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Abstract. We prove tight and near-tight combinatorial complexity bounds for vertical
decompositions of arrangements of hyperplanes and 3-simplices in four dimensions. In
particular, we prove a tight upper bound of �(n4) for the vertical decomposition of an
arrangement of n hyperplanes in four dimensions, improving the best previously known
bound [8] by a logarithmic factor. We also show that the complexity of the vertical decom-
position of an arrangement of n 3-simplices in four dimensions is O(n4α(n) log2 n), where
α(n) is the inverse Ackermann function, improving the best previously known bound [2]
by a near-linear factor.

1. Introduction

Given a collection� of n fixed-degree algebraic surfaces inRd , its arrangement [1], [9] is
denoted byA(�). The complexity of a single cell inA(�) can easily reach�(nd−1), and
may even be slightly super-O(nd−1), depending on the degree of the surfaces of � [1].
There exist many geometric algorithms that require arrangements to be decomposed into
cells of constant description complexity (that is, defined in terms of a constant number
of polynomial equations and inequalities of constant maximum degree). As a result,
devising a decomposition scheme that decomposes arrangements into as few as possible
such cells is an intensively studied problem.

The most efficient general-purpose decomposition scheme is vertical decomposition,
which is suitable for arrangements of fixed-degree algebraic surfaces is any dimension.

∗ This work was carried out while the author was a Ph.D. student in Tel Aviv University and was supported
by a grant from the Israel Science Fund (for a Center of Excellence in Geometric Computing). A preliminary
version of this paper appeared in the Proceedings of the 7th Workshop on Algorithms and Data Structures,
2001, pp. 99–110.
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We define four-dimensional vertical decompositions in Section 2, and refer the reader to
[2] for details on the general scheme. Vertical decomposition was originally introduced
in the context of two-dimensional problems, and was extended to higher dimensions
in the late 1980s [2]. The complexity of the vertical decomposition of an arrangement
of n triangles (or planes) in R3 is known to be O(n2α(n) log n + K ), where K is the
complexity of the undecomposed arrangement (which, in the worst case, is O(n3)) [13].
However, there is still a substantial gap between the known upper and lower bounds for
the complexity of vertical decompositions in dimensions higher than three.

The number of cells in the vertical decomposition of an arrangement of n fixed-
degree algebraic surfaces in R4 has recently been shown, in a companion paper by the
author [10], to be O(n4+ε), for any ε > 0 (where the constant of proportionality depends
on ε). This has improved a previous bound of O(n5β(n)) [2], where β(n) is an extremely
slow-growing function of n (it is an exponential function of α(n), which also depends on
d and on the maximum degree of the polynomials that define the surfaces of �), related
to Davenport–Schinzel sequences [12]. The importance of the problem of improving this
previous upper bound has been emphasized numerous times [1], [2], [8], [9], [12], but
the problem remained open for more than a decade. The analysis in [10] modifies and
extends the approach introduced and developed in the current work.

An interesting previously known result concerning vertical decompositions in four
dimensions is due to Guibas et al. [8], who showed that the vertical decomposition of an
arrangement of n hyperplanes in four dimensions has complexity O(n4 log n).

In this paper we prove a tight bound of �(n4) for the case of hyperplanes, just
mentioned, thereby improving the result of Guibas et al. [8]. Moreover, we bound the
complexity of the vertical decomposition of an arrangement of n 3-simplices in four
dimensions by O(n4α(n) log2 n). This improves the best previously known upper bound
for this setting [2] by a near-linear factor.

We note that an arrangement of simplices as above can be decomposed into �(n4)

cells by extending the simplices into hyperplanes, and decomposing the resulting hyper-
plane arrangement using bottom-vertex simplicial decomposition [3]. In other words, for
both cases of hyperplanes and simplices, alternative�(n4) decompositions are available.
Nevertheless, since vertical decomposition is the most efficient known general-purpose
decomposition technique for general surfaces, it is interesting to study its behavior
also for the simpler case of linear arrangements. Moreover, this study is important
since it introduces general techniques for analyzing vertical decompositions in four
dimensions.

As mentioned above, this work has indeed been successful in this respect, since
the techniques introduced herein were subsequently modified and extended to produce
the desired near-optimal bound for the case of fixed-degree algebraic surfaces [10].
Moreover, the results obtained in the current paper are also interesting in themselves, as
they are considerably sharper than the O(n4+ε) bound of [10]. In particular, the presented
bound for hyperplanes is tight.

Furthermore, a variety of novel techniques applied in this paper were specifically
tailored to produce sharp bounds for the case of linear surfaces, and are not immediately
applicable in the case of curved algebraic surfaces. These techniques appear only in the
current paper, while in the sequel [10] they are replaced by “messier” albeit more general
analysis techniques.
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2. Vertical Decompositions in Four Dimensions

2.1. The Construction

Denote the coordinates by x , y, z, and w; we treat z as the “vertical” coordinate in R4.
Given a collection � of 3-simplices (or hyperplanes) in R4, the vertical decomposition
of A(�), denoted by V(�), is constructed as follows.

For each S ∈ �, erect a three-dimensional z-vertical visibility wall on the boundary
of S (a two-dimensional piecewise linear surface denoted by ∂S), which is defined as the
union of all z-vertical segments that have an end-point on ∂S and are interior-disjoint
from all simplices of�; we refer to a segment whose interior is disjoint from all simplices
of � as a visibility segment. Also, for each pair S, T ∈ �, erect a three-dimensional z-
vertical visibility wall on the two-dimensional (linear) surface S∩T in a similar fashion.
This results in a decomposition ofA(�) into (not necessarily convex) z-vertical prisms,
such that the floor (respectively, ceiling) of each prism, if it exists, is contained in a single
simplex of �. We denote this decomposition by V1(�).

For a prism P of V1(�), the simplex containing its floor (respectively, ceiling) is
denoted by PF (respectively, PC). Projecting P onto its floor or ceiling (in the z-direction)
results in a three-dimensional polyhedron, denoted by P3D. We first decompose P3D by
erecting two-dimensional y-vertical visibility walls on each of its edges. For an edge f
of P3D, the wall erected on it is defined as the union of all y-vertical (visibility) segments
that have an end-point on f and are fully contained in P3D. We then decompose P
by erecting z-vertical three-dimensional visibility walls on each such y-vertical two-
dimensional visibility wall of P3D. Repeating this process for all prisms P results in a
decomposition of V1(�), which we denote by V2(�).

We further refine V2(�) as follows. For a prism Q of V2(�), consider its z-projection
Q3D (which is a y-vertical prism in R3). Projecting Q3D onto its floor or ceiling (in the
y-direction) results in a two-dimensional polygon Q2D, which we decompose by erecting
zero, one, or two x-vertical (possibly infinite) visibility segments (defined in analogy
to the above) on each vertex v of Q2D. We then erect y-vertical two-dimensional walls
(inside Q3D) on each such x-vertical segment of Q2D. Subsequently, z-vertical three-
dimensional walls (inside Q) are erected on each such y-vertical two-dimensional wall
of Q3D. Repeating this process for each prism Q of V2(�) decomposes V2(�) into cells
of constant description complexity: each such cell is a convex polyhedron bounded by
up to eight facets.

This completes the construction of the vertical decomposition V(�). If � consists of
hyperplanes, the construction is simpler, because there are no boundary features present,
and all cells that arise, in all stages of the construction, are convex polyhedra.

Similar constructions can be formulated for arrangements of general algebraic sur-
faces inR4, and for arrangements of simplices or algebraic surfaces in higher dimensions.
We refer the reader to [2] for more details on the vertical decomposition scheme in these
more general settings.1

1 Note our nonstandard order of the coordinates: the last coordinate w is not involved in the construction,
unlike in the approach of Chazelle et al. [2].
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2.2. Preliminary Analysis

The following two observations will be helpful in analyzing the complexity of V(�).
First, it is easy to see that the complexity of V(�) is asymptotically the same as the
complexity of V2(�), and it is thus sufficient to bound the latter in order to bound the
former. Indeed, the last stage of the above construction involves vertical decompositions
of two-dimensional polygons, which only increase the number of features by a constant
factor.

