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Abstract. We present algorithms for constructing a hierarchy of increasingly coarse
Morse–Smale complexes that decompose a piecewise linear 2-manifold. While these com-
plexes are defined only in the smooth category, we extend the construction to the piecewise
linear category by ensuring structural integrity and simulating differentiability. We then sim-
plify Morse–Smale complexes by canceling pairs of critical points in order of increasing
persistence.

1. Introduction

In this paper we define the Morse–Smale complex decomposing a piecewise linear 2-
manifold and present algorithms for constructing and simplifying this complex.
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Motivation. Physical simulation problems often start with a space and measurements
over this space. If the measurements are scalar values, we talk about a height function over
that space. We use this name throughout the paper, although the functions can be arbitrary
and do not necessarily measure height. Two-dimensional examples of height functions
include intensity values of an image and the elevation of a terrain as parametrized by
longitude and latitude. Three-dimensional examples include the temperature within a
room and the electron density over a crystallized molecule. In all these examples, we
seek to derive structures that enhance our understanding of the measurements.

Consider a geographic landscape modeled as a height function h: D → R over a
two-dimensional domain D. We can visualize h by a discrete set of iso-lines h−1(c),
for constant height values c. The topological structure of iso-lines is partially captured
by the contour tree [3], [4], [17]. If h is differentiable, we may define the gradient field
consisting of vectors in the direction of the steepest ascent. Researchers in visualization
have studied this vector field for some time [1], [5], [16]. The Morse–Smale complex
captures the characteristics of this vector field by decomposing the manifold into cells
of uniform flow. As such, the Morse–Smale complex represents a full analysis of the
behavior of the vector field.

Often, however, the smooth domain D is sampled. No matter how dense the sampling,
we encounter two critical issues: our theoretical notions, based on smooth structures, are
no longer valid, and we have to distinguish between noise and features in the sampled
data. Our goal in this work is resolve both issues in the piecewise linear (PL) domain.

Methods and Results. To extend smooth notions to PL manifolds, we use differential
structures to guide our computations. We call this method the simulation of differentia-
bility or SoD paradigm. Using SoD, we first guarantee the computed complexes have the
same structural form as those in the smooth case. We then achieve numerical accuracy
by means of transformations that maintain this structural integrity. The separation of
combinatorial and numerical aspects of computation is similar to many algorithms in
computational geometry. It is also the hallmark of the SoD paradigm. Our results are:

(i) an algorithm for constructing a complex whose combinatorial form matches that
of the Morse–Smale complex,

(ii) an algorithm for deriving the Morse–Smale complex from the complex in (i) via
local transformations,

(iii) an algorithm for constructing a hierarchy of Morse–Smale complexes, again via
local transformations, and

(iv) the application of the algorithms to geographic terrain data.

Because of the theoretical nature of our endeavor, we devote most of our effort in this
paper to (i)–(iii). While we include only a short section on (iv), we view this paper as
the foundation for creating robust software for the scientific and engineering fields.

Outline. The rest of the paper is organized as follows. In Section 2 we introduce the
theoretical background from Morse theory on smooth 2-manifolds. In Section 3 we
extend these notions to PL domains, and discuss difficulties resulting from the absence
of smoothness. Having computed a structurally correct complex in Section 4, we compute
the Morse–Smale complex via transformations in Section 5. We introduce topological
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persistence in Section 6, and use it to create a hierarchy of complexes in Section 7. We
give some experimental results for geographic landscapes in Section 8, concluding the
paper in Section 9.

2. Smooth 2-Manifolds

In this section we introduce concepts from Morse theory we need as the theoretical
background for our work. We refer to [11] and [18] for further background.

Morse Functions. Let M be a smooth, compact 2-manifold without boundary and let
h: M → R be a smooth map. The differential of h at the point a is a linear map
dha : TMa → TRh(a) mapping the tangent space of M at a to that of R at h(a). (The
tangent space of R at a point is simply R again, with the origin shifted to that point.) A
point a is called critical if the map dha is the zero map. Otherwise, it is a regular point.
At a critical point a we compute in local coordinates the Hessian of h,

H(a) =



∂2h

∂x2
(a)

∂2h

∂y ∂x
(a)

∂2h

∂x ∂y
(a)

∂2h

∂y2
(a)


 .

The Hessian is a symmetric bilinear form on the tangent space TMa of M at a. The
matrix above expresses this functional in terms of the basis ((∂/∂x)(a), (∂/∂y)(a)) for
TMa . A critical point a is called non-degenerate if the Hessian is non-singular at a,
i.e., det H(a) �= 0, a property that is independent of the coordinate system. The Morse
Lemma [11] states that near a non-degenerate critical point a it is possible to choose
local coordinates so that h takes the form

h(x, y) = h(a)± x2 ± y2.

The number of minuses is called the index i(a) of h at a; it equals the number of
negative eigenvalues of H(a) or, equivalently, the index of the functional H(a). Note
that the existence of these local coordinates implies that non-degenerate critical points
are isolated.

