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Abstract. We construct two classes of wildly embedded space fillers of R3. First, every
crumpled cube is shown to have an embedding in R3 that admits a monohedral tiling of R3.
Second, a solid Alexander horned sphere with a topologically trivial interior is shown to
admit a monohedral tiling of a cube and hence R3. By joining a solid horned sphere with
compact polyhedral 3-submanifolds of R3 with one boundary component, we construct
space fillers homeomorphic to the polyhedral submanifolds but of different embedding
types. Using the suitably embedded crumpled cubes instead of a solid horned sphere, space
fillers of even more different topological types can be produced.

1. Introduction

A tiling T of R3 is a countable family of closed subsets of R3, the tiles, which cover
R

3 without gaps or overlaps [GS]. That is, if the closed sets Ti are the tiles, i ∈ N, then
T ◦i ∩ T ◦j = ∅ for i �= j and

⋃
Ti = R3. As usual, we restrict ourselves to compact

connected Ti with Ti = T ◦i . T is said to be monohedral if each Ti is congruent to a set
T . T is called the prototile of T . We say that T admits the tiling T . T is also called a
space filler.

Let K be a topological space. An embedding of K inR3 is a homeomorphism h from
K into R3. K1, K2 ⊂ R3 are of the same embedding type if there is a homeomorphism
f : R3 → R

3 such that f (K1) = K2. Two spaces K1, K2 are of the same topological type
if they are homeomorphic. Let S ⊂ R3 be a 2-sphere. S is tame or tamely embedded if S
and the standard 2-sphere are of the same embedding type. Otherwise, S is wild or wildly
embedded. For a compact polyhedron K , not necessarily Euclidean, an embedding h
of K into R3 is tame if h(K ) is of the same embedding type as a polyhedron (see, e.g.
[BC]).

There has been interest in which topological shape in R3 admits a tiling of R3, or
what can be a space filler. The following is a list of relevant work, including some on
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spaces other thanR3: [Ad1], [Ad2], [Ba], [CS], [De], [K1], [K2], [O], [Schm1], [Schm2]
and [Schu]. The question can be broken into two. Different answers to any of them give
space fillers of different shapes.

Question 1. Spaces of which topological types have an embedding intoR3 that admits
a tiling of R3?

Question 2. Given a space of a topological type, which embedding types have a rep-
resentative that admits a tiling of R3?

The most general result on these questions was by Adams [Ad1], [Ad2]. Concur-
rently and independently, Kuperberg [K1] obtained a similar but less general result.
Adams showed that for any compact polyhedral 3-submanifold ofR3 with one boundary
component (or with nonempty and connected boundary), there is a polyhedral subman-
ifold of the same embedding type that admits a monohedral tiling of R3. In other words,
the topological types realizable by compact 3-manifolds that can be embedded in R3,
and with one boundary component, are valid answers to Question 1. This is because such
manifolds can be triangulated (see [Bi1] and [M1]), and the embeddings can be approx-
imated by piecewise linear homeomorphisms [M2, p. 251]. Given such a topological
type, the tame embedding types are valid answers to Question 2. As the tiles considered
are tame, the attention has been focused on their knottedness. Adams’ result implies
that however a tamely embedded compact 3-manifold with one boundary component is
knotted, there is still a polyhedral submanifold of R3 of the same embedding type that
can serve as the prototile of a monohedral tiling. There are elaborate results on tilings
with knotted tiles by Adams [Ad1], [Ad2], Kuperberg [K1], [K2], Oh [O] and Schmitt
[Schm1], [Schm2].

In this article we use the ideas and techniques developed by Adams, Kuperberg and
Schmitt to exhibit two new classes of space fillers ofR3. They are wildly embedded. We
introduce some more terminologies.

