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Abstract. The extensive study of metric spaces and their embeddings has so far focused
on embeddings that preserve pairwise distances. A very intriguing concept introduced by
Feige [F] allows us to quantify the extent to which larger structures are preserved by a given
embedding. We investigate this concept, focusing on several major graph families such
as paths, trees, cubes, and expanders. We find some similarities to the regular (pairwise)
distortion, as well as some striking differences.

1. Introduction

Finite metric spaces and their embeddings have received much attention in recent years.
Ideas from this area have led to a number of beautiful algorithmic applications and geo-
metrical insight to combinatorial objects, see, e.g., surveys by Indyk [I] and Linial [L] and
Matoušek’s book [M3, Chapter 15]. Much of the activity in this area revolves around the
following general problem: a given finite metric space (X, d) is to be “approximated” as
well as possible by a metric space from a fixed class C of “simple” metric spaces. Typical
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classes C include Euclidean, other lp, and tree metrics. Traditionally, similarity among
metric spaces has been investigated in terms of low-distortion embeddings. Namely, a
mapping ϕ: X → Y with (Y, ρ) ∈ C, where for every two points x1, x2 ∈ X , the dis-
tance ρ(ϕ(x1), ϕ(x2)) is very close to the original distance d(x1, x2). Since a metric is a
bivariate function d: X × X → R, it seemed almost self-evident that “approximation”
could not mean anything beyond similar pairwise distances.

In a remarkable paper, Feige [F] pointed out the possibility of considering higher-order
structures in metric spaces. This depends on a comparison with Euclidean metrics, where
volume can be defined. To this end, every k-subset of (X, d) is associated with a (k−1)-
dimensional volume, where the one-dimensional volume of {x1, x2} ⊆ X is simply
d(x1, x2). A proper definition of higher-dimensional volumes allows us to quantify the
extent to which such volumes are distorted by a given embedding ϕ: X → l2. We recall
the definition: Let S be a set of k points in a metric space (X, d). The volume Vol(S) of S
is defined as the maximum of the Euclidean volume Evol(�(S)) over all nonexpansive
embeddings�: S→ l2. (If K is a set of k points in l2, then Evol(K ) denotes the (k−1)-
dimensional Lebesgue measure of the convex hull of K . An embedding ϕ: X → l2

is nonexpansive if ‖ϕ(x1) − ϕ(x2)‖ ≤ d(x1, x2) for all x1, x2 ∈ X .) We say that a
nonexpansive map�: X → l2 distorts the volume of S by (Vol(S)/Evol(�(S)))1/(k−1).
The maximum over all k-subsets S is called the (k−1)-dimensional distortion of�. One-
dimensional distortion coincides with what is simply called distortion in the literature.

Some of the basic phenomena known from the study of one-dimensional distortions
have similar higher-order counterparts, though usually new ideas are required to prove
them in the more general case. For example, a fundamental theorem of Bourgain [B1]
says that every n-point metric space can be embedded in l2 with distortion O(log n).
Feige [F] shows that a suitable adaptation of Bourgain’s embedding yields the same
bound also for r -dimensional distortion with any r = k − 1 ≤ O(log n/log log n), see
Table 1.1 Bourgain’s (one-dimensional) bound is tight, as it is shown in [LLR], [M1],
and [LM] that every embedding of (the metric of) an n-vertex constant-degree expander
graph has (one-dimensional) distortion 	(log n). Here we show a similar lower bound
for higher-dimensional distortions, namely, for any r ≤ n1/3.2

However, in some other aspects of the theory the one-dimensional situation differs
completely from the general situation. For example, there clearly exist graphs whose
metric embeds in l2 with constant (one-dimensional) distortion, but, perhaps surpris-
ingly, it turns out that a constant higher-order distortion is an extremely stringent re-
quirement. Specifically, for any 2 ≤ r <

√
n/2, a graph can be embedded with bounded

r -dimensional distortion if and only if it has a bounded diameter. Another surprise awaits
us when we consider trees. Bourgain [B2] has determined that the one-dimensional dis-
tortion of a complete binary tree of n vertices (and depth roughly log n) is�(

√
log log n),

and later Matoušek [M2] showed that the same upper bound holds for every n-vertex tree.
For higher-dimensional distortion, the situation is quite different. Every n-vertex tree has
a Euclidean embedding with r -dimensional distortion O((log n)(r−1)/2r (log log n)1/2r ).

1 The size k of the subsets considered is always one larger than the dimensionality r of the distortion.
Throughout this paper, we alternate between using k−1 and r as the parameter describing this dimensionality.

2 We make no attempt to optimize the upper bounds on r ; the constants in the exponent (such as the 1/3
here or 1/4 later) were chosen to simplify the proofs.
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Table 1. The r -dimensional distortion of some n-point metric families.

Metric family Lower bound Upper bound

The path �(log1/2−1/2r n) (Section 3.1)

The complete tree �(
√

log log n) (Section 3.2)
Expander graphs �(log n) (Section 3.4)
Bounded diameter graphs �(1) (Section 3.1)

The hypercube 	(
√

log n) (Section 3.5) O(
√

log n(log n log r)1/2−1/r ) (Section 3.5)
Trees and chordal graphs 	(log1/2−1/2r n) (Path) O((log n)1/2−1/2r (log log n)1/2r ) (Section 3.3)

Planar graphs 	(log1/2−1/2r n) (Path) O(
√

log n) [R]
Euclidean metrics 	(log1/2−1/2r n) (Path) O((log n log r)1/2−1/2r ) (Section 4)

General graphs 	(log n) (Expander)

{
O(

√
log n

√
log n + r log r) [F]

O(log3/2 n) [G]

This is much larger than the one-dimensional bound and this bound is nearly tight. How-
ever, this time the bound is nearly attained by an n-vertex path, whose r -dimensional
distortion is�(log(r−1)/2r n) for any r <

√
n/2. For trees, a similar upper bound follows

from Rao’s embedding [R] for planar graphs; for the path, Dunagan and Vempala [DV]
have recently sketched bounds similar to the above. Our upper and lower bounds are
better (and tight) for r � log log n, and are also mostly different technically.