Second, the complexity of V2(�) is asymptotically the same as the complexity of
V1(�) plus the number of y-vertical visibility events inside all the projection polyhedra
P3D of the prisms P of V1(�). Such an event is said to happen between two edges, f
and f ′, of P3D if they intersect a common y-vertical line l, and the segment s ⊂ l that
connects f and f ′ on this line lies completely inside P3D.

We start by bounding the complexity of V1(�).

Lemma 2.1. Given a collection � of n 3-simplices in R4, the complexity of V1(�) is
O(n4α(n)). If � consists of hyperplanes, the complexity of V1(�) is O(n4).

Proof. During the construction of V1(�), a z-vertical visibility wall is erected on S∩T ,
for all S, T ∈ �. By construction, this wall is bounded from above by the lower envelope
of the part of A(�) that lies above S ∩ T (within the z-vertical hyperplane spanned by
S ∩ T ). Similarly, it is bounded from below by the upper envelope of the part of A(�)
that lies below S ∩ T . One such envelope can be alternatively viewed as follows: The
cross section of a 3-simplex R ∈ � with the z-vertical hyperplane spanned by S ∩ T
is a triangle or a quadrilateral; its portion above (or below) the intersection S ∩ T is a
convex k-gon, for k = O(1); we are interested in the lower (or upper) envelope of the
collection of these k-gons that correspond to all R ∈ �.

The complexity of each of these upper and lower envelopes is O(n2α(n)) [6]. Con-
sequently, the complexity of the wall erected on S ∩ T is also O(n2α(n)). The same
arguments imply that the complexity of the visibility wall erected on each ∂S (for S ∈ �)
is O(n2α(n)) as well. Since there are n such boundaries ∂S and O(n2) such intersections
S ∩ T , the overall number of features that are created during the construction of V1(�)

is O(n4α(n)).
If� is a collection of hyperplanes, S∩T is a two-dimensional plane (for all S, T ∈ �),

and the complexity of the above-mentioned envelopes is O(n2). This is because the
envelopes are a portion of the zone of S ∩ T within the cross section of A(�) in the
z-vertical hyperplane spanned by S∩ T , and the complexity of such a zone is O(n2) [7].
The number of created features in this case is thus O(n4).

2.3. Visibility Events

In light of the above, the bulk of this paper is devoted to bounding the number of y-
vertical visibility events inside all polyhedra P3D. To this end, we first classify the faces
and edges of a projected prism P3D, obtained as the z-vertical projection of a prism P
of V1(�). Each face of P3D is a z-vertical projection of a face of P , which is a part of a
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three-dimensional z-vertical wall erected on a two-dimensional feature ofA(�) (during
the construction of V1(�)). These walls can be of three types:

• An (upward) visibility wall erected on PF ∩ S (for some S ∈ �) that touches PC

(from below). Faces of P3D that are projections of parts of such walls are said to
be red.
• A (downward) visibility wall erected on PC ∩ T (for some T ∈ �) that touches PF

(from above). Corresponding faces of P3D are said to be green.
• A visibility wall erected on ∂U (for some U ∈ �) that touches PF (from above) and

PC (from below). (Intuitively, the boundary of U is partly “floating” between PF

and PC and the z-vertical wall erected on it reaches both PF and PC.) Corresponding
faces of P3D are said to be blue. (Note that in the case of hyperplanes there are no
blue faces.)

Any edge of P3D is incident to two faces of P3D. Such edges can thus be classified
into four types, depending on the types of the incident faces:

1. Edges incident to two red (or two green) faces. The two faces, by definition,
correspond to parts of the visibility walls erected on PF∩S and PF∩T (respectively,
on PC ∩ S and PC ∩ T ), for some S, T ∈ �. An edge incident to both of them
thus corresponds to the common part of these two walls, which is the visibility
wall erected on PF ∩ S ∩ T (respectively, PC ∩ S ∩ T ). We denote such edges
mnemonically by E3 to signify that they are formed by an intersection of three
simplices.

2. Edges incident to a red and a green face. Such an edge corresponds to the common
part of two walls, one erected (upward) on PF∩ S and another erected (downward)
on PC ∩ T , for some S, T ∈ �. This part is composed of z-vertical segments that
touch both PF ∩ S and PC ∩ T . We denote such edges by E22 to signify that they
are formed by the interaction of two intersections, each of two simplices.

3. Edges incident to a red (or green) face and a blue face. Such an edge corresponds
to the common part of two walls, one erected on PF ∩ S (respectively, on PC ∩ S)
and another erected on ∂T , for some S, T ∈ �. This part is composed of z-
vertical segments that touch PF∩ S from above (respectively, PC∩ S from below),
pass through ∂T , and touch PC (respectively, PF). We denote such edges by E21 to
signify that they are formed by an intersection of two simplices, and by a boundary
of a third simplex.

An interesting special case is the one in which S = T , i.e., one face corresponds
to PF ∩ S or PC ∩ S, and another to ∂S. Such edges correspond to a visibility wall
erected on PF ∩ ∂S or on PC ∩ ∂S, and are denoted by E2.

4. Edges incident to two blue faces. Such an edge corresponds to the common part
of the visibility walls erected on ∂S and ∂T , for some S, T ∈ �. We denote such
edges by E11 to signify that they are formed by two boundaries of simplices.

An interesting special case is the one in which S = T . In this case the edge is
incident to two blue faces that correspond to walls erected on two incident two-
dimensional features of ∂S, and it therefore corresponds to a visibility wall erected
on a one-dimensional feature of ∂S. Such edges are denoted by E1.
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To recap, the possible mnemonic representations of the edges of P3D are E3, E22,
E21, E2 (a special case of E21), E11, and E1 (a special case of E11).

Each y-vertical visibility event inside P3D corresponds to a y-vertical segment s that
lies completely inside P3D, such that s connects a point p on an edge of P3D to a point
p′ on another edge of P3D. Notice that p (as well as p′) is a z-vertical projection of
a specific z-vertical segment e (respectively, e′), whose bottom end-point lies on PF,
and whose top end-point lies on PC. By construction, e and e′ lie inside a common
yz-parallel (two-dimensional) plane, which we denote by �e,e′ . The two-dimensional
feature of V2(�) that corresponds to s (that is, the “wall” that is erected on s inside P in
R

4) is the trapezoid that has e and e′ as its bases. This trapezoid is necessarily disjoint
from � in its interior. We sometimes denote a y-vertical visibility event by (e, e′), where
e and e′ are as above, and where the points on e have a smaller y-coordinate than the
points on e′.

Figure 1 provides an exhaustive visual catalogue of the possible types of y-vertical
visibility events. There are 21 such types, determined by the type of the edge that contains
the point p and the type of the edge that contains the point p′. For example, one such type
of event is E3 E22, in which the edge containing p is of type E3 and the edge containing
p′ is of type E22 (or vice versa; this type can also be denoted by E22 E3). For each type of
event, the figure shows the (one or two) possible combinatorially distinct configurations
of simplices inside the plane�e,e′ (up to the obvious symmetries of interchanging top and
bottom and/or left and right); the cross section of the simplices inside�e,e′ is shown. The
z-vertical segments e and e′ are shown dashed. In each part of the figure, the trapezoid
that is bounded by e, e′, PF, and PC, corresponding to a specific visibility event, can be
clearly distinguished. By definition, the interior of this trapezoid has to be disjoint from
all simplices of �. Notice that Fig. 1 treats E2 and E1 as distinct types of edges. They
will also be treated as such in the analysis.

As shown in Fig. 1, some types of events have two possible combinatorially distinct
configurations. To distinguish between them during the analysis, we sometimes describe
an event not only by its type, but also by the configuration. For instance, we distinguish
between E3 E3(I) and E3 E3(II) events, which are events of type E3 E3 that have either
the configuration shown in Fig. 1(b,I) or the one shown in Fig. 1(b,II).