Let S be a 2-sphere embedded inR3. Let Int S and Ext S be respectively the bounded
and unbounded complementary domain of S. A crumpled cube is a space K homeo-
morphic with S ∪ Int S (see, e.g. [Bu] and [BC]). By the crumpled cube S ∪ Ext S, we
mean a space homeomorphic to the image of S ∪ Ext S under an inversion with the
image of the point at infinity added. Sometimes, it is convenient to regard a crumpled
cube as a topological type, containing all such spaces homeomorphic to one another. In
this article, a 3-cell is a topological 3-cell. If a nontrivial crumpled cube (one other than
the 3-cell) is embedded in R3, its boundary sphere must be wildly embedded. Crumpled
cubes are compact, and are the closure of their interiors, and hence can be tiles under
our consideration.

A crumpled cube can be topologically complicated. Here are some examples. Let
S be an Alexander horned sphere [Al] with S ∪ Int S a 3-cell, as is usually drawn in
R

3. The fundamental group of the crumpled cube S ∪ Ext S (E.T.’s bowling ball) is not
finitely generated (see [BF] and [C]). The same statement is true for the Antoine horned
sphere [R]. Let S be the version of the Fox–Artin wild sphere with one wild point [FA],
[BC], [Bu], with S ∪ Int S a 3-cell. The crumpled cube S ∪ Ext S is not locally simply
connected at the wild point.
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There are many crumpled cubes of different topological types. For example, for each
n ∈ N, let Sn be a 2-sphere in R3 with n Fox–Artin type wild points, with Sn ∪ Int Sn a
3-cell . Then the crumpled cubes Sn ∪ Ext Sn are of different topological types, as they
have different number of points where the space is not locally simply connected.

We state our results now.

Theorem 1.1. Let K be a crumpled cube. Then there is an embedding h of K into R3

such that h(K ) admits a monohedral tiling of R3.

Theorem 1.1 gives new answers to Question 1. If a crumpled cube is homeomorphic
to a compact polyhedral 3-submanifold ofR3 with one boundary component, the known
answers to the question, then it can be tamely embedded. That is possible only for the
trivial crumpled cube, a 3-cell. We use an idea in [Ad1], [Ad2] and [K1] to prove the
theorem.

Theorem 1.2. There is an (a specific embedding of the) Alexander horned sphere S,
together with the topologically trivial complementary domain as Int S, that admits a
monohedral tiling of R3.

Theorem 1.2 is addressed to Question 2. It says that even for the 3-cell, which cannot
be knotted, there are embeddings of different embedding types that admit tilings of R3.
This gives an answer to Question 2 in a direction different from those in previous works
on knotted tiles [Ad1], [Ad2], [K1], [K2], [O], [Schm1], [Schm2]. We use the technique
developed in these works to prove the theorem.

By growing solid horned spheres on compact polyhedral 3-submanifolds of R3 with
one boundary component, we produce space fillers homeomorphic to these submanifolds
but of different embedding types, differing in their tameness, not knottedness. This is
the content of Theorem 1.3, again addressed to the second question. Condition (c) in
the theorem indicates that the knottedness of the original manifold is preserved. Adams’
argument in [Ad2] is used in its proof.

Theorem 1.3. Given a compact polyhedral 3-submanifold M ofR3 with one boundary
component, there is a subspace M ′ of R3 with the following properties:

(a) M and M ′ are homeomorphic;
(b) M and M ′ are of different embedding types;
(c) there are 2-disks D ⊂ ∂M and D′ ⊂ ∂M ′ such that ∂M\D and ∂M ′\D′ are of

the same embedding type;
(d) M ′ admits a monohedral tiling of R3.

By growing suitably embedded crumpled cubes instead of solid horned spheres on
polyhedral submanifolds, we get even more answers to Question 1. See the remark at
the end of the paper.

We prove Theorem 1.1 in Section 2. The solid horned sphere tile is exhibited in
Section 3. Theorem 1.3 is proved in Section 4.
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f(q) f(p) g

gf(B - Int S)

gf(S)

gf(q) gf(p)gf(C)

Fig. 1. Int S, Int f (S) and Int g f (S) are not part of the diagram. g f (B\Int S) is ready for further
constructions.