Indeed, our work is motivated by the desire to understand how things evolve as we
shift our attention from one-dimensional to higher-dimensional distortions. To this end
we investigate (the metrics of) several basic graph families: paths, cubes, trees, and
expanders. (See Table 1 for a fuller account.) We develop along the way several methods
that may, perhaps, become useful in future investigations in this area.

Here are two more findings of this paper. It has been known for over 30 years [E] (see
also [LM]) that every embedding of the m-dimensional hypercube into l2 has distortion
≥ √m. It turns out that a similar lower bound holds also for r -dimensional distortions
for r ≤ 2m/4. Besides graph metrics, we also consider Euclidean metrics (the restriction
of the l2 metric to a finite point set). We prove that such a set whose aspect ratio is
polynomial in n has r -dimensional distortion at most O((log n log r)(r−1)/2r ), a slight
improvement over a result of Rao [R]. The metric of a path on n vertices shows that this
bound is tight for constant r ≥ 2. Closing the gap for larger r is still an open question.

In the final section we briefly suggest an alternative measure for the preservation of
large substructures in a metric space under a given embedding.

2. Preliminaries

Volume distortion via tree volume and affine distances. The definition of Vol(S) is
somewhat involved. It is therefore much more convenient to use the following good
approximation for it. View an n-point metric space (X, d) as the complete graph Kn

where each edge {x, y} has weight d(x, y). For every S ⊆ X , define Tvol(S), the tree
volume of S, as the product of the edge lengths in a minimum spanning tree for S. (Note
that this is the same as the least possible product of edge lengths among such trees). It was
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shown in Theorem 3 of [F] that Vol(S) ≤ Tvol(S)/(k − 1)! ≤ 2(k−2)/2 · Vol(S), where
k = |S|. Since the definition of the (k−1)-dimensional volume distortion takes volumes
to power 1/(k − 1), using Tvol(S) instead of Vol(S) in this calculation approximates the
true volume distortion within a constant factor.

The (k−1)-dimensional volume of the simplex that is the convex hull of v1, . . . , vk ∈
l2 can be written as (1/(k − 1)!)

∏k
i=2 daff(vi {v1, . . . , vi−1}), where daff(vK ) denotes the

Euclidean distance between the point v and the affine hull of K .

Definition 1. An ordering (p1, . . . , pk) of the elements in a subset S of (X, d) is said
to be proper if each initial segment in this order spans a subtree of a minimum spanning
tree for S. We note that in this case, Tvol(S) =∏k

i=2 d(pi , {p1, . . . , pi−1}).

The above discussion then yields a good estimate for the volume distortion of S under
a nonexpansive embedding � (see also [F], [R], and [DV]). Namely, the distortion of S
under the embedding � equals, up to constant factors,

(
Tvol(S)

(k−1)! · Evol(�(S))

)1/(k−1)

=
(

k∏
i=2

d(pi , {p1, . . . , pi−1})
daff(�(pi )�({p1, . . . , pi−1}))

)1/(k−1)

. (1)

This is a geometric mean of expressions that are reminiscent of one-dimensional distor-
tions. We compare the distance from pi to {p1, . . . , pi−1} with the distance between the
affine hulls of their images under �.

Direct sum of embeddings. We need two simple operations on embeddings. First, an
embedding into a normed space can be multiplied by a real constant. Second, let
φ1, . . . , φt be embeddings of a metric (X, d) into Euclidean spaces of appropriate di-
mensions; then the direct sum of these embeddings, denoted � =⊕

j φj , is defined by
letting �(x) be the concatenation of the vectors φj (x).

Lemma 1. Let φ1, . . . , φt be nonexpansive embeddings of a finite metric (X, d) into
l2. If α1, . . . , αt ≥ 0 and

∑
j α

2
j = 1, then� =⊕

j αjφj is nonexpansive and satisfies:

(a) For all S �= ∅ and x /∈ S, d2
aff(�(x)�(S)) ≥

∑
j α

2
j · d2

aff(φj (x)φj (S)).

(b) For all S of size k ≥ 1, Evol(�(S)) ≥∏
j (Evol(φj (S))

α2
j .

(c) Ther-dimensional distortion of� is at most maxj {r-dimensional distortion of φj }.

We remark that Lemma 18 of [F] implies

Evol2/(k−1)(�(S)) ≥
∑

j

α2
j · Evol2/(k−1)(φj (S)),

which yields the bound in 1 by the arithmetic-geometric inequality. However, our bounds
for general trees and for Euclidean metrics do not follow from either of these two
bounds, and we revert to using 1, in a way that is summarized in Corollary 2 below.
Note also that 1 gives a simple and intuitive proof that− log det(X) is a convex function
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of symmetric positive semidefinite matrices X . This fact was used in [F] and in [DV]
to determine efficiently whether the constraint det(X) ≥ c holds for given symmetric
positive semidefinite matrices X and real c > 0.

Proof of Lemma 1. The embedding � is nonexpansive because for every x, y ∈ X we
have ‖�(x)−�(y)‖2 =∑

i α
2

i ‖φi (x)− φi (y)‖2 ≤ (d(x, y))2.
To prove (a), let S = {y1, . . . , yk}. By definition (of distance between a point and an

affine hull) there exist λ1, . . . , λk with
∑

i λi = 1 such that

d2
aff(�(x)�(S)) =

∥∥∥�(x)−∑
i

λi�(yi )

∥∥∥2

=
∑

j

α 2
j

∥∥∥φj (x)−
∑

i

λiφj (yi )

∥∥∥2

≥
∑

j

α 2
j d2

aff(φj (x)φj (S)).