3. Visibility Events in Arrangements of Hyperplanes

Analyzing vertical decompositions of arrangements of hyperplanes is simpler than in the
more general case of 3-simplices, since hyperplanes do not have boundaries, and thus
only three kinds of y-vertical visibility events can occur. Using the notation introduced
in the previous section, these are E3 E3, E3 E22, and E22 E22 events. In order to prove the
main result of this section, stated below, it is therefore sufficient to analyze only events
of these three kinds.

Theorem 3.1. The number of cells in the vertical decomposition of an arrangement of
n hyperplanes in four dimensions is O(n4).

Proof. In the following sequence of four lemmas, we analyze each kind of event in
turn, and prove that there can only be O(n4) events of each kind. This is accomplished
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Fig. 1. All the possible types of y-vertical visibility events in arrangements of simplices (up to symmetry).

by charging each event to features of A(�) or of V1(�), or to events that were analyzed
previously. Special care is taken to ensure that each feature or event is only charged at
most a constant number of times.

Lemma 3.2. The number of E3 E3(II) events (that is, events of type E3 E3 that are in
the configuration shown in Fig. 1(b,II)) in an arrangement of n hyperplanes in 4-space
is O(n4).
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Proof. It is easy to see that each E3 E3(II) event uniquely corresponds to a feature of
the vertical decomposition of the three-dimensional arrangement A(� ∩ PF) inside the
subspace PF, where PF ∈ � is the hyperplane that contains the two edges that define the
event. (The symmetric case, where the event occurs on the ceiling PC of a cell, is treated
in exactly the same manner.) Indeed, parametrize PF by x, y, w and let y be the vertical
direction. Consider the edges ϕ ⊆ PF∩S∩T andψ ⊆ PF∩U∩V that define a particular
E3 E3(II) event and consider the planes S∗ = PF ∩ S, T ∗ = PF ∩ T , U ∗ = PF ∩ U ,
V ∗ = PF ∩ V of A(� ∩ PF). ϕ ⊆ S∗ ∩ T ∗ and ψ ⊆ U ∗ ∩ V ∗ are edges of A(� ∩ PF)

that are y-vertically visible in the subspace PF. The considered E3 E3(II) event uniquely
corresponds to the y-vertical segment that connects ϕ and ψ in PF and is a feature of the
vertical decomposition of A(� ∩ PF). For any PF ∈ �, the number of such features is
O(n3) [2], [13]. Thus, the overall number of E3 E3(II) events is

∑
PF

O(n3) = O(n4).

From now on, throughout the remainder of this section, we only consider E3 E3(I)
events (as in Fig. 1(b,I)), and refer to them briefly as E3 E3 events.

Lemma 3.3. The number of E3 E3 events in an arrangement of n hyperplanes in 4-
space is O(n4).

Proof. For any three hyperplanes PF, S, T ∈ �, we slide a point a on the line PF∩S∩T
at constant speed (in any of the two possible directions, say in the positive direction of
the w-axis, from −∞ to +∞). Consider a two-dimensional yz-parallel plane �a that
is attached to the point a, so that it contains a at all times during the sliding. The plane
�a “sweeps” (a part of) A(�) in a fixed direction at a fixed speed. Thus, it contains a
dynamic arrangement of lines, such that each line moves with a fixed speed, and the slope
of each line is fixed. Each such moving line corresponds to a hyperplane; two moving
lines intersect in a moving point, corresponding to an intersection of two hyperplanes,
that also moves along a linear trajectory with a fixed speed. At discrete moments in time,
during the sliding, three lines intersect in a point—such “critical events” correspond to
intersections of three hyperplanes that are swept by �a . Three of the moving lines are
always in degenerate configuration, as they intersect in a point at all times. These are
the lines (that correspond to) PF, S, and T . (Abusing the notation slightly, we denote
X ∩�a , for X ∈ �, simply by X , and similarly for any other feature.)

As described in detail below, during this sliding we associate each E3 E3 event that
involves PF ∩ S ∩ T with a pair (U,�), where U ∈ � and � is an edge in the (four-
dimensional) zone of U . Since we go over all triples (PF, S, T ) in this fashion, all E3 E3

events in V2(�) will be associated with such pairs at the end of the process. We will
prove that each such pair can only be charged (i.e., associated with) a constant number
of times, which will imply that the number of E3 E3 events is asymptotically the same as
the number of such pairs in the whole arrangement. The latter number is O(n4), since
there are n hyperplanes U , and the zone of each contains O(n3) edges � [7]. We now
describe the charging in detail.

Consider one E3 E3 event (e, e′) that involves PF ∩ S ∩ T . Assume, without loss of
generality, that the bottom end-point of the segment e lies on PF ∩ S ∩ T , and the top
end-point of e′ lies on an intersection of three other hyperplanes of �, PC ∩U ∩ V , such
that an upward z-vertical ray obtained by extending e upwards hits U before hitting V
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events of types A and B. All illustrations show a representative configuration inside the plane�a at time t0+ε.

(see Fig. 1(b,I)). By definition, there is a specific moment in time (denote it by t0) during
the sliding, at which the plane �a coincides with the plane �e,e′ . At time t0 + ε, where
ε > 0 is infinitesimally small, the y-coordinate of the point PC ∩ V is either smaller
or larger than the y-coordinate of the point PC ∩U . These two possibilities distinguish
between E3 E3 events of type A and type B, respectively; see Fig. 2.

Suppose the event (e, e′) is of type A. Notice that, immediately after time t0, U is
“separated” (within �a) from PF ∩ S ∩ T by PC and V , in the sense that U does not
intersect the wedge bounded by PC and V that contains PF ∩ S ∩ T at time t0. Due
to linearity of the trajectories, this implies that no event of type E3 E3 involving both
PF ∩ S ∩ T and U can happen after time t0 while PF ∩ S ∩ T lies inside this wedge.
Notice that PF ∩ S ∩ T cannot cease to lie inside this wedge before intersecting either
PC or V . Such intersections correspond to vertices of A(�).

Let� ⊂ PF∩ S∩T be the edge ofA(�) that contains the bottom end-point of e. The
preceding argument implies that no E3 E3 event involving� and U can happen after time
t0. We associate the event (e, e′) with the pair (U,�). Uniqueness of this association is
ensured by the fact that, after the first such charge is made to some pair (U,�) (during
sliding on the edge �), no other E3 E3 event of type A involving U and � can occur.

Events (e, e′) of type B are handled by a fully symmetric charging argument, in which
the direction of the sliding of a is reversed.

We have thus shown that each E3 E3 event can be associated with a pair (U,�) as
described above, such that each such pair (U,�) is associated with at most one event of
type A and at most one event of type B. This completes the proof of the lemma.

Lemma 3.4. The number of E3 E22 events in an arrangement of n hyperplanes in 4-
space is O(n4).

Proof. For any PF, S, T ∈ �, we slide a point a on the line PF ∩ S ∩ T , with the
yz-parallel plane �a attached to it, as in the proof of Lemma 3.3. During the sliding,
each E3 E22 event (e, e′) that involves PF ∩ S ∩ T is associated, as described below, with
a pair (V,�), where V ∈ � and � is an edge in the zone of V . Since we go over all
triples (PF, S, T ) in this fashion, all E3 E22 events in V2(�) will be associated with such
pairs at the end of the process. As shown in the proof of Lemma 3.3, the number of such
pairs is O(n4). We will show that each such feature is only charged a constant number
of times, which implies that the number of E3 E22 events is also O(n4).

Consider one E3 E22 event (e, e′), such that a coincides with the bottom end-point of
e at time t0. (All E3 E22 events (e, e′), such that a coincides with the top end-point of e or
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with an end-point of e′, can be handled analogously.) Suppose that the bottom end-point
of e′ lies on PF ∩U and the top one on PC ∩ V , for some U, V ∈ �. The y-coordinate
of the point PF ∩ U (inside the plane �a) at time t0 + ε is either smaller or larger than
that of the point PC ∩ V . These two possibilities distinguish between E3 E22 events of
type A and type B, respectively; see Fig. 2. Assume that the event (e, e′) is of type A.
The other case can be handled by a symmetric argument with the direction of the sliding
reversed, as in the proof of Lemma 3.3.