2. Tiling by Crumpled Cubes

The proof of Theorem 1.1 uses an idea in [Ad1], [Ad2], and [K1] and the Hosay–
Lininger–Daverman theorem [Da], [H], [L]. The following is the form of the theorem to
be used.

Hosay–Lininger–Daverman Theorem. Let K be a crumpled cube. Then there is an
embedding h: K → R

3 such that [R3\h(K )◦] ∪ {∞} is a 3-cell.

Proof of Theorem 1.1. We present the proof in three steps.

Step 1. Let K be a crumpled cube. By the Hosay–Lininger–Daverman theorem, there
is an embedding h(K ) such that [R3\h(K )◦] ∪ {∞} is a 3-cell. Let S := ∂h(K ). Then
h(K ) = S ∪ Int S.

See Fig. 1. Let B be a closed cube with (S ∪ Int S) ⊂ B◦. Let C be the “equator”
of ∂B, equally distanced from the top and the bottom of B as drawn. Let p, q ∈ C be
chosen on opposite faces of B, so that when we glue together two copies of B, identifying
the face containing p of one copy and the face containing q of the other copy, the points
p and q of the two copies do not coincide.

Let � be the shell {x ∈ R3, 1 ≤ ‖x‖ ≤ 2}. Let �1 and �2 be the inner and outer
component of ∂�. As (R3\Int S)∪ {∞} is a 3-cell, B\Int S is homeomorphic to �. Let
f : B\Int S→ � be a homeomorphism.

As f (C) is a simple closed curve on �2, it is tame [M2, p. 71]. Hence there is a
homeomorphism ϕ: �2 → �2 such that ϕ( f (C)) is a great circle on �2. Extend ϕ to a
homeomorphism g: �→ �, by defining g(x) = (‖x‖/2)ϕ(2x/‖x‖) for x ∈ �.

Step 2. See Fig. 2. Let A be an annulus with g( f (C)) as a component of its boundary,
A := {t x : x ∈ g( f (C)), t ∈ [ 1

2 , 1]}. Let Dp, Dq ⊂ �2 be disjoint closed disks centered
at g( f (p)) and g( f (q)) such that f −1g−1(Dp) and f −1g−1(Dq) on adjacent copies of
the cube are disjoint (as in Fig. 3). Construct two tubes Tp, Tq joining �1 and �2:

Tp := {t x : x ∈ Dp, t ∈ [ 1
2 , 1]},

Tq := {t x : x ∈ Dq , t ∈ [ 1
2 , 1]}.

The annulus A divides�\(Tp ∪ Tq) into two parts, with closures denoted B1 and B2.
They are 3-cells.
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Fig. 2. Again Int S is not part of the picture. The grey pieces are the intersections of the tubes with the
annulus A, and their images under f −1g−1. A and f −1g−1(A) are not all shaded.

Step 3. Transplant the construction back to B\int (S) (Fig. 2). B is decomposed into
the crumpled cube S ∪ Int S, the tubes f −1g−1(Tp) and f −1g−1(Tq) and the 3-cells
f −1g−1(Bi ), i = 1, 2. Their interiors are disjoint.

Place copies of B in a row (see Fig. 3). The prototile we are after consists of an
embedded crumpled cube (S ∪ Int S), the tubes f −1g−1(Tp) and f −1g−1(Tq) attached
to it, the 3-cells f −1g−1(B1) on the right and f −1g−1(B2) on the left. Three copies of
f and g are involved, but no confusion should be caused. The tile is homeomorphic to
S ∪ Int S.

3. A Solid Horned Sphere Tile

Proof of Theorem 1.2. We present a solid horned sphere tiling of a cube, and hence
R

3, in four steps. The crucial point is that though the complement of a horned sphere
in a quarter-cube is topologically complicated, it can be decomposed into three tame
3-cells.
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Fig. 3. Int S is part of the diagram. The prototile is the union of the crumpled cube K = (S ∪
Int S), f −1g−1(Tp), f −1g−1(Tq ) and f −1g−1(Bi ), i = 1, 2, in three adjacent cubes as annotated. f −1g−1(A)
is not shaded. The three copies of f and g should cause no confusion.
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Divide the cube and name the sectors.