We prove (b) by induction on |S|. The base case |S| = 1 holds vacuously by the
convention Evol({v}) = 1 regarding zero-dimensional Euclidean volume of a single
point. To show the inductive step for |S| ≥ 2, choose some x ∈ S, break S into (S−x)∪{x},
use the induction hypothesis on S−x , and apply (a) on S−x and x , as follows:

Evol2(�(S)) =
(

Evol(�(S−x)) · daff(�(x)�(S−x))

|S| − 1

)2

(2)

≥
(∏

j (Evol(φj (S−x)))2α
2
j

) (∑
j α

2
j d2

aff(φj (x)φj (S−x))
)

(|S| − 1)2
(3)

Using the generalized arithmetic mean–geometric mean inequality (namely,
∑

j βj z j ≥∏
j z

βj

j whenever βj , zj ≥ 0 and
∑

j βj = 1) we conclude, as claimed, that

Evol2(�(S)) ≥
(∏

j (Evol(φj (S−x)))2α
2
j

) (∏
j (daff(φj (x)φj (S−x)))2α

2
j

)
(|S| − 1)2

=
∏

j

(Evol(φj (S)))
2α2

j .

Finally, (c) says that Evol(�(S)) ≥ minj Evol(φj (S)) which follows easily
since (b) bounds Evol(�(S)) from below by some (weighted geometric) average of
Evol(φj (S)).

The next corollary shows how Lemma 1 may be used to improve the r -dimensional
distortion of an embedding by “combining” that embedding with an embedding of low
one-dimensional distortion. Technically, we need the r -dimensional distortion to be
estimated by bounding each term of (1) separately. We indeed use this corollary to
obtain improved distortions for trees and for Euclidean metrics.
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Corollary 2. Let φ1, φ2 be nonexpansive embeddings of a finite metric (X, d) into l2,
and let D1 be the one-dimensional distortion of φ1. Suppose that every k-subset of X
has a proper ordering (p1, . . . , pk)with dT (pi , {p1, . . . , pi−1})/daff(φ2(pi )φ2({p1, . . . ,

pi−1})) ≤ D2 for all 2 ≤ i ≤ k. Then there exists an embedding whose (k − 1)-
dimensional volume distortion is at most O((D1 · (D2)

k−2)1/(k−1)).

Proof. By Lemma 1 we know that the direct sum � = φ1/
√

2 ⊕ φ2/
√

2 is a nonex-
pansive embedding. Consider a k-subset and let (p1, . . . , pk) be the guaranteed proper
ordering of its points. By Lemma 1(a),

(k−1)! · Evol(�(S))

= ‖�(p2)−�(p1)‖ ·
k∏

j=3

daff(�(pj ){�(p1), . . . , �(pj−1)})

≥ ‖φ1(p2)− φ1(p1)‖√
2

·
k∏

j=3

daff(φ2(pj ){φ2(p1), . . . , φ1(pj−1)})√
2

.

The one-dimensional distortion of φ1 implies that dT (p1, p2)/‖φ1(p2)− φ1(p1)‖ ≤ D1.
The guarantee on φ2 is that

dT (pi , {p1, . . . , pi−1})
daff(φ2(pi )φ2({p1, . . . , pi−1})) ≤ D2 for all 2 ≤ i ≤ k.

Thus, the (k − 1)-dimensional distortion of � is, up to constant factors,

(
Tvol(S)

(k−1)! · Evol(�(S))

)1/(k−1)

≤ (D1 · (D2)
k−2)1/(k−1),

as claimed.

A comment about symmetry. Let Aut(G) be the automorphism group of a graph G. An
embedding f of G into Euclidean space is transitive if Evol( f (S)) = Evol( f (σ (S))) for
every S ⊆ V (G) and σ ∈ Aut(G). In particular (and essentially equivalently), it means
that all pairwise distances are invariant under automorphisms. Lemma 1 can be used to
show that minimum volume distortion can always be obtained by a transitive embedding.
This allows us to consider only transitive embeddings in the context of proving lower
bounds for volume distortion (e.g., in the tightness part of the proof of Theorem 2).

Lemma 3. For any finite metric and any r ≥ 1, there is an embedding which achieves
minimum distortion of r-dimensional volumes and is also transitive.

Proof. Let f be an optimal embedding of G with respect to r -dimensional volumes,
and let f σ (v) stand for f (σ (v)). We show below that the direct sum embedding f ∗ =
(1/
√|Aut(G)|)⊕σ∈Aut(G) f σ is transitive and has minimum volume distortion.
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The fact that the volume distortion of f ∗ is at most as that of f follows from
Lemma 1(c), because

∑
σ∈Aut(G)(1/

√|Aut(G)|)2 = 1, and because f σ has the same
volume distortion as f .

To show that f ∗ is transitive we evaluate ( f ∗)ρ for arbitrary ρ ∈ Aut(G):

( f ∗)ρ =
(

1√|Aut(G)|
⊕

σ∈Aut(G)

f σ
)ρ

= 1√|Aut(G)|
⊕

σ∈Aut(G)

( f σ )ρ

= 1√|Aut(G)|
⊕

σ∈Aut(G)

f σρ.

As σ ranges over Aut(G), so does σρ. It follows that ( f ∗)ρ is attained from f ∗ by
a permutation of coordinates. Therefore, Evol( f ∗(S)) = Evol(( f ∗)ρ(S)) for all ρ ∈
Aut(G), as claimed.