In two dimensions there are three types of non-degenerate critical points: minima have
index 0, saddles have index 1, and maxima have index 2. The function h is called a Morse
function if all its critical points are non-degenerate. (Sometimes one also requires that
the critical values of h, that is, the values that h takes at its critical points, are distinct. We
will not need this requirement here.) Any twice differentiable function h can be unfolded
to a Morse function.

Stable and Unstable Manifolds. In order to measure angles and lengths for tangent
vectors, we choose a Riemannian metric 〈, 〉 onM, i.e., an inner product in each tangent
space TMa that varies smoothly over M. Since each vector in TMa is the tangent to a
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curve γ inM through a, the gradient of h, ∇h, can be defined by the formula〈
dγ

dt
,∇h

〉
= d(h ◦ γ )

dt
,

for every γ . It is always possible to choose coordinates (x, y) so that the tangent vectors
(∂/∂x)(a), (∂/∂y)(a) are orthonormal with respect to 〈, 〉. For such coordinates, the
gradient is given by the familiar formula ∇h = ((∂h/∂x)(a), (∂h/∂y)(a)).

An integral line p: R → M is a maximal path whose tangent vectors agree with
the gradient, that is, (d/ds)p(s) = ∇h(p(s)) for all s ∈ R. The image of p is denoted
by im p. Each integral line is open at both ends. We call org p = lims→−∞ p(s) the
origin and dest p = lims→+∞ p(s) the destination of the path p. These limits both exist
becauseM is compact. Integral lines have the following three properties:

(P1) Two integral lines either have disjoint images or they are the same.
(P2) The images of integral lines cover all the non-critical points ofM.
(P3) The limits org p and dest p are critical points of h.

We use these properties to decomposeM into regions of similar flow. The stable manifold
S(a) and the unstable manifold U (a) of a critical point a are defined as

S(a) = {a} ∪ {y ∈M | y ∈ im p, dest p = a},
U (a) = {a} ∪ {y ∈M | y ∈ im p, org p = a}.

Note that the unstable manifolds of h are the stable manifolds of−h as∇(−h) = −∇(h).
Therefore, the two types of manifolds have the same structural properties. An open cell
of dimension i is a space homeomorphic to Ri . The stable manifold S(a) of a critical
point a with index i = i(a) is an open cell of dimension dim S(a) = i . The closure
of a stable manifold, however, is not necessarily homeomorphic to a closed ball, as
seen in Fig. 1. By properties (P1)–(P3), the stable manifolds are pairwise disjoint and
decompose M into open cells. The cells form a complex, as the boundary of every cell
S(a) is the union of lower-dimensional cells, its faces. The unstable manifolds similarly
decompose M into a complex dual to the complex of stable manifolds: for a, b ∈ M,
dim S(a) = 2− dim U (a), and S(a) is a face of S(b) iff U (b) is a face of U (a).

Morse–Smale Complex. A Morse function h is a Morse–Smale function if the stable and
unstable manifolds intersect only transversally. In two dimensions this means that stable
and unstable 1-manifolds cross when they intersect. Their crossing point is necessarily
a saddle, since crossing at a regular point would contradict property (P1). We intersect
the stable and unstable manifolds to obtain the Morse–Smale cells as the connected
components of the sets U (a) ∩ S(b), for all critical points a, b ∈M. The Morse–Smale
complex is the collection of Morse–Smale cells. Note that U (a) ∩ S(a) = {a}, and if
a �= b, then U (a) ∩ S(b) is the set of regular points y ∈ M that lie on integral lines
p with org p = a and dest p = b. It is possible that the intersection consists of more
than one component, as seen in Fig. 1. We refer to the cells of dimension 0, 1, and 2 as
vertices, arcs, and regions, respectively. Each vertex is a critical point, each arc is half
of a stable or unstable 1-manifold, and each region is a component of the intersection of
a stable and an unstable 2-manifold. We prove that the regions have a special shape.
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saddle maximumminimum

Fig. 1. A Morse–Smale complex with solid stable 1-manifolds and dashed unstable 1-manifolds. In drawing
the dotted iso-lines we assume that all saddles have height between all minima and all maxima.

Quadrangle Lemma. Each region of the Morse–Smale complex is a quadrangle with
vertices of index 0, 1, 2, 1, in this order around the region. The boundary is possibly
glued to itself along vertices and arcs.

Proof. The vertices on the boundary of any region alternate between saddles and other
critical points, which, in turn, alternate between maxima and minima. The shortest
possible cyclic sequence of vertices around a boundary is therefore 0, 1, 2, 1, a quadrangle.
We prove below that longer sequences force a critical point in the interior of the region,
a contradiction.

We take a region whose boundary cycle has length 4k for k ≥ 2 and glue two copies
of the region together along their boundary to form a sphere. We glue each critical point
to its copy, so saddles become regular points, maxima and minima remain as before. The
Euler characteristic of the sphere is 2, and so is the alternating sum of critical points,∑

a(−1)i(a). However, the number of minima and maxima together is 2k > 2, which
implies that there is at least one saddle inside the region.