Immediately after time t0, V is “separated” from PF ∩ S ∩ T by PC and U , similarly
to the proof of Lemma 3.3, such that no event of type E3 E22 involving both PF ∩ S ∩ T
and V can happen after time t0 before PF ∩ S ∩ T intersects either PC or U . Such an
intersection corresponds to a vertex of A(�).

Let� ⊂ PF ∩ S ∩ T be the edge ofA(�) that contains the bottom end-point of e. We
have just argued that no E3 E22 event involving� and V can happen after time t0. We can
thus associate the event (e, e′) with the pair (V,�), and, as in the proof of Lemma 3.3,
this association is unique. This completes the proof of the lemma.

Remark 1. The proof of Lemma 3.4 can be modified in a straightforward fashion to
bound by O(n4) the number of events of a more general type, which we call G3,22. A
G3,22 event is said to happen between three points, p1 ∈ PF ∩ S ∩ T , p2 ∈ PF ∩U , and
p3 ∈ PC ∩ V , for some PF, PC, S, T,U, V ∈ �, if all three points lie inside a common
yz-parallel plane, the open segment (p1, p2) is disjoint from all hyperplanes of � other
than PF, the open segment (p2, p3) is z-vertical and is disjoint from all hyperplanes of
�, and, furthermore, S, U , and V lie outside the trapezoid that has as its four vertices
p1, p2, p3, and the point on PC that is covertical with p1; see Fig. 3.

Lemma 3.5. The number of E22 E22 events in an arrangement of n hyperplanes in
4-space is O(n4).

Proof. For any PF, PC, S, T ∈ �, we slide a z-vertical segment a, such that its bottom
end-point always lies on PF ∩ S and its top end-point always lies on PC ∩ T , with the
yz-parallel plane �a attached to it, similarly to the proof of Lemma 3.3. Assuming
general position, the locus of points on PC ∩ T that are intersected by the z-vertical
hyperplane spanned by PF ∩ S is a line. This implies that the trajectory of a is linear and
one-dimensional, and therefore �a contains a dynamic arrangement of lines, as in the
proof of Lemma 3.3.

CP

PF

S

V

UT

p p

p

1
2

3

Fig. 3. A G3,22 event. Notice that, as opposed to E3 E22 events, in the case of G3,22 events the trapezoid that
has e and e′ as its bases is not necessarily empty.
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Fig. 4. The analysis of E22 E22 events. (a) The configuration inside�a at time t0+ ε; (b)–(d) the three types
of events that are associated with E22 E22 events and occur at a later time.

During the sliding, each E22 E22 event (e, e′) that involves a is associated, as described
below, with either a feature of V1(�) or a G3,22 event. Since we go over all quadruples
(PF, PC, S, T ) in this fashion, all E22 E22 events in V2(�) will be associated with such
features at the end of the process. The complexity of V1(�) is O(n4), and Remark 1
states that the number of G3,22 events is also O(n4). As we will show, each such feature
is only charged a constant number of times, which implies that the number of E22 E22

events is also O(n4).
Consider one E3 E22 event (e, e′), such that a coincides with e at time t0. (All E22 E22

events (e, e′), such that a coincides with e′, can be handled analogously.) Suppose that
the bottom end-point of e′ lies on PF∩U and the top one on PC∩V , for some U, V ∈ �.
Assume, without loss of generality, that the y-coordinate of the point PF ∩ U (inside
the plane �a) at time t0 + ε is smaller than the y-coordinate of the point PC ∩ V ; see
Fig. 4(a).

Claim. No E22 E22 event (g, g′) can occur, such that the segment a coincides with g,
after time t0 and before some (moving) line X (corresponding to a hyperplane X ∈ �,
which may be U ) intersects either (1) the top end-point of a on PC ∩ T (Fig. 4(b)), or
(2) the bottom end-point of a on PF ∩ S (Fig. 4(c)), or (3) PC ∩ V (Fig. 4(d)).

Proof. Suppose to the contrary that such an event (g, g′) does occur before any of these
intersections. After time t0 and before any event of the three types listed in the claim
happens, the relative interior of the segment connecting PC ∩ T and PC ∩ V is disjoint
from all hyperplanes of � other than PC. This implies that the top end-point of g′ has
to lie on PC ∩ V (while the bottom end-point has to lie on PF). However, in this case g′

is necessarily intersected by U . This prevents (g, g′) from being an E22 E22 event, since
the segment g′ has to be disjoint in its interior from all the hyperplanes of � if (g, g′) is
a y-vertical visibility event.

The claim implies that we can associate the event (e, e′)with the first time (after time
t0) some line X causes one of the three events listed in the claim to happen, if at least one
of these events does occur during the sliding. Notice that an event of type (3) is a G3,22

event, while the first (in time) event of type (1) or (2) corresponds to a feature of V1(�).
As in the proof of Lemma 3.3, each of these events can be charged at most twice, once for
each direction of the sliding of a. This implies that the number of E22 E22 events that can
be associated in this fashion is O(n4). The only case in which such association cannot
be made is when the segment a continues sliding ad infinitum without any event of type
(1), (2), or (3) occurring. In this case the claim implies that no E22 E22 events occur
during the sliding as well. We can thus simply charge the event (e, e′) to the quadruple
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(PF, PC, S, T ). The number of such quadruples is O(n4), and each quadruple can be
charged at most twice. This completes the proof of the lemma.

Lemmas 3.2–3.5 bound the number of all y-vertical visibility events by O(n4), thereby
implying Theorem 3.1.

4. Visibility Events in Arrangements of Simplices

The analysis in the case of simplices is substantially more involved than in the case of
hyperplanes, since all of the 21 types of events illustrated in Fig. 1 can occur. In this case
we have:

Theorem 4.1. The number of cells in the vertical decomposition of an arrangement of
n 3-simplices in four dimensions is O(n4α(n) log2 n).

Overview of the Proof. The theorem is proved in two major stages. In the first stage,
given in Sections 4.1 and 4.2, we analyze all types of events, with the exception of
E3 E3 events, and prove that the number of events of each type is O(n4α(n) log n). This
stage often uses ideas similar to those introduced in the previous section. That is, events
are charged to features of A(�) and V1(�), and to events of types that were analyzed
previously. Special care is taken to ensure that such features or events are only charged
at most a constant number of times.

In the second stage of the proof, described in Section 4.3, we bound the number of
E3 E3 events, using the probabilistic technique introduced by Tagansky for analyzing
substructures in arrangements of linear surfaces [13]. A charging scheme is presented,
such that each E3 E3 event is charged either to a feature of A(�), or to a feature of
V1(�), or to an event of one of the types that were analyzed in the first stage, or to a
1-level E3 E3 event (see Section 4.3 for definitions). To utilize the Tagansky technique, we
carefully bound the number of times each 1-level E3 E3 event is charged in this fashion.
In particular, we prove that although each E3 E3 event makes 4 “units” of charge, each 1-
level E3 E3 event is charged by at most 2 such units. As a result, we obtain a recurrence for
the number of E3 E3 events, which does solve to the asserted bound of O(n4α(n) log2 n),
thus completing the proof.

Proof of Theorem 4.1. The proof is laid out in the following three subsections.

4.1. Reductions to Lower Envelopes

Lemma 4.2. The number of E1 E1, E1 E2, E2 E2, E1 E11, E1 E3, E1 E21, E11 E11, E11 E2,
and E2 E3(II) events in an arrangement of n 3-simplices in 4-space is O(n4).