3. Graph Families

3.1. Paths

We now determine the least r -dimensional distortion achievable in an embedding of
a path. In Section 3.1.1 we prove the upper bound by showing an embedding, and in
Section 3.1.2 we prove a matching lower bound.

Theorem 1. The metric of a path on n vertices has an embedding whose r-dimensional
volume distortion is O(log1/2−1/2r n). This bound is tight for any 2 ≤ r ≤ √n/2.

Nearly the same results were recently shown by Dunagan and Vempala [DV]. They
achieve an O(

√
log n)upper bound using a randomized algorithm. We construct a specific

embedding whose distortion is slightly better, and whose geometrical structure is more
tractable. Indeed, we subsequently use this structure to embed trees (in Sections 3.2,
and 3.3). Our lower bound is slightly better than the 	(log1/2−1/(r+1) n) lower bound
sketched in [DV].

3.1.1. Embedding the Path. Our embedding of the path is a modification of an idea
due to Bourgain [B2], who used it as a building block for his embedding of the complete
binary tree. We embed the n-vertex path by taking the last n vertices in Bourgain’s
embedding of an n2-vertex path. In accordance with Bourgain’s original notation, we
denote the vertex set of the path by V = {n2 − n + 1, . . . , n2 − 1, n2}. The embedding
f maps V into Rn2

. The sth coordinate of f (p) is given by

f (p)s =
{√

(p + 1− s)/ ln n if 1 ≤ s ≤ p,
0 if p < s ≤ n2.

We first bound the one-dimensional distortion of f .
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Lemma 4. The embedding f is nonexpansive and its one-dimensional distortion is
O(1).

Proof. To see that f is nonexpansive it suffices to verify this property for pairs of
adjacent vertices. Indeed, for all 1 < q ≤ n2,

‖ f (q)− f (q−1)‖ = (ln n)−1/2

(
q∑

s=1

(
√

q + 1− s −√q − s)2
)1/2

= (ln n)−1/2

(
q∑

s=1

(
1√

q + 1− s +√q − s

)2
)1/2

≤ (ln n)−1/2

(
q∑

s=1

1

4(q − s)

)1/2

≤ (ln n)−1/2

(
H(q)

4

)1/2

< 1,

where H(m) denotes the harmonic sum 1+ 1
2 + · · · + 1/m = ln m +�(1).

We next bound the contraction of the distance between any two vertices p, q with
n2 − n < p < q ≤ n2:

‖ f (q)− f (p)‖ ≥ (ln n)−1/2

(
p∑

s=1

(
√

q + 1− s −
√

p + 1− s)2
)1/2

= (ln n)−1/2

(
p∑

s=1

(
q − p√

q + 1− s +√p + 1− s

)2
)1/2

≥ (ln n)−1/2(q − p)

(
p∑

s=1

1

4(q + 1− s)

)1/2

= 1
2 (ln n)−1/2(q − p)(H(q)− H(q − p))1/2

= 1
2 (ln n)−1/2(q − p)

(
ln

q

q − p
+�(1)

)1/2

≥ 	(q − p),

where the last inequality follows from q/(q − p) ≥ (n2 − n)/(n − 1) = n.

Let S = {p1, . . . , pk} be a subset of k vertices of the path, ordered by increasing
indices p1 < · · · < pk . Clearly, the minimum spanning tree of S consists of the edges
(pi−1, pi ) for i = 2, · · · , k. Hence, Tvol(S) =∏k

i=2(pi − pi−1).
To derive a lower bound on the Euclidean volume of f (S), consider the distance

between f (pi ) and the affine hull of f (p1), . . . , f (pi−1). For i = 2 this distance is
‖ f (p2)− f (p1)‖ and by Lemma 4 it is at least	(p2− p1). For i > 2 we claim that it is
	((pi − pi−1)/

√
log n). Indeed, f (p1), . . . , f (pi−1) are supported only on coordinates
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s ≤ pi−1, and so the same applies for their affine hull. Therefore, daff( f (i) f (p1, . . . ,

pi−1)) is at least the length of the the projection of f (pi ) onto the coordinates s > pi−1,
yielding as claimed that

d2
aff( f (pi ) f (p1, . . . , pi−1)) ≥

pi∑
s=pi−1+1

pi + 1− s

ln n
≥ (pi − pi−1)

2

2 ln n
.

Plugging these into (1) we conclude that the (k − 1)-dimensional volume distortion
of f is (O(1) · (O(log n))(k−2)/2)1/(k−1) = O(log(k−2)/(2k−2) n). This proves the upper
bound in Theorem 1.

3.1.2. Lower Bound for the Path. The key tool for proving the lower bound in Theo-
rem 1 is a geometric inequality, due to Linial and Saks [LS].

Lemma 5 [LS]. Let x1, . . . , xn be vectors in Rn , and denote �j = {(p, q): 1 ≤ p <
q ≤ n , q − p = 2 j } and � =⋃

j≥1 �j . Then

∑
(p,q)∈�

‖xp − 2x(p+q)/2 + xq‖2

(q − p)2
≤

n−1∑
p=1

‖xp+1 − xp‖2. (4)

We now denote the vertices of the n-path by {1, . . . , n}, as usual. Let φ be a non-
expansive embedding and let xp = φ(p) be the image of the vertex p ∈ {1, . . . , n}.
Since φ is nonexpansive, the right-hand side of (4) is at most n − 1. Hence, there exists
1 ≤ i ≤ 1

2 log n, such that

∑
(p,q)∈�i

‖xp − 2x(p+q)/2 + xq‖2

(2i )2
<

2n

log n
. (5)