Quasi MS-Complexes. Intuitively, a quasi MS-complex is a complex with the structural
form of a Morse–Smale complex. It is combinatorially a quadrangulation with vertices
at the critical points of h and with arcs that strictly ascend or descend as measured by h.
It differs from a Morse–Smale complex in that its arcs may not necessarily be the arcs
of maximal ascent and descent. A subset of the vertices in a complex Q is independent
if no two are connected by an arc. The complex Q is splitable if we can partition the
vertices into three sets U, V,W and the arcs into two sets A, B so that

(i) U ∪ W and V are both independent,
(ii) arcs in A have endpoints in U ∪ V and arcs in B have endpoints in V ∪ W , and
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(iii) each vertex v ∈ V belongs to four arcs, which in a cyclic order around v alternate
between A and B.

We may then split Q into two complexes defined by U, A and W, B. Note that the Morse–
Smale complex is splitable: (i) U , V , and W are the maxima, saddles, and minima,
respectively, (ii) A connects maxima to saddles and B connects minima to saddles, and
(iii) saddles have degree four and alternate as required. The Morse–Smale complex then
splits into the complex of stable and the complex of unstable manifolds.

A splitable quadrangulation is a splitable complex whose regions are quadrangles.
We define a quasi MS-complex of a 2-manifoldM and a height function h as a splitable
quadrangulation whose vertices are the critical points of h and whose arcs are monotonic
in h.

3. PL 2-Manifolds

The gradient of a PL height function is not continuous and does not generate the pair-
wise disjoint integral lines that are needed to define stable and unstable manifolds. In
this section we deal with the resulting difficulties by simulating differentiability using
infinitesimal bump functions. Such a simulation unfolds degenerate critical points and
turns stable and unstable manifolds into open cells, as needed.

Triangulation and Stars. Let K be a triangulation of a compact 2-manifold without
boundaryM, and let h: M→ R be a PL height function that is linear on every triangle.
The height function is thus defined by its values at the vertices of K . It will be convenient
to assume h(u) �= h(v) for all vertices u �= v in K . We simulate simplicity to justify this
assumption computationally [8].

In a triangulation, the natural concept of a neighborhood of a vertex u is the star, St u,
that consists of u together with the edges and triangles that share u as a vertex. Formally,
St u = {σ ∈ K | u ≤ σ }, where u ≤ σ is short for u being a face of σ . Since all vertices
have different heights, each edge and triangle has a unique lowest and a unique highest
vertex. Following Banchoff [2], we use this to define the lower and upper stars of u,

St u = {σ ∈ St u | h(v) ≤ h(u), v ≤ σ },
St u = {σ ∈ St u | h(v) ≥ h(u), v ≤ σ }.

These subsets of the star contain the simplices that have u as their highest or their lowest
vertex. We may partition K into a collection of either subsets, K = ⋃̇uSt u = ⋃̇uSt u.

We may also use the lower and upper stars to classify a vertex as regular or critical.
We define a wedge as a contiguous section of St u that begins and ends with an edge. As
shown in Fig. 2, the lower star either contains the entire star or some number k + 1 of
wedges, and the same is true for the upper star. If St u = St u, then k = −1 and u is a
maximum. Symmetrically, if St u = St u, then k = −1 and u is a minimum. Otherwise,
u is regular if k = 0, a (simple) saddle if k = 1, and a k-fold or multiple saddle if k ≥ 2.
A two-fold saddle is often called a monkey saddle.
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maximum regular saddle monkey saddle

Fig. 2. The light shaded lower wedges are connected by white triangles to the dark shaded upper wedges.

Fig. 3. A monkey saddle may be unfolded into two simple saddles in three different ways. If a wedge consists
of a single edge, this edge unfolds into two copies.

Multiple Saddles. We can unfold a k-fold saddle into two saddles of multiplicity 1 ≤
i, j < k with i + j = k by the following procedure. We split a wedge of St u (through a
triangle, if necessary), and similarly split a non-adjacent wedge of St u. The new number
of (lower and upper) wedges is 2(k + 1) + 2 = 2(i + 1) + 2( j + 1), as required.
By repeating this process, we eventually arrive at k simple saddles. We place these
saddles at the same height as the k-saddle they represent, and simulate perturbation.
The combinatorial process is ambiguous, but for our purposes it is sufficient to pick an
arbitrary unfolding from the set of possibilities. For a monkey saddle, there are three
ways to unfold minimally, as shown in Fig. 3.

Merging and Forking. The concept of an integral line for a PL function is not well
defined. Instead, we construct monotonic curves that never cross. Such curves can merge
together and fork after a while. Moreover, it is possible for two curves to alternate
between merging and forking an arbitrary number of times. To resolve this, when two
curves merge, we pretend that they maintain an infinitesimal separation, running side
by side without crossing. Figure 4 illustrates the two PL artifacts and the corresponding
simulated smooth resolution. The computational simulation of disjoint integral lines is
delicate and is described in Section 4.

Fig. 4. Merging and forking PL curves and their corresponding smooth flow pictures.
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Fig. 5. The unstable 1-manifold of the lower saddle approaches the upper saddle.