Proof. Each event of these types is defined by an interaction of at most four simplices.
Any quadruple of simplices of � can define O(1) such events, and there are O(n4) such
quadruples. Therefore, the number of such events is O(n4). For example, the E11 E11
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event depicted in Fig. 1(i) is defined by the simplices S, T , U , and V . That is, a fixed
quadruple S, T,U, V ∈ � defines O(1) configurations in R4, each of which can be an
E11 E11 event. In each such configuration, the simplices PF and PC are fixed automatically.
A similar property holds for all the types of events that are listed in the lemma.

In what follows we introduce a number of generalized types of events, starting with
G11,1, G11,2, and G21,1 in the following definition. These types will be helpful in subse-
quent sections, and this is the main motivation behind their introduction.

Definition.

• A G11,1 event is said to happen between three points, p1 ∈ ∂S, p2 ∈ ∂T , and
p3 ∈ ∂U , for some S, T,U ∈ �, if all three points lie inside a common yz-
parallel plane, the segment (p1, p2) is z-vertical, and the point p3 is contained in a
one-dimensional edge of U .
• A G11,2 event is said to happen between three points, p1 ∈ ∂S, p2 ∈ ∂T , and

p3 ∈ C ∩ ∂U , for some C, S, T,U ∈ �, if all three points lie inside a common
yz-parallel plane and the segment (p1, p2) is z-vertical.
• A G21,1 event is said to happen between three points, p1 ∈ F ∩ S, p2 ∈ ∂T ,

and p3 ∈ ∂U , for some F, S, T,U ∈ �, if all three points lie inside a common
yz-parallel plane, the segment (p1, p2) is z-vertical, and the point p3 is contained
in a one-dimensional edge of U .

It is easy to see that the above proof can be applied to bounding the number of such
events by O(n4) as well.

Lemma 4.3. The number of E2 E3(I) events in an arrangement of n 3-simplices in
4-space is O(n4α(n)).

Proof. For every three simplices S, PF, PC ∈ �, consider all the E2 E3(I) events (e, e′),
in which the bottom end-point of e lies on ∂S ∩ PF, and the top end-point of e lies on PC

(see Fig. 1(j,I)). (Other events involving S, PF, and PC, such as events (e, e′), in which
the top end-point of e lies on ∂S ∩ PF, and the bottom end-point of e lies on PC can
be treated in a completely analogous fashion.) We show below that the number of such
events is O(nα(n)). Since there are O(n3) such triples (S, PF, PC), this will imply that
the overall number of E2 E3(I) events is O(n4α(n)).

Parametrize the hyperplane PC in terms of the coordinates x , y, and w, such that a
point (x0, y0, w0) in this parametrization corresponds to the unique point on PC that is
intersected by the z-vertical line spanned by the point (x0, y0, 0, w0) ∈ R4. Consider the
collection of polygons�′ = {γ ∩PC|γ ∈ �}, parametrized as above. In this parametriza-
tion, A(�′) is an arrangement of n convex polygons in 3-space, where each nonempty
polygon is of constant complexity.

The locus of points that lie on PC, and are intersected by the infinite z-vertical wall
spanned by ∂S∩PF is a collection of O(1) line segments. Consider one of these segments,
denoted by f , in the above parametrization of PC. Consider the y-vertical lower envelope
of the part ofA(�′) that lies y-vertically above this segment f (in this parametrization).
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By definition, each event (e, e′) as above uniquely corresponds to a vertex of such a
lower envelope, for one of the segments f . Since this is a lower envelope of O(n) line
segments, it has complexity O(nα(n)) [1], and the lemma follows.

Definition. A G2,3 event is said to happen between three points, p1 ∈ ∂S∩ F , p2 ∈ C ,
and p3 ∈ C ∩U ∩V , for some F,C, S,U, V ∈ �, if all three points lie inside a common
yz-parallel plane, the segment (p1, p2) is z-vertical, and the open segment (p2, p3) is
disjoint from all simplices of � other than C . It is easy to see that the above proof can
be applied to bounding the number of such events by O(n4α(n)) as well.

Lemma 4.4. The number of E11 E3 events in an arrangement of n 3-simplices in 4-
space is O(n4α(n)).

Proof. This proof is very similar to the proof of Lemma 4.3. For every three simplices
S, T, PC ∈ �, consider all the E11 E3 events (e, e′), in which e touches ∂S and ∂T , and
the top end-point of e lies on PC (see Fig. 1(g); as above, symmetric cases are handled
analogously). We show below that the number of such events is O(nα(n)), which implies
that the overall number of E11 E3 events is O(n4α(n)).

Parametrize PC as in the proof of Lemma 4.3. The locus of points that lie on PC and
are intersected by the infinite z-vertical wall spanned by ∂S and ∂T , is a collection of
O(1) line segments. As in the proof of Lemma 4.3, each event (e, e′) corresponds to a
vertex of the y-vertical lower envelope of the part of A(�′) that lies y-vertically above
one of these segments (in this parametrization of PC), which implies, as above, the stated
bound.

Definition. A G11,3 event is said to happen between three points, p1 ∈ ∂S, p2 ∈ ∂T ,
and p3 ∈ C ∩U ∩V , for some C, S, T,U, V ∈ �, if all three points lie inside a common
yz-parallel plane, the segment (p1, p2) is z-vertical, and the segment that connects p3 to
the point on C that lies z-vertically above/below the point p1 is disjoint from all simplices
of � other than C . It is easy to see that the above proof can be applied to bounding the
number of such events by O(n4α(n)) as well.

Lemma 4.5. The number of E1 E22 events in an arrangement of n 3-simplices in 4-
space is O(n4α(n)).

Proof. This proof is similar to the proof of Lemma 4.3. For every three simplices
S, PF,U ∈ �, consider all the E1 E22 events (e, e′), in which e lies on a one-dimensional
edge ϕ of S and the bottom end-point of e′ lies on PF∩U (see Fig. 1(o); symmetric cases
are handled analogously). We show below that the number of such events is O(nα(n)),
which implies that the overall number of E1 E22 events is O(n4α(n)).

The locus of points on PF ∩ U that lie in a common yz-parallel plane with a point
on ϕ is a line segment. Consider the z-vertical lower envelope, denoted by L , of the part
of A(�) that lies above this line segment (in the z-direction). It is easy to see that all
events (e, e′) as above uniquely correspond to vertices of L , which is a lower envelope
of an arrangement of O(n) line segments in a plane. The number of these vertices is
O(nα(n)), and the lemma follows.
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Definition. A G1,22 event is said to happen between three points, p1 ∈ F ∩ S, p2 ∈
C ∩T , and p3 ∈ ∂U , for some F,C, S, T,U ∈ �, if all three points lie inside a common
yz-parallel plane, the open segment (p1, p2) is z-vertical and is disjoint in its interior
from all simplices of �, and the point p3 is contained in a one-dimensional edge of U . It
is easy to see that the above proof can be applied to bounding the number of such events
by O(n4α(n)) as well.

Lemma 4.6. The number of events of types E3 E22, E2 E22, and E3 E21(II) in an ar-
rangement of n 3-simplices in 4-space is O(n4α(n) log n).

Proof. For every two simplices PF,U ∈ �, consider all events (e, e′) of types E3 E22,
E2 E22, and E3 E21(II), such that the bottom end-point of e′ lies on PF∩U (as in Figs. 1(a),
1(l), and 1(d,II); symmetric cases are handled analogously). We show below that the
number of such events is O(n2α(n)). Since there are O(n2) such pairs (PF,U ), this will
imply that the overall number of E3 E22, E2 E22, and E3 E21(II) events is O(n4α(n)).

Consider the z-vertical lower envelope, denoted by L1, of the part of A(�) that
lies above PF ∩ U (in the z-direction). This is a lower envelope of at most n planar
convex polygons, each of constant complexity, within the three-dimensional z-vertical
wall spanned by PF ∩U .