One of this in each sector, positioned as indicated.
Details are suppressed in the grey blocks.

Fig. 4. The first step in constructing the solid horned sphere tile.

Step 1. Divide a cube into four sectors I, II, III, IV (see Fig. 4). In each sector we place a
copy of a solid Alexander horned sphere with a topologically trivial interior, positioned
as indicated. The details of the horned sphere are suppressed in the two grey small cubes.
The complement of the horned sphere in a sector will be divided into three tame 3-cells.
Steps 2 and 3 give the details.

Step 2. See Fig. 5. We divide a quarter-cube into nine layers. Layer i is ten times as
thick as the others, and each of the other layers is divided into 81 small cubes as shown,
viewed from above. They are of four colors: black (B), dark-grey (D), light-grey (L) and
white (W). The black small cubes form the bulk of the horned sphere. The small cubes
and small half-cubes of the other colors form the bulk of the three 3-cells. The three
special small cubes A, B and C are to be described later. There are small cubes which
look redundant, but are needed later. This is explained below.

The small cube B is divided into a thick W top part and a thin L bottom part (the
W stuff will not form a cell later if the whole small cube B is W). Cubes A and C are
constructed iteratively as follows.

Form a solid, called the iterating block, with small cubes labeled a–g, 2–8 and ii–viii
but without the small cubes A and C (see Fig. 6(a)). It looks like a cube from the outside,
but has two holes (A and C) in it. (We now explain why some apparently redundant small
cubes in Fig. 5 are needed. Layer ix, identical to layer viii, is needed for modification in
step 4. The half dark-grey block in layer iv is for the iterating block to look symmetric
from the outside (Fig. 6). Small cubes with a coordinate equal to 2 or 3 are there to
make the iterating block a cube. The rows h and i are there to make the sector look like
a square when viewed from the above, so that the sector can be a quarter-cube. Layer i,
ten times as thick as the other layers, is to make the height of the sector double its other
dimensions so that it is a quarter-cube.)
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Fig. 5. The nine layers of a quarter-cube viewed from above. Each of them is subdivided into black (B),
dark-grey (D), light-grey (L) and white (W) small cubes. Cubes A, B,C are to be described. The B cubes
formed the bulk of the solid horned sphere, while cubes of the other colors form the bulk of three 3-cells. Some
apparently redundant small cubes are needed.

See Fig. 6(b). In cube A place a shrunken and suitably rotated copy of the iterating
block as indicated. A thin slice, of the same thickness of the light-grey slice in B, is
cut away from the iterating block along the face facing down. The resulting gap is filled
by expanding the black block iv-5-d below. Without doing this, the white material in A
will intersect the white material in the environment in two pieces: an edge of iv-5-e, and
a 2-disk on the union of v-5-c, v-6-c, v-6-d (block B). Then the white material in the
resulting solid will not form a 3-cell.

Do similar to cube C . Place a shrunken iterating block into C as indicated (this is one
of the two possible orientations). Cut away a thin slice of the iterating block along the
face facing down. Expand the light-grey block iv-7-d below to fill the resulting space.
Without doing this, the white material in the resulting solid will not be a 3-cell, as the
white stuff in C would intersect the original white stuff in three pieces: two line segments
(on iv-7-c and iv-7-e) and one disk (along block B).

Iterate the process, filling the holes in the iterating blocks with even smaller iterating
blocks with slices sliced away. As the iterating block is cubic, the horns and cubes added

8
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g

ii

viii

The iterating block. The two holes,
small cubes A and C inside, are 
hidden from view.

viewed from another angle.

2

g

a

8

ii

viii

an arrow for easy reference

A

B

C

Details of cubes A, B and C in fig. 5. A
and C are filled with shrunken iterating 
blocks oriented as shown. Thin slices are cut
from the bottoms of A and C, with the small
cubes below them expanded to fill the space.