Non-Transversal Intersections. The standard example in Morse theory is the height
function over a torus standing on its side. The lowest and highest points of the inner ring
are the only saddles, as shown in Fig. 5. Both the unstable 1-manifold of the lower saddle
and the stable 1-manifold of the upper saddle follow the inner ring, so they overlap in
two open half-circles. Generically, such non-transversal intersections do not happen. The
characteristic property of a non-transversal intersection is that the unstable 1-manifold of
one saddle approaches another saddle, and vice versa. An arbitrarily small perturbation
of the height function suffices to make the two 1-manifolds miss the other saddles and
approach a maximum and a minimum without meeting each other. The PL counterpart
of a non-transversal intersection is an ascending or descending path that ends at a saddle.
We simulate the generic case by extending the path beyond the saddle. Again, we give
the details in Section 4.

4. Computing Quasi MS-Complexes

Given a triangulation K of a compact 2-manifold without boundary, and a PL height
function h, our goal is to compute the Morse–Smale complex for a simulated unfolding
of h. In this section we take a first step, computing a quasi MS-complex Q of h. To
obtain a fast algorithm, we limit ourselves to paths using the edges of K . While the
resulting complex is numerically inaccurate, the focus is on capturing the structure of
the Morse–Smale complex.

Recall that the quasi MS-complex Q will have the critical points of h as vertices, and
monotonic non-crossing paths as arcs. To resolve the merging and forking of paths, we
formulate a three-stage algorithm. In each stage we compute a complex whose arcs are
non-crossing monotonic paths, guaranteeing this property for the final complex.

Complex with Junctions. In the first stage we build a complex with extra vertices. We
begin by classifying all vertices and computing the wedges of their lower and upper
stars. We determine the steepest edge in each wedge and start k + 1 ascending and
k+1 descending paths from every k-fold saddle. Each path begins in its own wedge and
follows a sequence of steepest edges until it hits

(a) a minimum or a maximum,
(b) a previously traced path at a regular point, or
(c) another saddle,
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at which point the path ends. Case (a) corresponds to the generic case for smooth height
functions, case (b) corresponds to a merging or forking, and case (c) is the PL counterpart
of a non-transversal intersection between a stable and an unstable 1-manifold.

To resolve case (b), we allow regular points or junctions as vertices of the complex.
We either create a new junction and split the previously traced path, or we increase the
degree of the previously created junction. By definition, junctions remove all crossings
in the complex. We will eliminate junctions and resolve case (c) in the second stage of
the algorithm.

We use the quad edge data structure [10] to store the complex defined by the paths.
The vertices of the complex are the critical points and junctions, and the arcs are the
pairwise edge-disjoint paths connecting these vertices.

Extending Paths. In the second stage of our algorithm, we extend paths to remove
junctions and reduce the number of arcs per k-fold saddle to 2(k + 1). Whenever we
extend a path, we route it along and infinitesimally close to an already existing path. In
practice, we simulate this extension combinatorially within the quad-edge data structure.
In extending paths, we may create new paths ending at other junctions and saddles. Con-
sequently, we must process the vertices in a sequence that prevents cyclic dependencies.
Since ascending and descending paths are extended in opposite directions, we need two
orderings and we touch every vertex twice. It is convenient first to extend ascending
paths in the order of increasing height, and second to extend descending paths in the
order of decreasing height. We next discuss our routing procedures for junctions and
saddles. In the figures that follow, we orient paths in the direction they emanate from a
saddle.

Consider the junction y in Fig. 6 on the left. By definition, y is a regular point with
lower and upper stars consisting of one wedge each. The first time we encounter y, the
path is traced right through the point. In every additional encounter, the path ends at
y, as y is now a junction. If the first path is ascending, then one ascending path leaves
y into the upper star, all other ascending paths approach y from the lower star, and all
descending paths approach y from the upper star. This is the case shown in Fig. 6. We
duplicate paths for all junctions using our two orderings. Note that the new paths, shown
in the middle of Fig. 6, may include duplicates spawned by junctions that occur before
this vertex in an ordering. Finally, we concatenate the resulting paths in pairs without
creating crossings, as shown in Fig. 6 to the right.

We next resolve case (c), paths that have another saddle as an endpoint. Consider the
saddle x in Fig. 7. We look at path extensions only within one of the sectors between two

yy

Fig. 6. Paths ending at junctions are extended by duplication and concatenation.
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xx x

Fig. 7. Paths that end at a saddle by case (c) are extended by duplication and concatenation.

cyclically contiguous steepest edges. Within this sector there may be ascending paths
approaching x from within the overlapping wedge of the lower star, and descending
paths approaching x from within the overlapping wedge of the upper star, as shown in
Fig. 7 to the left. After path duplications, we concatenate the paths in pairs. Again, we
can concatenate without creating crossings. At the end of this process, our complex has
critical points as vertices, and monotonic non-crossing paths from saddles to minima or
maxima as arcs.

Unfolding Multiple Saddles. In the third and last stage of our algorithm, we unfold
every k-fold saddle into k simple saddles. As indicated in Fig. 3, we can do so simply by
duplicating the saddle and paths ending at the saddle. All paths of case (c) have already
been removed in the second stage, so we only have to deal with the k + 1 ascending and
k + 1 descending paths that originate at the k-fold saddle. In each of the k − 1 steps,
we duplicate the saddle, one ascending path, and a non-adjacent descending path. In
the end, we have k saddles and 2(k + 1) + 2(k − 1) = 4k paths, or four per saddle.
Figure 8 illustrates the operation by showing a possible unfolding of a three-fold saddle.
The unfolding procedure does not create any path crossings in the previous complex,
which had no crossings.