Consider a set of k ≤ √n/2 evenly spaced vertices on the path, S = {p1, . . . , pk}
where pj+1 = p1 + j · 2i for j = 1, . . . , k − 1 (p1 will be chosen later). Every
three consecutive vertices pj−2, pj−1, pj (for 3 ≤ j ≤ k) are mapped to a triangle
xpj−2 , xpj−1 , xpj in the Euclidean space. Let mj = ‖ 1

2 (xpj−2 + xpj )− xpj−1‖ be the length
of this triangle’s median from xpj−1 . We follow an idea from [DV] and upper bound the

volume of conv(xp1 , . . . , xpk ) by Evol(φ(S)) ≤ (1/(k − 1)!)‖xp2 − xp1‖
∏k

j=3(2mj ).
Indeed, denote by hj the triangle’s height from xpj . Then hj = daff(xpj {xpj−2 , xpj−1}) ≥
daff(xpj {xp1 , . . . , xpj−1}) and so Evol(φ(S)) ≤ (1/(k − 1)!)

∏k
j=3 hj . However, similarity

of triangles (see Fig. 1) implies that hj ≤ 2mj , and the above upper bound on Evol(φ(S))
follows.

xpj�1xpj�2

xpj

mj

hj 2mj

Fig. 1. Similarity of triangles.



348 R. Krauthgamer, N. Linial, and A. Magen

Since φ is nonexpansive, ‖xp2 − xp1‖ ≤ p2 − p1 = 2i and we have

(k − 1)! · Evol(φ(S)) ≤ 2i
k∏

j=3

(2mj ) ≤ 2i

(∑k
j=3 4m2

j

k − 2

)(k−2)/2

, (6)

where the last step uses the arithmetic–geometric inequality.
Suppose that p1 is chosen uniformly at random from {1, 2, . . . , n/2}. (Note that

pk < n/2+ k
√

n ≤ n.) Inequality (5) yields an upper bound on the expectation of 4m 2
j

(over the choice of p1), as follows:

E[4m 2
j ] = E[‖xpj−2 − 2xpj−1 + xpj‖2] ≤ (2i )2 · 2n

(n/2) · log n
= 4 · (2i )2

log n
.

By linearity of expectation, this is also an upper bound on E[
∑k

j=3 4m 2
j /(k − 2)].

Therefore there must exist a choice for p1 for which

∑k
j=3 4m2

j

k − 2
≤ 4 · (2i )2

log n
.

Together with (6) and the obvious equality Tvol(S) = (2i )k−1, we lower bound the
distortion of S by

(
Tvol(S)

(k − 1)! · Evol(φ(S))

)1/(k−1)

≥
(

(2i )k−1

(2i )k−1(4/log n)(k−2)/2

)1/(k−1)

=
(

log n

4

)(k−2)/2(k−1)

.

This establishes the tightness claim in Theorem 1.

Graphs with constant volume distortion. Corollary 6 below allows us to characterize
those graphs that can be embedded into l2 with bounded r -dimensional volume distortion
(for any 2 ≤ r <

√
n/2). It follows that the problem of maintaining distances is quali-

tatively different than that of maintaining higher-dimensional volumes. Interestingly, it
also follows that the metric of a graph G has bounded r -dimensional distortion for some
2 ≤ r <

√
n/2 if and only if the same holds for r = 2.

Corollary 6. A graph has a Euclidean embedding whose r-dimensional volume dis-
tortion is bounded for some 2 ≤ r <

√
n/2 if and only if the graph has a bounded

diameter.

Proof. Suppose that the diameter of G is D = O(1). We then embed each vertex i
to (1/

√
2)ei , where ei is the i th standard unit vector. This embedding φ is obviously

nonexpansive. Consider a subset S of k ≥ 3 vertices. By symmetry of the vectors ei ,
Evol(φ(S)) = 2−(k−1)/2Evol(e1, . . . , ek). It can be seen that (k − 1)! · Evol(φ(S)) =
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2−(k−1)/2
√

k > 2−(k−1)/2, e.g., by observing that

daff(ei {e1, . . . , ei−1}) =
∥∥∥∥ei − e1 + · · · + ei−1

i − 1

∥∥∥∥ =
√

i

(i − 1)
.

The volume distortion of S is thus(
Tvol(S)

(k − 1)! · Evol(φ(S))

)1/(k−1)

<

(
Dk−1

2−(k−1)/2

)1/(k−1)

=
√

2 · D.

The converse follows by applying the lower bound in Theorem 1 to a geodetic path that
realizes the diameter of G.

3.2. A Complete Tree

We next determine the least r -dimensional distortion achievable in an embedding of
a complete tree (of any arity a ≥ 2). Our results below extend the results of Bour-
gain [B2] from one-dimensional to higher-dimensional distortion. Previously, Rao [R]
gave a randomized algorithm that embeds planar metrics (and in particular trees) with
r -dimensional distortion O(

√
log n).

Theorem 2. The metric of a complete tree of depth D and arity a ≥ 2 has an embedding
whose r-dimensional volume distortion is O(

√
log D). This bound is tight for any 1 ≤

r ≤ 2
√

D/4.

Proof. We first prove the upper bound by showing an embedding. To embed a tree T
of depth D, we start with Bourgain’s embedding [B2] of a complete tree of depth D2

and restrict it to a subtree that is rooted at a vertex of depth D2 − D. The vertex set V
of a complete tree of depth D2 and arity a is identified with the set of strings of length
≤ D2 over the alphabet [a] = {1, . . . , a}. To restrict to the aforementioned subtree, we
consider only strings that start with D2−D ones. Let prefix(p) denote the set of prefixes
of a string p ∈ V (including p), i.e., the vertices s on the path from the root to p. Let
depth(s) denote the depth of a vertex s, i.e., the length of the string s. The following
map g embeds the tree vertices into RV (namely, each a vertex of T is associated with a
coordinate in the map g):

g(p)s =
{ √

(depth(p)+ 1− depth(s))/log D if s ∈ prefix(p),
0 otherwise.