(a) (b)

Fig. 6. The iterating block is used for constructing A and C . (a) The iterating block. (b) Small cubes A, B
and C .
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The first four steps in constructing the solid. The cell U1. S1 is a 2-sphere 
just enclosing it.

2

8 a

g

ii

iv

A
C

B

(a) (b)

Fig. 7. (a) Each of the D, L, W materials in the finished product of the iteration form a figure homeomorphic
to the solid indicated, a 3-cell. (b) The cell U1 in the process of constructing S1.

at different levels are similar, without flattening in any dimension. Look at the finished
piece. It is clear that the black stuff form the solid horned sphere. The W, L and D
material form three 3-cells. Here is an explanation if it is needed. When we fill in blocks
A and C iteratively, material of a color added in the (n + 2)th and later stages are at
a distance from those already present in the nth stage. That is, the former stays away
from the latter. Also the intersection of a component added in the (n + 1)th stage and
the result of the nth stage is a 2-disk. These guaranteed that the W, L and D material in
the finished piece are 3-cells. See Fig. 7(a).

Let CD, CL and CW be the dark-grey, light-grey and white 3-cell, respectively.

Step 3. We now show that the boundaries of the three 3-cells CD, CL and CW are tame.
Without this step, we will still get a wildly embedded tile, only the tile may have more
wild points than a solid horned sphere.

We say that a 2-sphere S ⊂ R3 can be homeomorphically approximated from Int S
(Ext S) if for each ε > 0, there are 2-spheres Sε ⊂ Int S (Sε ⊂ Ext S) and homeomor-
phisms hε: Sε → S that move no point more than ε. A 2-sphere S in R3 is tame if and
only if it can be homeomorphically approximated from Int S and Ext S. See [Bi2] (or
[Bu] or [BC]).

We now show that ∂CW is tame. As CW is a cell, ∂CW can be homeomorphically
approximated from Int S. In Ext S the sequence of approximations can be constructed as
follows. The first approximating homeomorphism is constructed in two stages. We call
the small cubes in Fig. 5 the first-level cubes. In the first stage take all the first-level cubes
with interiors intersecting CW. They are the white cubes and cubes A, B, C . From the
bottom of A, B and C , discard a thin slice of uniform thickness containing no white stuff.
The union of all these is called U1 (Fig. 7(b)), which contains CW. It is a cell. Define a
homeomorphism f1: ∂U1 → ∂CW that moves points within the first-level cubes. Notice
that this can be done, even in the trimmed cubes A, B and C . Hence f1 moves no point by
more than d1, the diameter of the first-level cubes. In the second stage let S1 be a sphere
with U1 ⊂ Int S1, and is very near to ∂U1. Let g1: S1 → ∂U1 be a homeomorphism
moving points by less than d1. Then the homeomorphism h1 := f1 ◦ g1: S1 → ∂CW

move points by less than 2d1.
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Fig. 8. Top layer of the four groups of horned sphere with three 3-cells.

Subdivide each first level cube into 73 cubes, called the second-level cubes. They
are of the same size as the small cubes in the iterating block shrunken once. Repeat
the argument to get a homeomorphism h2, which moves points by less than 2d2, the
diameter of the second-level cubes. Repeat the procedure to get the desired sequence
of homeomorphisms. Hence ∂CW can be homeomorphically approximated from the
outside, and CW is tame.

The same reasoning can be applied to cells CD and CL. For CL, in constructing the
corresponding U1, one has to cut away a slice from the top of cubes B and C , and a slice
from cube A adjacent to cube B. Then ∂U1 can be mapped to ∂CL by a homeomorphism
moving points within first-level cubes, and hence by a distance ≤ d1. Then proceed as
before.

Step 4. Four copies of the quarter-cube constructed in step 2 are packed into a cube,
positioned as in Fig. 8, seen from above. Color the pieces so that as one goes clockwise
through the sectors, the colors of the material are rotated as follows:

B −→ D −→ L −→W −→ B.