Quasi MS-Complex Lemma. The algorithm computes a quasi MS-complex for K .

Proof. Let Q be the complex constructed by the algorithm. The vertices of Q are
the unfolded critical points of K , so they are minima, saddles, and maxima. The paths
are non-crossing and stage two guarantees that the paths go from saddles to minima
or maxima. Therefore, Q is splitable. Moreover, the vertices on the boundary of any
region of Q alternate between saddles and other critical points. The Quadrangle Lemma
implies Q is a quadrangulation. Therefore, Q is a splitable quadrangulation, or a quasi
MS-complex.

Fig. 8. Unfolding a three-fold saddle into three simple saddles.
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dA a

CB bc

D

Fig. 9. The octagon is the union of a row of three quadrangles. The haloed edges indicate the alternative
quadrangulation created by the handle slide.

5. Local Transformation

We transform a quasi MS-complex to the Morse–Smale complex via a sequence of
transformations called handle slides. We first describe these transformations, and then
present and analyze an algorithm that applies handle slides to the quasi MS-complex.

Handle Slide. A handle slide transforms one quasi MS-complex into another. The two
quadrangulations differ only in their decompositions of a single octagon. In the first
quadrangulation the octagon consists of a quadrangle abcd together with two adjacent
quadrangles baDC and dcBA. Assume that d and D are minima and b and B are maxima,
as in Fig. 9. We perform a slide by drawing an ascending path from a to B replacing
ab, and a descending path from c to D replacing cd. After the slide, the octagon is
decomposed into quadrangles DcBa in the middle and cDCb, aBAd on its two sides.

It is possible to think of the better known edge-flip in a two-dimensional triangulation
as the composition of two octagon slides. To explain this, we superimpose a triangulation
with its dual diagram, making sure that only corresponding edges cross, as in Fig. 10.
The vertices of the triangulation correspond to minima, the vertices of the dual diagram
to maxima, and the crossing points to saddles. When we flip an edge in the triangulation,
we also reconnect the five edges in the dual diagram that correspond to the five edges of
the two triangles sharing the flipped edge. The result of the edge-flip is thus the same as
that of two octagon slides, one for the lower left three quadrangles, and the other for the
upper right three quadrangles in Fig. 10.

Fig. 10. Edge-flip shown in super-imposition of solid triangulation with its dashed dual diagram. The maxima
before and after the flip should be at the same location but are moved for clarity of the illustration.
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Fig. 11. The directions of locally steepest ascent are orthogonal to the dotted level lines.

Steepest Ascent. We decide whether or not to apply a handle slide to an octagon by
rerouting its interior paths. We reroute an ascending path by following the direction of
locally steepest ascent, which may go along an edge or pass through a triangle of K .
There are three cases as shown in Fig. 11. In the interior of a triangle uvw, that steepest
direction is unique and orthogonal to the level lines. In the interior of an edge, there
may be one or two locally steepest directions, and at a vertex there may be as many
locally steepest directions as there are triangles in the star. We may compute the globally
steepest direction numerically with small error, but errors accumulate as the path traverses
triangles. Alternatively, we can compute the globally steepest direction exactly with
constant bit-length arithmetic operations, but the bit-length needed for the points along
the path grows as it traverses more triangles. This phenomenon justifies the SoD approach
to constructing a Morse–Smale complex. In that approach the computed complex has the
same combinatorial form as the Morse–Smale complex, and it is numerically as accurate
as the local rerouting operations used to control handle slides.

Algorithm. We now describe how transformations are applied to construct the Morse–
Smale complex. The algorithm applies handle slides in the order of decreasing height,
where the height of an octagon is the height of the lower saddle of the middle quad-
rangle. In Fig. 9 this saddle is either a or c, and we assume here that it is a. At the
time we consider a, we may assume that the arcs connecting higher critical points are
already correct. The iso-line at the height of a decomposes the manifold into an upper
and a lower region, and we let 
 be the possibly pinched component of the upper region
that contains a. There are two cases. In the first case, which is illustrated in Fig. 12,
the higher critical points in 
 and their connecting arcs bound one annulus, which is
pinched at a. In the second case, which is illustrated in Fig. 13, these arcs bound two
annuli, one on each side of a. The ascending paths emanating from a are rerouted within
these annuli.

Let ab be the interior path of the octagon with height h(a), and let p be the maximum
we hit by rerouting the path. If p is the first maximum after b along the arc boundary of
the annulus, we may use a single handle slide to replace ab by ap, as for ap1 in Fig. 12.
Note that the slide is possible only because ap1 crosses no arc ending at b1. Any such arc
would have to be changed first, which we do by recursive application of the algorithm,
as for ap2 in Fig. 12. It is also possible that p is more than one position removed from b,
as for ap1 in Fig. 13. In this case we perform several slides for a, the first connecting a
to the first maximum after b in the direction of p. Each such slide may require recursive
slides to clear the way, as before. Finally, it is possible that the new path from a to p
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b b1

1

2

2

Fig. 12. The case of a single annulus pinched at a. The iso-line is dotted, the annulus is shaded, the arcs
bounding the annulus are bold dashed, and the new paths emanating from a are bold solid.

winds around the arc boundary of the annulus several times, as does ap2 in Fig. 13. The
algorithm is the same as before.