Note that g is nonexpansive. This has to be verified only for adjacent vertices, in
which case the calculation in Lemma 4 applies.

To analyze the volume distortion of the embedding g, consider a set S of k vertices. Let
(p1, . . . , pk) be the vertices of S ordered by increasing depth, breaking ties arbitrarily.
We claim that this ordering is proper. This claim clearly follows if, for every i , there
exists a minimum spanning tree of p1, . . . , pi in which pi is a leaf; so consider a
minimum spanning tree for p1, . . . , pi in which pi has degree ≥ 2, say it is adjacent
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p�pi

v

p�

v

p�

pi p�

Fig. 2. Examples for the median v of the triple pi , pα, pβ .

to pα and pβ . Let v be the median vertex in T for the triple pi , pα, pβ , see Fig. 2 for
illustration. Since pi has the largest depth of the three vertices, it follows that dT (v, pi ) ≥
min(dT (v, pα), dT (v, pβ)). Consequently, max(dT (pα, pi ), dT (pβ, pi )) ≥ dT (pα, pβ).
Now, add the edge (pα, pβ) to the spanning tree and omit the longer among (pi , pα) and
(pi , pβ). This step does not increase the weight of the spanning tree, and reduces the
number of pi ’s neighbors. This can be repeated until pi becomes a leaf in a minimum
spanning tree for p1, . . . , pi .

We are now ready to use the estimate in (1) for volume distortion. Fixing the index
i for the moment, let yj be the lowest common ancestor of pj and pi , for j < i . Let yν
have the largest depth among y1, . . . , yi−1. Now pi is at least as deep as any vertex in
{p1, . . . , pi−1}, so d(pi , {p1, . . . , pi−1}) ≤ d(pi , pν) ≤ 2d(pi , yν). On the other hand,
the vectors g(p1), . . . , g(pi−1) are not supported on the coordinates that correspond to
vertices on the path between pi and yν . We argue as in Section 3.1.1 and conclude that
the distance between g(pi ) and the affine hull of g(p1), . . . , g(pi−1) is at least

	

(
depth(pi )− depth(yν)√

log D

)
= 	

(
d(pi , yν)√

log D

)
.

Therefore,

d(pi , {p1, . . . , pi−1})
daff(g(pi )g({p1, . . . , pi−1})) ≤ O(

√
log D).

By (1), the (k − 1)-dimensional volume distortion of g is O(
√

log D). This proves the
upper bound in Theorem 2.

To prove the tightness part of the theorem, we show that for any 1 ≤ r ≤ 2
√

D/4

the r -dimensional volume distortion of the complete tree of depth D is 	(
√

log D). It
clearly suffices to prove the lower bound for arity a = 2, so let T (V, E) be a complete
binary tree of depth D. Identify the vertices of T with binary strings of length at most
D. (The root is the empty string and the two children of vertex α are α0 and α1.) Let
α( j) denote the j th prefix of α ∈ {0, 1}D , i.e., the j th vertex on the path from the root
to the leaf α.

Consider a nonexpansive Euclidean embeddingφ of T that achieves minimum (k−1)-
dimensional distortion. By Lemma 3, we may assume that φ is transitive. It is known
from [B1], [M2], and [LS] that there must exist a pair of vertices whose distance in the
tree is shrunk by φ by a factor of	(

√
log D). Specifically, suppose that α ∈ {0, 1}D is a
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leaf of T and p, q are integers with 1 ≤ p < q ≤ D and q − p = 2i for i ≥ 1. We then
let β be the leaf obtained from α by flipping the bit indexed by 1+ (p + q)/2. Linial and
Saks [LS] show that there must exist α, p, q as above, such that φ shrinks the distance
between α(q) and β(q) by at least 	(

√
log D), i.e.,

‖φ(α(q))− φ(β(q))‖ ≤ O

(
d(α(q), β(q))√

log D

)
≤ O

(
q − p√

log D

)
. (7)

It is straightforward from their proof that the stronger requirement q − p = 2i for i ≥
1
2 log D affects only the leading constant in (7). We flip in α any subset of the bits indexed

by (p + q)/2 + 1, (p + q)/2 + 2, . . . , (p + 3q)/4, and obtain 2(q−p)/4 ≥ 2
√

D/4 ≥ k
leaves of T . Denote k − 1 of these leaves by β1, β2, . . . , βk−1. We show below that the
set S = {α(q), β1(q), . . . , βk−1(q)} has volume distortion 	(

√
log D).

We now analyze the Euclidean volume of φ(S). Recall that φ is transitive and ob-
serve that for all 1 ≤ i ≤ k − 1, there exists an automorphism of T that fixes α(q)
and maps β(q) to β i (q). Hence, ‖φ(α(q)) − φ(β(q))‖ = ‖φ(α(q)) − φ(β i (q))‖ ≤
O((q − p)/

√
log D). Considering the vertices of S in the order (α(q), β1(q), . . . ,

βk−1(q)), the distance of each φ(β i (q)) from the affine hull of φ(α(q)), φ(β1(q)), . . . ,
φ(β i−1(q)) is also at most O((q − p)/

√
log D), and hence (k − 1)! · Evol(S) ≤

(O((q − p)/
√

log D))k−1.
For the tree volume of S, observe that the distance in T between every two vertices

of S is at least (q − p)/4, implying Tvol(S) ≥ ((q − p)/4)k−1. We therefore conclude
that (

Tvol(S)

(k−1)! · Evol(φ(S))

)1/(k−1)

≥ 	(
√

log D).

This completes the proof of Theorem 2.