Modify the top layer, layer ix, so that the 3-cells are attached to the horned spheres in
different sectors as trivial topological extensions (see Fig. 8). Pieces of the same color
are joined. Notice that another set of attachments occur below the surface, in layers ii,
iii and iv. These new solid horned spheres are four congruent tiles tiling the cube.

Using a similar method, the Fox–Artin and other solid wild sphere space fillers can
be constructed.

In the above proof, we have established a fact of independent interest.

Proposition 3.1. Let S be an Alexander horned sphere in S3. The closure of the topolog-
ically nontrivial complementary domain is the union of three tame 3-cells with mutually
disjoint interiors.
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Proof. Using the construction in step 2 of the proof of Theorem 1.2, we have a rectan-
gular block in R3 consisting of a solid horned sphere and three 3-cells. Let the rest of
R

3, together with the point at infinity, be joined to the dark-grey cell.

The boundaries of any two of the three cells intersect in infinitely many pieces.
Hence the combination of (refinements of) the triangulations of the cells will not be a
triangulation of their union.

4. Wild Tiles from Polyhedral Ones

Using an argument similar to Adams’ in [Ad2], we can produce many wildly embedded
space-fillers by growing horned spheres on polyhedral submanifolds of R3 with one
boundary component. Other wildly embedded cells can be used instead of the solid
horned sphere. We first present Adams’ theorem with an outline of the proof, slightly
adapted for our purpose. We then use a similar argument to establish Theorem 1.3.

Adams’ Theorem [Ad1], [Ad2]. Let M be a compact polyhedral 3-submanifold ofR3

with one boundary component. Then a cube can be tiled with four polyhedral tiles, all
of which are congruent and of the same embedding type as M .

Proof of Adams’ Theorem Outlined. Place M (shrunken if necessary) in the interior of
a quarter-cube Q. Then P := Q\M is a polyhedral submanifold of R3. Decompose P
into three 3-cells as follows. Take a triangulation of P . Let K be its 1-skeleton, and let
G be the dual graph of K . Fatten them up to essentially disjoint closed sets NK and NG

such that NK ∪ NG = P . Two sets are said to be essentially disjoint if they have disjoint
interiors. Let G ′ be a spanning tree of G. Let NG ′ be a cell neighborhood of G ′ such that
NG is the essentially disjoint union of NG ′ and a number of other cells C1, . . . ,C�. Then
NK ∪ C1 ∪ · · · ∪ C� is a handlebody, which can be decomposed into two 3-cells. These
cells together with NG ′ give a decomposition of P into three 3-cells.

By modifying these 3-cells if necessary, we can assume that the walls of Q adjacent
to the other quarter-cubes are within one of the cells. See Fig. 9(a). This is to ensure
that the parts of the finished tile in different quarter-cubes will not be connected in a
complicated way.

Place four identical groups of M with three 3-cells into the quarter-cubes. Position the
four groups so that rotations by integral multiples of π/2 about the line of intersection of
the four quarter-cubes are symmetries. From each of the four copies of M , run polyhedral
tubes to connect it to three 3-cells, one in each of the other quarter-cubes, each one not the
rotational images of the other two. The three-dimensional tubes are along the boundaries
of the 3-cells and M , without piercing through them. That M has only one boundary
component guarantees that the cells are reachable from the copies of M . The result is
four congruent figures, of the same embedding type as M . The figure is the polyhedral
tile we want.
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Each of the angular slabs is containedcontained
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Fig. 9. (a) Four quarter-cubes. (b) A horned sphere block grown from a flat part of M . C ′′D is C ′D less the
horned sphere block.

Proof of Theorem 1.3. Let M be a compact polyhedral 3-submanifold of R3 with one
boundary component. Let Q be a quarter of the cube to be tiled. Place M (shrunken if
necessary) in Q◦. From the proof of Adams’ theorem, Q can be decomposed into M
and three polyhedral 3-cells. For convenience in drawing, M is colored white, with the
three cells named C ′B, C ′D and C ′L colored black, dark-grey and light-grey, respectively.