The winding case shows that the number of slides cannot be bounded from above in
terms of the number of critical points. Instead we consider crossings between arcs of the
initial quasi MS-complex and the final Morse–Smale complex, and note that the number
of slides is at most some constant times the number of such crossings.

6. Topological Persistence

We may measure the importance of every critical point and construct a hierarchy of
complexes by eliminating critical points with measure below a threshold. In this section
we describe a measure called persistence and discuss its computation. Further details
may be found in [7].

Filtration and Betti Numbers. Assume we assemble the triangulation K of a connected
compact 2-manifold without boundaryM by adding simplices in the order of increasing
height. Let u1, u2, . . . , un be the sequence of vertices such that h(ui ) < h(u j ) for all
1 ≤ i < j ≤ n, and let K j be the union of the first j lower stars, K j = ⋃1≤i≤ j St ui .
The subcomplex K j of K consists of the j lowest vertices together with all edges and
triangles connecting them. We call K 1, K 2, . . . , K n a filtration of K . Note that this

2 2b  = p

a
b1

p1

Fig. 13. The case of two annuli connected at a. We use dotted, dashed, and solid lines as in Figure 12.



100 H. Edelsbrunner, J. Harer, and A. Zomorodian

definition of filtration comes from combinatorial topology and is different from the one
used in dyamical systems [15]. Let β j

0 , β j
1 , and β j

2 be the three possibly non-trivial Betti
numbers of K j . Assuming an orientable 2-manifold M, β0 = βn

0 = 1, β1 = βn
1 , and

β2 = βn
2 = 1 are the Betti numbers of K = K n . The Betti numbers of K j+1 can be

computed from those of K j merely by looking at the type of u j+1 and how its lower
star connects to K j [6]. It is convenient to adopt reduced homology groups, but we will
freely talk about components and holes when we mean reduced homology classes of
non-bounding 0- and 1-cycles. We start with β0

−1 = 1 and β0
0 = β0

1 = β0
2 = 0. Regular

vertices u j+1 can be skipped because they do not change the Betti numbers.

Case 0: u j+1 is a minimum. If j + 1 = 1, then β1
−1 = β0

−1 − 1 = 0. Otherwise u j+1

forms a new component and we increment the zeroth Betti number to β j+1
0 = β j

0 + 1.

Case 1: u j+1 is a k-fold saddle. The lower star touches K j along k+ 1 simple paths. Let
1 ≤ γ ≤ k + 1 be the number of touched components. Then the lower star decreases
the number of components to β j+1

0 = β j
0 − (γ − 1) and increases the number of holes

to β j+1
1 = β j

1 + (k + 1− γ ).
Case 2: u j+1 is a maximum. If j + 1 = n, then adding the lower star completes the
manifold and βn

2 = βn−1
2 + 1 = 1. Otherwise, the lower star closes a hole and we

decrement the first Betti number to β j+1
1 = β j

1 − 1.

The Betti numbers change as components and holes are created and destroyed. Every
minimum, except the first, creates a non-bounding 0-cycle. Every maximum, except the
last, destroys a non-bounding 1-cycle. Every simple saddle either destroys a component,
if γ = 2, or creates a hole, if γ = 1. A k-fold saddle has the accumulated effect of the
k simple saddles.

Persistence. The idea of persistence is the realization that acts of creation can be paired
with acts of destruction. Call a critical point positive if it creates and negative if it destroys.
Assume that all saddles are simple or, equivalently, that all multiple saddles have been
unfolded. We pair every negative saddle with a preceding positive minimum and every
negative maximum with a preceding positive saddle.

To determine the pairs, we scan the filtration from left to right. A positive minimum
starts and represents a new component. A negative saddle connects two components of
the complex it is added to. Each component is represented by its lowest minimum, and
the saddle is paired with the higher of the minima. The other yet unpaired minimum
lives on as the representative of the merged component. A positive saddle starts and
represents a new non-bounding cycle. A negative maximum fills a hole in the complex.
The boundary of that hole is homologous to a sum of cycles, each represented by a
positive saddle. The maximum is paired with the highest of these saddles, and the other
saddles live on as representatives of their respective cycles.

At the end of this process, we have minimum-saddle pairs, saddle-maximum pairs,
and a collection of β0 = 1 minima, β1 simple saddles, and β2 = 1 maxima that remain
unpaired. The persistence of a critical point a is the absolute height difference p(a) =
|h(b)− h(a)|, if a is paired with b, and p(a) = ∞ if a remains unpaired. We illustrate
the pairing and the resulting persistence by drawing the critical points on the (horizontal)
height axis as shown in Fig. 14.
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++ ++ −− h

Fig. 14. Each critical point is either positive or negative. The persistence is the absolute height difference
between paired critical points.