Parametrize PF as in the proof of Lemma 4.3, and consider the collection of polygons
�′ = {γ ∩ PF|γ ∈ �}, in this parametrization. A(�′) is an arrangement of n convex
polygons in 3-space, each polygon being of constant complexity. Consider the polygon
of �′ that corresponds to U ∩ PF, and consider the y-vertical upper envelope, denoted
by L2, of the part ofA(�′) that lies below this polygon (in the y-direction), with respect
to the above parametrization.

Consider an overlay O(L1, L2) of L1 and L2, such that a point q ∈ L1 is overlaid
with a point q∗ ∈ L2 if the z-vertical projection of q onto PF ∩ U coincides with the
y-vertical projection of q∗ onto PF ∩ U . Every point in O(L1, L2) thus corresponds to
a z-vertical ray (in 4-space) and a y-vertical ray (along PF) emanating from a common
point on PF ∩ U . By definition, each event (e, e′) as above corresponds to a vertex of
O(L1, L2), at which a z-projected edge of L1 crosses a y-projected edge of L2. As shown
in [11], the complexity of each such overlay is O(n2α(n) log n), and this implies the
lemma.

Definition. A G3,22 (resp., G2,22, G3,21(II)) event is said to happen between three points,
p1 ∈ F ∩ S ∩ T (resp., p1 ∈ F ∩ ∂S or p1 ∈ ∂F ∩ S, p1 ∈ F ∩ S ∩ T ), p2 ∈ F ∩U or
p2 ∈ ∂F , and p3 ∈ C∩V (resp., p3 ∈ C∩V , p3 ∈ ∂V ), for some F,C, S, T,U, V ∈ �,
if all three points lie inside a common yz-parallel plane, the open segment (p1, p2) is
disjoint from all simplices of � other than F , and the open segment (p2, p3) is z-vertical
and is also disjoint from all simplices of �. It is easy to see that the above proof can be
applied to bounding the number of such events by O(n4α(n) log n) as well.

Lemma 4.7. The number of E21 E21, E21 E2, and E21 E11 events in an arrangement of
n 3-simplices in 4-space is O(n4α(n) log n).

Proof. For every two simplices T,U ∈ �, consider all the E21 E21, E21 E2, and E21 E11
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events (e, e′), such that e touches ∂T and e′ touches ∂U . We will show that the number
of such events is O(n2α(n) log n), and, as in the proof of Lemma 4.6, this will imply the
lemma.

Consider the z-vertical lower envelope, denoted by L1, of the part of A(�) that lies
above ∂T in the z-direction. Similarly, consider the z-vertical upper envelope, denoted
by U1, of the part of A(�) that lies below ∂T . Consider also L2 and U2, which are
defined in a similar fashion with respect to ∂U (instead of ∂T ). Consider an overlay
O(L1, L2), such that a point q ∈ L1 is overlaid with a point q∗ ∈ L2 if they lie in the
same yz-parallel plane. The overlays O(L1,U2), O(U1, L2), and O(U1,U2) are defined
in a similar fashion to O(L1, L2).

By definition, each event (e, e′) as above corresponds to a vertex of O(L1, L2),
O(L1,U2), O(U1, L2), or O(U1,U2). At such a vertex, a z-projected edge of L1 or U1

crosses a z-projected edge of L2 or U2. (Concerning E21 E2 events, shown in Fig. 1(k),
notice that the intersection PF ∩ ∂T , for any PF ∈ �, is by definition an edge of L1 and
of U1.) The complexity of these two-dimensional overlays is O(n2α(n) log n) [11], and
the lemma follows.

Definition. A G21,2 event is said to happen between three points, p1 ∈ F ∩ ∂T ,
p2 ∈ ∂U , and p3 ∈ C ∩ V or p3 ∈ F ∩ V , for some F,C, T,U, V ∈ �, if all three
points lie inside a common yz-parallel plane, and the open segment (p2, p3) is z-vertical
and is disjoint from all simplices of�. It is easy to see that the above proof can be applied
to bounding the number of such events by O(n4α(n) log n) as well.

4.2. Charging Schemes

Lemma 4.8. The number of E3 E21 events in an arrangement of n 3-simplices in 4-
space is O(n4α(n) log n).

Proof. The number of E3 E21(II) events was bounded in Lemma 4.6. We thus only need
to consider E3 E21(I) events.

For any PF, PC, S, T ∈ �, we slide a z-vertical segment a, such that its bottom end-
point lies on PF ∩ S ∩ T and its top end-point lies on PC, at constant speed, in any of the
two possible directions.

Similarly to the proof of Lemma 3.5, consider a two-dimensional yz-parallel plane
�a that is attached to the segment a, so that�a contains a at all times during the sliding.
The plane �a “sweeps” (a part of) A(�) in a fixed direction at a fixed speed. Thus it
contains a dynamic arrangement of segments, such that the slope of each segment is
fixed. Each such moving segment corresponds to a simplex of �.

During the sliding, each E3 E21(I) event (e, e′) that involves a will be associated with
either a vertex ofA(�), or an event of type G11,3, G2,3, or G3,21(II). Since we go over all
quadruples (PF, PC, S, T ) in this fashion, all E3 E21(I) events in V2(�)will be associated
with such features at the end of the process. As we will show, each such feature can only
be charged a constant number of times, which implies that the number of E3 E21(I) events
is O(n4α(n)).

Consider one E3 E21(I) event (e, e′), such that a coincides with e at time t0. (All
E3 E21(I) events (e, e′), such that a coincides with e′, can be handled analogously.)
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Fig. 5. The analysis of E3 E21(I) events. (a) Configuration inside �a at time t0 + ε; (b)–(h) types of events
that are associated with E3 E21(I) events and occur during the sliding.

Suppose that the top end-point of e′ lies on PC ∩ V , the bottom end-point of e′ lies on
PF, and e′ touches ∂U in its interior, for some U, V ∈ �.

The y-coordinate of the point PC ∩ V (inside the plane �a) at time t0 + ε is either
smaller or larger than the y-coordinate of the point ∂U . These two possibilities distinguish
between E3 E21(I) events of type A and type B, respectively. Assume that the event (e, e′)
is of type A (see Fig. 5(a)). The other case can be handled by a symmetric argument with
the direction of the sliding reversed.

Claim. No E3 E21(I) event (g, g′) can occur, such that the segment a coincides with g,
after time t0 and before one of the following events happens within �a :

(1) ∂PF or X∩PF, for some X ∈ �, passes below ∂U (see Fig. 5(b) for an illustration
of the latter case).

(2) A segment X intersects the bottom end-point of a (Fig. 5(c)).
(3) An end-point of a segment X lies on the interior of a (Fig. 5(d)).
(4) An end-point of V lies on PC (Fig. 5(e)).
(5) An end-point of a segment X lies on PF (Fig. 5(f)).
(6) An end-point of a segment X lies on the segment that connects the top end-point

of a to PC ∩ V (Fig. 5(g)).
(7) An end-point of a segment X (which may be PC) lies on the z-vertical line spanned

by ∂U (Fig. 5(h)).
(8) A one-dimensional feature (edge) of a simplex X ∈ � intersects �a . (This hap-

pens, for example, when X first appears on the plane�a . At the moment such an
event occurs, X ∩�a is a single point. Another special case is when X = U , and
U ∩�a turns into a point and disappears.)

Proof. We assume that at some specific point of time after time t0 none of the events
specified in the claim has happened yet, and prove that this necessarily means that, at
this point of time, no event (g, g′) as above has occurred either. Note that after time t0
and before one of the specified events occurs, all the trajectories inside �a are linear.

Consider the (dynamic) infinite z-vertical slab within �a , bounded from the right
by the z-vertical line spanned by ∂U , and bounded from the left by the z-vertical line
spanned by PC ∩ V . At time t0 + ε, the width of this slab is infinitesimal and it contains
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no ∂X in its interior, for any X ∈ �. As long as an event of type (4), (7), or (8) does not
happen, the slab is well defined (that is, nonempty ∂U ∩ �a and PC ∩ V ∩ �a exist).
Moreover, due to linearity of the trajectories, its width grows continuously with time.
As long as an event of type (7) does not happen, no end-point of any segment intersects
the right boundary of the slab, and as long as an event of type (8) does not happen, no
new feature suddenly appears in the interior of the slab.