3.3. General Trees and Chordal Graphs

The embedding of complete trees described in the proof of Theorem 2 yields improved
upper bounds on the volume distortion of general trees and of chordal graphs. Ma-
toušek [M2] showed that any n-vertex (weighted) tree has an embedding into l2 with
O(
√

log log n) one-dimensional distortion, and this bound is tight for the complete bi-
nary tree, see [B2], [M2], and [LS]. Since every n-vertex tree embeds isometrically into
the complete n-ary tree of depth n, Theorem 2 directly implies an O(

√
log n) bound

on higher-dimensional distortion. Taking the direct sum of the latter embedding and
the aforementioned embedding of Matoušek [M2] achieves a slightly better distortion,
which is stated in the next theorem. Its proof follows immediately by applying Corol-
lary 2. Notice that this bound is nearly attained by an n-vertex path. Previously, Rao [R]
gave a randomized algorithm that embeds planar metrics (and in particular trees) with
r -dimensional distortion O(

√
log n).

Theorem 3. The metric of any tree on n vertices has an embedding whoser-dimensional
volume distortion is O((log n)(r−1)/2r (log log n)1/2r ).
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Brandstädt et al. [BCD] show that for any chordal graph G, there exists a tree T ⊆ G2

such that dT (u, v) ≤ dG(u, v) for every two vertices u, v of G. It follows that dT (u, v) =
�(dG(u, v)), so for every subset S the tree volume of S in G and the tree volume of S in
T are within a factor of (�(1))k−1 from each other. By applying Theorem 3 on T (with
appropriate scaling), we obtain the following upper bound on the distortion of chordal
graphs.

Corollary 7. The metric of any chordal graph on n vertices has an embedding whose
r-dimensional volume distortion is O((log n)(r−1)/2r (log log n)1/2r ).

3.4. Expander Graphs

In this section we show a lower bound on the volume distortion of any embedding of an n-
vertex expander. Our lower bound matches, up to constant factors, the trivial embedding
that maps the vertices of an expander to the vertices of a unit simplex. This bound also
shows that Feige’s [F] extension of Bourgain’s bound [B1] is tight for subsets of size
k ≤ O(log n/log log n). A graph G is a (d, δ)-expander if it is d-regular for d ≥ 3 and
the second eigenvalue of its adjacency matrix satisfies λ2 ≤ d − δ. Below we consider
the parameters d, δ as fixed; we do not specify them explicitly and simply say that the
graph is an expander.

Theorem 4. Let G be a (d, δ)-expander with n vertices. Then every Euclidean embed-
ding of G has r-dimensional volume distortion at least 	(log n), for any 1 ≤ r < n1/3.
The implicit coefficient in the 	 depends only on d and δ.

The key tool for the proof of Theorem 4 is a lower bound on the one-dimensional
distortion due to Linial et al. [LLR] (see also [M1] and [LM]). Specifically, the next
lemma follows from Matoušek’s book [M3, Equation 15.4].

Lemma 8. Let φ be a Euclidean embedding of an n-vertex expander G(V, E). Then

∑
p,q∈V

‖φ(p)− φ(q)‖2 ≤ O(n) ·
∑

(p,q)∈E

‖φ(p)− φ(q)‖2. (8)

Proof of Theorem 4. Let φ be a nonexpansive Euclidean embedding of an n-vertex
expander G(V, E). Then by Lemma 8 the left-hand side of (8) is at most O(n2). It
follows that

E[‖φ(p)− φ(q)‖2] ≤ O(1), (9)

where p, q are two randomly chosen vertices. Let p1, . . . , pk be k distinct vertices
chosen at random from V . We show that with positive probability, the volume distortion
of {p1, . . . , pk} is 	(log n). To analyze the Euclidean volume of φ(p1), . . . , φ(pk),
observe that the distance of φ(pi ) from the affine hull of φ(p1), . . . , φ(pi−1) is at most
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‖φ(pi )− φ(p1)‖. Therefore, by the arithmetic–geometric inequality,

(k−1)! · Evol(φ(p1), . . . , φ(pk)) ≤
k∏

i=2

‖φ(pi )− φ(p1)‖

≤
(∑k

i=2 ‖φ(pi )− φ(p1)‖2

k − 1

)(k−1)/2

.

By linearity of expectation, E[
∑k

i=2 ‖φ(pi )− φ(p1)‖2/(k − 1)] = E[‖φ(p)−φ(q)‖2]
≤ O(1), where the first expectation is over the choice of p1, . . . , pk , and the second one
is over the choice of p, q . Markov’s inequality then implies that

Pr[((k−1)! · Evol(φ(p1), . . . , φ(pk)))
1/(k−1) ≤ O(1)] ≥ 3

4 . (10)

To analyze the tree volume of p1, . . . , pk , observe that if for all i �= j the distance
in G between pi and pj is ≥ �, then Tvol(p1, . . . , pk) ≥ �k−1. The neighborhood of
radius � = logd(n/4k2) around any vertex contains at most n/4k2 vertices. It follows
that the above lower bound on the tree volume holds with probability at least

k−1∏
i=1

n − i(n/4k2)

n − i
≥

(
1− 1

4k

)k−1

>
3

4
.

Combining this with (10), it follows that with probability larger than 1/2,(
Tvol(p1, . . . , pk)

(k−1)! · Evol(φ(p1), . . . , φ(pk))

)1/(k−1)

≥ 	
(

logd
n

4k2

)
≥ 	(log n),

which proves the theorem.

3.5. A Hypercube

The following lower bound on the distortion of a hypercube extends the known lower
bound for one-dimensional distortion, due to Enflo [E] (see also [LM] and [M3]). Its
proof appears below and is quite similar to that for expanders.