We may also assemble a triangulation in the order of decreasing height. Define Ln− j+1

as the union of the upper stars of the j highest vertices. The sequence Ln, Ln−1, . . . , L1

is again a filtration of K , and we can compute Betti numbers as before. Because of
the reversal of direction, minima and maxima exchange their roles in the Betti number
algorithm, and negative critical points act like positive ones and vice versa. Although
everything is reversed, the persistence of critical points remains unchanged. In other
words, we have the same pairing of critical points, regardless of the direction of assembly
for the filtration.

Computation. We compute the pairing of critical points and their persistence using the
algorithm given in [7]. Instead of applying that algorithm to a sequence of critical points
(as described above), we apply it to a sequence of simplices. In the ascending direction,
the appropriate sequence is obtained by replacing each critical point ui by the simplices
in its lower star, ordered by non-decreasing dimension. The persistence algorithm pairs
most simplices in a lower star with other simplices in that set. The number and dimensions
of the simplices that are not paired within the lower star are characteristic for the type
of the critical point ui . Specifically, there is one unpaired vertex if ui is a minimum,
there are k unpaired edges if ui is a k-fold saddle, and there is one unpaired triangle
if ui is a maximum. We use this characterization to find and classify critical points in
practice.

The algorithm that pairs critical points is similar to but different from the constructive
definition given above. The minimum-saddle pairs are found by scanning the filtration
from left to right. For each negative saddle we determine the matching positive mini-
mum by searching backwards. With the help of a union-find data structure storing the
components, this can be done in time O(nA−1(n)), where A−1(n) is the notoriously slow
growing inverse of the Ackermann function. Symmetrically, the saddle-maximum pairs
are found by scanning the reversed sequence of simplices that corresponds to the filtra-
tion of the L j . The running time is again O(nA−1(n)). Note that the two-scan algorithm
makes essential use of the fact that persistence is symmetric with respect to increasing
and decreasing height. We could also find the saddle-maximum pairs in the first scan, but
the running time would be worse as the search for the matching saddle in that direction
cannot be accelerated by using a union-find data structure.

7. Hierarchy

Given a Morse–Smale complex, we create a hierarchy by successive simplification. Each
step in the process cancels a pair of critical points and the sequence of cancellations is
determined by the persistence of the pairs.
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Fig. 15. The cancellation of a minimum–maximum pair.

Cancellation. To simplify the discussion, consider first a generic one-dimensional
height function f : R → R. Its critical points are minima and maxima in an alter-
nating sequence from left to right. In order to eliminate a maximum, we locally modify
f so that the maximum moves towards an adjacent minimum. When the two points
meet, they momentarily form a degenerate critical point and then disappear, as illus-
trated in Fig. 15. Clearly, only adjacent critical points can be canceled, but adjacency is
not sufficient unless we are willing to modify f globally. We also require that the height
difference between the two critical points is less than that of pairs in the neighborhood.
In Fig. 16 the pairs computed by the persistence algorithm and plotted along the domain
axis are either disjoint or nested. We cancel pairs of critical points in the order of increas-
ing persistence. The nesting structure is thus unraveled from inside out by removing one
innermost pair after the other.

Simplification. We now return to our height function h overM. The critical points of h
can be eliminated in a very similar manner by locally modifying the height function. In
the generic case, the critical points cancel in pairs of contiguous indices. More precisely,
positive minima cancel with negative saddles and positive saddles cancel with negative
maxima. We simulate the cancellation process combinatorially by removing critical
points in pairs from the Morse–Smale complex. Figure 17 illustrates the operation for
a minimum b paired with a saddle a. The operation requires that ab be an arc in the
complex. Let c be the other minimum and let d, e be the two maxima connected to a.
We delete the two ascending paths from a to d and e, and contract the two descending
paths from a to b and c. In the symmetric case in which b is a maximum, we delete

Fig. 16. The intervals defined by critical point pairs are either disjoint or nested.
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Fig. 17. The cancellation of a and b deletes the arcs ad and ae and contracts the arcs ca and ab. The contraction
effectively extends the remaining arcs of b to c.

the descending and contract the ascending paths. The contraction pulls a and b into the
critical point c, which inherits the connections of b. We call this operation the cancellation
of a and b. It is the only operation needed in the construction of the hierarchy. There are
two special cases, namely, when d = e and when b = c. In the latter case we prohibit
the cancellation as it would change the topology of the 2-manifold.

The sequence of cancellations is again in the order of increasing persistence. In
general, not every two critical points paired by the persistence algorithm are adjacent in
the Morse–Smale complex. We prove below that they will be adjacent at the required
time.

Adjacency Lemma. For every positive i , the i th pair of critical points ordered by
persistence forms an arc in the complex obtained by canceling the first i − 1 pairs.