These observations together with the above assumption that none of the specified
events have occurred imply that no end-point of any segment can intersect the left
boundary of the slab from inside the slab (that is, intersect this left boundary at some
time t1 > t0, after lying in the interior of the slab at time t1− ε). This is because we have
essentially showed that any end-point of a segment that lies inside the slab could not have
entered the slab by intersecting its right boundary, and could not have appeared in the
interior of the slab without intersecting its boundary at all. Any end-point that lies inside
the slab must have thus entered the slab by intersecting its left boundary, which means,
due to linearity of all the trajectories and the fact that the slab continuously expands,
that no end-point that lies inside the slab can exit the slab by intersecting the same left
boundary.

Consider the trapezoid� bounded by a, PF, PC, and the left boundary of the slab. At
time t0 + ε, no end-point of any segment lies in its relative interior. Before an event of
type (8) happens, no new feature suddenly appears inside it. Before an event of type (3)
happens, no end-point penetrates � through its left edge. Before an event of type (5) or
(6) happens, its top and bottom edges are also not penetrated by any segment end-point.
We have showed above that its right edge (that lies on the left boundary of the slab
discussed above) cannot be penetrated by an end-point from outside the trapezoid (and
inside the slab). So no segment end-point can penetrate the boundaries of this trapezoid.

It is clear that in an E3 E21(I) event (g, g′) as specified in the claim, g′ either lies
inside� or coincides with its right z-vertical edge. By definition, when the event (g, g′)
materializes, an end-point of some segment has to intersect g′. Due to the linearity of
the trajectory of this end-point, immediately before the event it has to lie either to the
right of g′ (and thus lie inside the slab or in the interior of �) or to the left (and thus lie
in the interior of �). Both options are impossible, since we have shown above that no
end-point can intersect the left boundary of the slab from the right, and that no end-point
can lie inside the trapezoid. Thus, our initial assumption indeed implies that no E3 E21(I)
event (g, g′) as specified in the claim can occur.

The claim implies that we can associate the event (e, e′)with the first time (after time
t0) one of the events that are specified in the claim happens, if any of them do happen
during the sliding. After time t0 and before any of the above events happens, the relative
interior of the segment connecting PF ∩ S ∩ T and the point on PF that lies below ∂U is
disjoint from all simplices of �, other than PF.

This ensures the following. An event of type (2) corresponds to a vertex of A(�).
An event of type (4) or (6) is a G3,2 event. Notice also that an event of type (3), (5), or
(8) is defined by an interaction of four simplices, as in Lemma 4.2, and thus there are
O(n4) such events. An event of type (1) is a G3,21(II) event, and an event of type (7)
is a G11,3 event. (The latter is ensured, in part because events of type (1) do not occur
before events of type (7); more accurately, whenever an event of type (1) occurs, it is
immediately charged and the sliding is stopped.)
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Since each of these events can only be charged a constant number of times, the number
of E3 E21(I) events that can be associated with them as above is O(n4α(n) log n). The
only case in which such an association cannot be made is when none of the above events
occurs throughout the rest of the sliding, after time t0. In this case the claim implies that
no E3 E21(I) event occurs during the sliding as well. We can thus simply charge the event
(e, e′) to the quadruple (PF, PC, S, T ). The number of such quadruples is O(n4), and
the charging is unique up to the two possible directions of the sliding. This completes
the proof of the lemma.

Definition. A G3,21(I) event is said to happen between three points, p1 ∈ C ∩ V ,
p2 ∈ F , and p3 ∈ F ∩ S ∩ T , for some F,C, S, T, V ∈ �, if all three points lie inside a
common yz-parallel plane, the segment (p1, p2) is z-vertical and intersects ∂U , for some
U ∈ �, and the interior of the trapezoid bounded by F , C , the z-vertical line spanned
by p1, and the z-vertical line spanned by p2, does not meet any simplex of � other than
U . It is easy to see that the above proof can be applied to bounding the number of such
events by O(n4α(n) log n) as well.

Lemma 4.9. The number of E11 E22 events in an arrangement of n 3-simplices in 4-
space is O(n4α(n)).

Proof. We use a charging scheme similar to the one used to bound the number of
E22 E22 events in the case of hyperplanes (see Lemma 3.5).

For any PF, PC, S, T ∈ �, the locus of points on PC that are intersected by the O(1)
z-vertical walls spanned by z-vertical lines that pass simultaneously through ∂S and ∂T ,
is a collection of O(1) line segments. We treat one of them, denoted by f ; the others can
be treated analogously. We slide a z-vertical segment a, such that its bottom end-point
always lies on PF and its top end-point slides on f , at constant speed (in any of the two
possible directions), with the yz-parallel plane �a attached to it.

During the sliding, each (e, e′) event that involves a is associated with either a vertex
of A(�) or a feature of V1(�) or an event of type G11,1, G11,2, or G11,3. Since we go
over all quadruples (PF, PC, S, T ) in this fashion, all E11 E22 events in V2(�) will be
associated with such features at the end of the process. As we will show, each such
feature can only be charged (i.e., associated with) a constant number of times, which
implies that the number of E11 E22 events is O(n4α(n)).

Consider one E11 E22 event (e, e′) that involves a. By definition, there is a specific
moment in time (denote it by t0) during the sliding, at which the plane �a coincides
with the plane �e,e′ . Assume, without loss of generality, that the y-coordinate of
the point PF∩U at time t0+ ε is smaller than the y-coordinate of the point PC∩V (as in
Fig. 6).

Claim. No E11 E22 event (g, g′) can occur such that the segment a coincides with g
after time t0 and before one of the following events happens within �a :

1. A (moving) segment X (corresponding to some simplex X ∈ �) intersects the top
end-point of a (see Fig. 6(a)).

2. A segment X (which may be U ) intersects the bottom end-point of a (Fig. 6(b)).
3. An end-point of a segment X meets the interior of a (Fig. 6(c)).
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Fig. 6. The various types of events that are associated with E11 E22 events and occur during the sliding.

4. An end-point of U intersects PF or an end-point of PF intersects U (see Fig. 6(d)
for an illustration of the former case).

5. An end-point of V intersects PC or an end-point of PC intersects V (see Fig. 6(e)
for an illustration of the former case).

6. An end-point of a segment X intersects the segment that connects PF ∩U with the
bottom end-point of a (Fig. 6(f)).

7. An end-point of a segment X intersects the segment that connects PC ∩ V with the
top end-point of a (Fig. 6(g)).

8. A segment X (which may be U ) intersects PC ∩ V (Fig. 6(h)).
9. A one-dimensional feature (edge) of a simplex X ∈ � intersects �a .

Proof. After time t0 and before one of the above events happens, all the trajectories are
linear, and the segment that connects PC ∩ V with the top end-point of a is disjoint in
its interior from all simplices of � other than PC. Therefore, in any E11 E22 event (g, g′)
as specified in the claim, the top end-point of g′ has to lie on PC ∩ V (while the bottom
end-point has to lie on PF). However, in this case, the trapezoid (g, g′) is necessarily
intersected by U , which prevents (g, g′) from being an E11 E22 event.

The claim implies that we can associate the event (e, e′)with the first time (after time
t0) one of the events specified in the claim happens, if any of them occurs at all. Any event
of types (4)–(7) is a G11,2 event, while an event of type (8) is a G11,3 event, and an event
of type (9) is a G11,1 event. Notice that after time t0 and prior to any of these events, the
segment a is disjoint in its interior from all simplices of � (aside from the end-point of
S and T ). This ensures that any event of types (1)–(3) corresponds to a feature of V1(�).
If none of the events specified in the claim happens, we can charge the event (e, e′) to
the quadruple (PF, PC, S, T ), as in the proof of Lemma 4.8. This completes the proof of
the lemma.

Lemma 4.10. The number of E21 E22 events in an arrangement of n 3-simplices in
4-space is O(n4α(n) log n).

