least six. We claim that, when F1

2 and P3 are fixed,
there can be only O(1) polyhedra P1 that generate a special quadrilateral Q with F1

2
and P3, as above. Indeed, put K ′ = F1

2 ∩ P3. K ′ is a convex polygon with O(1) edges
but with at least three edges that lie on ∂P3, and ∂ϕ has at least three chords of ∂P1

that connect pairs of these edges, with one of the chords (the one incident to Q) being
disjoint from any other polyhedron. Arguing as above, it is easy to see that, once the
two edges of K ′ connected by this chord are fixed (there are O(1) choices for such a
pair of edges), the chord is unique (see Fig. 11(c)). Indeed, if two chords connect the
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Fig. 11. The cases where ϕ is not a quadrilateral: (a) ϕ has a vertex lying on an edge of P1; (b) ϕ has a vertex
lying on an edge of P3; (c) ∂ϕ alternates between edges lying on ∂P1 and edges lying on ∂P3.

same pair of edges of K ′, then one of them bounds a quadrilateral within K ′, contrary to
assumption. This implies that the number of special quadrilaterals Q in this subcase is
only O(n2).

Thus, if we add all the bounds obtained so far, we obtain the following recurrence for
the maximum number Q(n) of special quadrilaterals:

Q(n) = O
(

k2n2 + k2C0

(n

k

)
+ k3ψ0

(n

k

))
.

By assumption, ψ0(n/k) = O((n/k)γ ), so we have

Q(n) = O
(

k2n2 + k3−γ nγ + k2C0

(n

k

))
. (5)

Arguing as in [16], for example, and using the fact that γ > 2, the solution of the
combined recurrences (3), (4), and (5) can be shown to be O(nγ ). This completes the
proof of Theorem 1.6.
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