Proof. Assume without loss of generality that the i th pair consists of a negative saddle
a = u j+1 and a positive minimum z. Consider the component of K j that contains z.
One of the descending paths originating at a enters this component and because it cannot
ascend it eventually ends at some minimum b in the same component. Either b = z, in
which case we are done, or b has already been paired with a saddle c �= a. In the latter
case, c has height less than a, it belongs to the same component of K j as b and z, and b, c
is one of the first i − 1 pairs of critical points. It follows that when b gets canceled, the
path from a to b gets extended to another minimum d, which again belongs to the same
component. Eventually, all minima in the component other than z are canceled, implying
that the initial path from a to b gets extended all the way to z. The claim follows.

Note that the proof also works for quasi MS-complexes, which implies that the
Adjacency Lemma is also valid for quasi MS-complexes.

8. Results for Terrains

This section presents experimental results to support the viability of our approach for
analyzing geographic terrain data. At this time, we have only implemented the algorithms
for constructing quasi MS-complexes and the persistence of critical points.



104 H. Edelsbrunner, J. Harer, and A. Zomorodian

Table 1. The five data sets. The second column counts
all vertices, edges, and triangles of the triangulations.

Grid size Number of simplices

Sine 100 × 100 59,996
Iran 277 × 229 380,594
Himalayas 469 × 265 745,706
Andes 385 × 877 2,025,866
North America 793 × 505 2,402,786

Data Sets. We use four rectangle sections of rectilinear grid elevation data of Earth [14]
and one synthetic data sampled from h(x, y) = sin x + sin y for input. The names and
sizes of the data sets are given in Table 1. In each case we convert the gridded rectangle
into a triangulated sphere by adding diagonals to the square cells and connecting the
boundary edges and vertices to a dummy vertex at height minus infinity. We show the
quasi MS-complex of data set Sine in Fig. 18. It is computed by the algorithm presented
in Section 4, and it is also the Morse–Smale complex, in this case. In Fig. 19 we display
the terrain of Iran along with its quasi MS-complex.

Statistics. We first compute a filtration of the sphere triangulation by sorting the sim-
plices in the order of increasing height, as explained in Section 6. We then use the
persistence algorithm to pair all simplices, identifying and classifying the critical points
as a side-product.

Table 2 shows the number of critical points of each type. Since we start with grid data
and add diagonals in a consistent manner, each vertex other than the dummy vertex has
degree at most six. We can therefore have monkey saddles in our data but no saddles of

Fig. 18. The Morse–Smale complex partitions the triangulated data sampled from h(x, y) = sin x + sin y.
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Fig. 19. Iran’s Alburz mountain range borders the Caspian sea (top flat area), and its Zagros mountain range
shapes the Persian Gulf (left bottom). We show a rendering of the terrain and its quasi MS-complex.

multiplicity higher than two. The current implementation constructs only one filtration
and computes persistence in a single scan, forfeiting the benefit of a union-find data
structure for pairing maxima with saddles. Table 3 shows the running time of constructing
the filtration, computing the persistence information, and constructing the quasi MS-
complex.

9. Conclusion

This paper introduces Simulation of Differentiability as a computational paradigm, and
uses it to construct Morse–Smale complexes of PL height functions over compact 2-
manifolds without boundary. It also uses topological persistence to build a hierarchy of
progressively coarser Morse–Smale complexes.

Our results complement and improve related work in visualization [1], [5], [16] and
computational geometry [3], [4], [17]. The terrain simplification procedure described
exploits the relationship between the geometry of the terrain and the topology of its
contours. As such it is different from simplification algorithms guided by purely geo-
metric numerical measures, such as the quadrics metric [9]. Our algorithm preserves

Table 2. The number of critical points of the five triangulated
spheres. (Note that #Min− #Sad− 2#Mon+ #Max = 2 in each

case, as it should be.)

# Min # Sad # Mon # Max

Sine 10 24 0 16
Iran 1,302 2,786 27 1,540
Himalayas 2,132 4,452 51 2,424
Andes 20,855 38,326 1,820 21,113
North America 15,032 30,733 464 16,631
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Table 3. Running times in seconds. (All tim-
ings were done on a Sun Ultra-10 with a
440 MHz UltraSPARC IIi processor and 256
megabyte RAM, running the Solaris 8 operat-

ing system.)

Filt. Pers. qMS

Sine 0.06 0.13 0.03
Iran 0.46 0.90 0.56
Himalayas 0.89 1.74 1.01
Andes 2.62 4.90 2.60
North America 3.28 5.84 5.26

important critical points of the terrain, making it appropriate for applications in geo-
graphic information systems (GIS), such as computing water flow routing and accumu-
lation [13].

Many questions remain. Can we go from a quasi MS-complex to the Morse–Smale
complex by performing handle slides in an arbitrary sequence, as opposed to ordering
them by height? How can we take advantage of the Morse–Smale complex structure and
cancel critical points in a controlled manner through smoothing or locally averaging the
height function? What are the dependencies between different critical points, and how
does a cancellation interfere with non-participating critical points?

There are at least three interesting challenges in generalizing the results of this paper.
Can we use hierarchical methods similar to the ones in this paper to simplify medial axes
of two-dimensional figures? Can we extend our methods to more general vector fields?
Can we extend our results to height functions over 3-manifolds? The generalization of
the Morse index of critical points to the Conley index of isolated neighborhoods [12]
might be useful in answering the second question.
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