At least two of the cells C ′B,C ′D and C ′L intersect ∂M . Otherwise, the cell that intersect
∂M encloses M and hence fails to be a cell. Suppose that C ′B and C ′D intersect ∂M .

We can assume that there is a point p ∈ ∂M ∩ ∂C ′B ∩ ∂C ′D but not in C ′L. Otherwise,
we can modify the cells by transferring simplices of a (sufficiently fine) triangulation of
C ′L that form a polyhedral neighborhood of p in C ′L, from C ′L to C ′B and C ′D so that a
neighborhood of p does not intersect C ′L.

We can assume that p is in the interior of a face of the polyhedral M . Otherwise, by
modifying the cells through transferring simplices between C ′B and C ′D, we can arrange
that M ∩ C ′B ∩ C ′D has some point in there.

See Fig. 9(b). On ∂M , in a neighborhood of p, we grow a white solid horned sphere
with three tame 3-cells CB,CD,CL, those we have constructed in step 2 of Section 3
except for color changes. The block does not intersect C ′L. The thick layer i is merged
into M . (If the boundary between C ′D and C ′B is not vertical to ∂M as drawn, slant the
horned sphere block too.) Let M ′ be the union of M and the solid horned sphere. Let C ′′B
and C ′′D be respectively C ′B and C ′D less the horned sphere block (the horned sphere with
CB, CD and CL). They are 3-cells.

Decompose the complement of M ′ in the quarter-cube Q into three tame 3-cells as
follows. CB ∪ C ′′B and CD ∪ C ′′D give two tame 3-cells. Now C ′L is disconnected from
CL. Construct the third 3-cell C∗L by joining CL and C ′L with a polyhedral tube along
∂(CB ∪ C ′′B), ∂(CD ∪ C ′′D) or ∂M ′, modifying CB ∪ C ′′B, CD ∪ C ′′D and/or M ′ along the
way. This can be done, as C ′L contacts either M , C ′B or C ′D, and ∂(CB ∪C ′′B), ∂(CD ∪C ′′D)
and ∂M ′ are connected.
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Proceed as in the last part of the proof of Adams’ theorem. Each quarter-cube is
decomposed into a copy of M ′ and three tame 3-cells as in the last paragraph. They are
positioned so that rotation by integral multiples of π/2 about the line of intersection of
the quarter-cubes are symmetries. Color the pieces so that as one rotates through π/2,
cells and M ′ are rotated into congruent copies, of different colors. 3-Cells of the same
color are not connected, as a consequence of the construction shown in Fig. 9(a). From
each of the four copies of M ′, run polyhedral tubes (also mapped into each other by
rotations) to three cells of the same color, one in each of the other quarter-cubes, each
not a rotational image of the others. This is the tile we are after, four of which tile a
cube.

Remark. Instead of growing a solid horned sphere with three 3-cells on a compact
3-submanifold with one boundary component M , we can grow the cube in Fig. 2: a
suitably embedded crumpled cube (including the two tubes) and two 3-cells. If M is not
a cell, its union with a crumpled cube cannot be homeomorphic to the crumpled cube, as
its boundary is not a sphere. Hence we get more space fillers of new topological types.

References

[Ad1] C. C. Adams, Tilings of space by knotted tiles, Math. Intelligencer, 17(2) (1995), 41–51.
[Ad2] C. C. Adams, Knotted tillings, in The Mathematics of Long-Range Aperiodic Order (R. V. Moody,

ed.), pp. 1–8, Kluwer Academic, Dordrecht, 1997.
[Al] J. W. Alexander, An example of a simply connected surface bounding a region which is not simply

connected, Proc. Nat. Acad. Sci. U.S.A., 10 (1924), 8–10.
[Ba] T. F. Banchoff, Torus decompositions of regular polytopes in 4-space, in Shaping Space—A Poly-

hedral Approach (M. Senechal and G. Fleck, eds.), pp. 221–230, Birkhäuser, Basel, 1988.
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