Theorem 5. The n-vertex hypercube (of dimension log n) has r-volume distortion
	(
√

log n), for any 1 ≤ r ≤ n1/4/2.

Interestingly, the identity embedding of the hypercube is tight with this lower bound
for one- and two-dimensional distortion, but for higher-dimensional distortion the iden-
tity embedding gives no upper bound, since four points in a two-dimensional face (square)
are not even in general position. Determining the higher-dimensional volume distortion
of hypercubes thus remains an open question. We briefly sketch an embedding of the
hypercube whose distortion is better than that of general graphs. Let φ1 be the iden-
tity embedding of the hypercube, into log n-dimensional Euclidean space. Rao’s algo-
rithm [R] can be applied to this n-point set in Euclidean space. Let φ2 be this (composed)
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embedding. The direct sum φ1/
√

2 ⊕ φ2/
√

2 is, by Corollary 2, an embedding whose
(k − 1)-dimensional distortion for k ≥ 3 is O(

√
log n(log n log k)1/2−1/(k−1)).

The key tool for the proof of Theorem 5 is a lower bound on the distortion of distances
(i.e., the case k = 2), originally shown by Enflo [E] (see also [LM]). Specifically, we
use a lemma that follows from the proof of Theorem 15.4.1 in Matoušek’s book [M3].

Lemma 9 [M3]. Let φ be a Euclidean embedding of an n-vertex hypercube H(V, E),
and let F∗ = {(p, q): p < q; d(p, q) = log n; p, q ∈ V } be the collection of ordered
antipodal pairs. Then

∑
(p,q)∈F∗

‖φ(p)− φ(q)‖2 ≤
∑

(p,q)∈E

‖φ(p)− φ(q)‖2. (11)

Proof of Theorem 5. Let φ be a nonexpansive Euclidean embedding of an n-vertex
hypercube H(V, E). We first claim that

∑
(p,q)∈F

‖φ(p)− φ(q)‖2 ≤ n

2

∑
(p,q)∈E

‖φ(p)− φ(q)‖2, (12)

where F = {(p, q): p < q; p, q ∈ V }. Indeed, apply Lemma 9 to all the possible
sub-hypercubes and sum up all the inequalities corresponding to (11). Note that every
pair in F is counted once and every edge in E is counted

∑log n
t=1

(log n−1
t−1

) = n/2 times.
Since φ is nonexpansive, the right-hand side of (12) is at most 1

4 n2 log n. It follows
that

E[‖φ(p)− φ(q)‖2] ≤ n2 log n

4|F | = O(log n), (13)

where p, q are chosen uniformly at random.
We now show that with probability≥ 1/2 a randomly chosen set of vertices {p1, . . . ,

pk} has volume distortion 	(log n). A calculation similar to that in Theorem 4 shows
that (13) implies

Pr[(k−1)! · Evol(p1, . . . , pk) ≤ (4 · O(log n))(k−1)/2] ≥ 3
4 . (14)

To analyze the tree volume of p1, . . . , pk , observe that if all pairwise distances (in
the hypercube H ) between pi and pj are at least 1

10 log n, then Tvol(p1, . . . , pk) ≥
( 1

10 log n)k−1. The size of a ball of radius 1
10 log n in the hypercube H is at most∑(1/10) log n

i=0

(log n
i

) ≤ √n, where the last inequality follows from the entropy estimate( t
αt

) � [αα(1− α)1−α]−t . Since the vertices p1, . . . , pk are chosen at random, the above
lower bound on the tree volume holds with probability at least

k−1∏
j=1

n − j
√

n

n − j
≥

k−1∏
j=1

(
1− j√

n

)
≥ 1− 1+ · · · + k − 1√

n
>

3

4
.
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Combining this with (14), we have by the union bound that with probability larger than
1/2, (

Tvol(p1, . . . , pk)

(k−1)! · Evol(p1, . . . , pk)

)1/(k−1)

≥
1

10 log n

(4 · O(log n))1/2
≥ 	(

√
log n),

which proves the theorem.

4. Euclidean Metrics

We provide a small improvement to an upper bound of Rao [R] on the volume distortion
of Euclidean metrics. Rao [R] showed how to embed an n-point set in l2 that has a
polynomial aspect ratio with (k − 1)-dimensional distortion of O(

√
log n log k). We

offer here a slight improvement of his result. This is done by taking a direct sum of
Rao’s embedding and an isometric embedding (recall that the metric is Euclidean), and
applying Corollary 2. Surprisingly, perhaps, it follows that among all n-point Euclidean
metrics with polynomial aspect ratio, paths have the worst asymptotic (k−1)-dimensional
distortion for constant k.

Theorem 6. Every n-point Euclidean metric with a polynomial (in n) aspect ratio has
an embedding into l2 whose (k − 1)-dimensional volume distortion is

O((log n log k)1/2−1/2(k−1)).

5. Discussion

Feige [F] demonstrates the existence and applicability of higher-order substructures in
finite metric spaces (see Section 1), but there may be alternative notions worthy of
investigation that capture such phenomena. For example, it is possible to consider any
embedding �: X → l2 (not necessarily nonexpansive) and see how well Evol(�(S))
approximates Vol(S). Specifically, is there an embedding � of the path on 1, 2, . . . , n
such that Evol(�(p),�(q),�(r)) = �((r − q)(q − p)) for every three path vertices
p < q < r?

Several problems involving Feige’s definition of higher-dimensional distortion remain
open. One interesting gap is in the r -dimensional distortion of a hypercube for r ≥ 4;
see Section 3.5. It is also evident from Table 1 that there are gaps in our understanding
of the r -dimensional distortion of trees and planar metrics for, say, fixed r ≥ 2, and that
of general and Euclidean metrics for, say, r ≥ log n.
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