Proof. We use a charging scheme similar to the one used in Lemma 4.9. For any
PF, PC, S, T ∈ �, the locus of points on PC that are intersected by the O(1) z-vertical
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walls spanned by z-vertical lines that pass simultaneously through ∂T and PF ∩ S is a
collection of O(1) line segments. We slide a z-vertical segment a, such that its bottom
end-point always lies on PF ∩ S, it touches ∂T in its interior, and its top end-point slides
on one of these segments on PC, at constant speed.

Similarly to the proof of Lemma 4.9, consider a two-dimensional yz-parallel plane
�a that is attached to segment a, so that �a contains a at all times during the sliding.
In exactly the same manner as in Lemma 4.9, we can associate each event (e, e′) that
involves a with either a feature of V1(�) or an event of type G21,1, G21,2, or G3,21(II).
Since we go over all quadruples (PF, PC, S, T ) in this fashion, all E21 E22 events inV2(�)

will be associated with such features at the end of the process. Since each such feature
can only be charged a constant number of times, this implies that the number of E21 E22

events is O(n4α(n) log n).

Lemma 4.11. The number of E22 E22 events in an arrangement of n 3-simplices in
4-space is O(n4α(n) log n).

Proof. We use a charging scheme similar to the one used in Lemma 4.9. For any
PF, PC, S, T ∈ �, the locus of points on PC ∩ T that are intersected by the O(1) z-
vertical walls spanned by PF ∩ S is a collection of O(1) line segments. We slide a
z-vertical segment a, such that its bottom end-point always lies on PF ∩ S and its top
end-point slides on one of these segment on PC ∩ T . Consider a two-dimensional yz-
parallel plane �a attached to segment a as above. In exactly the same manner as in
Lemma 4.9, we can associate each (e, e′) event that involves a with either a feature of
V1(�) or an event of type G22,1, G22,2, or G22,3. As above, this implies the lemma.

4.3. The Tagansky Technique

The following lemma is proved analogously to Lemma 3.2, using the fact that the com-
plexity of the vertical decomposition of n triangles in 3-space is O(n4) [5].

Lemma 4.12. The number of E3 E3(II) events in an arrangement of n 3-simplices in
4-space is O(n4).

From now on, we only consider E3 E3(I) events, and refer to them briefly as E3 E3

events.

Lemma 4.13. The number of E3 E3 events in an arrangement of n 3-simplices in 4-
space is O(n4α(n) log2 n).

Proof. We begin with some preliminary definitions and with the basics of the Tagansky
technique.

Given two z-vertical segments e and e′ that lie in a common yz-vertical plane, the
level of the pair (e, e′) is the size |�| of the smallest set � ⊂ �, for which (e, e′) is
a y-vertical visibility event in A(�\�). If no such set � exists, the level of (e, e′) is
undefined. We say that (e, e′) is a k-level event if it has level k.
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Note that the y-vertical visibility events we have discussed so far were all 0-level
events. A 1-level event (e, e′) typically involves a yz-parallel trapezoid bounded by e,
e′, PF, and PC, for some PF, PC ∈ �, such that the interior of this trapezoid is intersected
by exactly one simplex X ∈ �; if this simplex X is removed, then (e, e′) becomes a
(0-level) y-vertical visibility event.

Analogous definitions of levels can be formulated for all generalized events, and for
features of V1(�). The following lemma follows trivially from the standard Clarkson–
Shor technique [4] and the bounds obtained in the preceding subsections.

Lemma 4.14. The number of 1-level visibility events of all types other than E3 E3, and
of all 1-level generalized events, and of all 1-level features of V1(�), is O(n4α(n) log n).

The following lemma is directly implied by the work of Tagansky [13].

Lemma 4.15. Assume that, given any E3 E3 event (e, e′), we can either (i) charge it
to i > 0 1-level E3 E3 events, such that the number of times that each 1-level event is
charged in this fashion is at most j , or (ii) charge it to a 0- or 1-level event of V1(�), or
a 0- or 1-level event of V2(�) of any type other than E3 E3, or a 0- or 1-level generalized
event, such that the number of times that each such event is charged in this fashion is
bounded by a constant.

• If i/j = 2, then the number of E3 E3 events is O(n4α(n) log2 n).
• If i/j > 2, then the number of E3 E3 events is O(n4α(n) log n).

In the remainder of this proof we present a charging scheme for E3 E3 events. Each
such event is said to carry 4 “units of charge” (in the notation of Lemma 4.15, i = 4).
We describe how to pass each such unit either to a 1-level E3 E3 event or to an event of
one of the types mentioned in Lemma 4.14, such that each 1-level E3 E3 event receives
at most 2 units of charge (in the notation of Lemma 4.15, j = 2, and hence i/j = 2),
and each event of the other types receives O(1) such units (that is, charged O(1) times).
Lemma 4.15 then implies that the number of E3 E3 events is O(n4α(n) log2 n).

We now describe the charging scheme. Consider a specific E3 E3 event (e, e′), as
depicted in Fig. 1(b,I). We slide a z-vertical segment a, such that its bottom end-point
slides on PF ∩ S ∩ T and its top end-point slides on PC, with the yz-parallel plane �a

attached to it, once in each of the two possible directions (starting from a = e). This
process is then repeated with a z-vertical segment a that slides on PC ∩U ∩ V and PF.
At each of the four slidings, we carry 1 unit of charge. We specify below how this unit
of charge is dispensed, when sliding in one of the directions on PF ∩ S ∩ T —the other
three cases (one other direction on PF ∩ S ∩ T , and two directions on PC ∩U ∩ V ) are
symmetric.

Assume, without loss of generality, that directly after the beginning of the sliding, the
y-coordinate of the point PC ∩V (inside�a) is between the y-coordinate of PC ∩U and
the y-coordinate of PF ∩ S ∩ T . Consider the (moving) trapezoid� bounded by PF, PC,
a, and the vertical line containing PC ∩ U . Directly after the beginning of the sliding,
the interior of � is intersected only by V , such that V intersects the top and right edges
of � (as in Fig. 7(e)). We pass 1 unit of charge to the first event that brings a change to
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Fig. 7. Events that are charged by E3 E3 events in arrangements of simplices during the sliding.

this situation. This can be one of the following events (all occurring within �a):

(1) PC ∩ V passes above PF ∩ S ∩ T (see Fig. 7(a)).
(2) V ∩ PF passes below PC ∩U (Fig. 7(b)).
(3) ∂V or ∂PF passes below PC ∩U (Fig. 7(c) shows the case of ∂V ).
(4) ∂V or ∂U intersects PC, or ∂PC intersects U (Fig. 7(d) shows the case of ∂V

intersecting PC).
(5) ∂X , for some X ∈ �, intersects the top or bottom edge of� (Fig. 7(e) shows the

case of the top edge).
(6) ∂X , for some X ∈ �, intersects the right edge of � (Fig. 7(f)).
(7) ∂X , for some X ∈ �, intersects the left edge of�, or ∂PC passes above PF∩S∩T

(Fig. 7(g) shows the former case).
(8) A one-dimensional feature (edge) of a simplex X ∈ � intersects the interior of

� (Fig. 7(h)). (This happens, for example, when X first appears on the plane�a

inside the trapezoid �. At the moment such an event occurs, X ∩�a is a single
point.)

(9) X ∩ PF, for some X ∈ �, passes below PC ∩U (Fig. 7(i)).
(10) X ∩ PC, for some X ∈ �, passes above PF ∩ S ∩ T (Fig. 7(j)).
(11) Some X ∈ �, or ∂S, or ∂T , or ∂PF, intersects PF ∩ S ∩ T (Fig. 7(k) shows the

first case).
(12) Some X ∈ � intersects PC ∩U (Fig. 7(l)).

Claim. The number of all events of types (1)–(11) is O(n4α(n) log n).

Proof. The claim is proved by observing that each such event, if it is the first to occur,
is either a vertex of A(�), or a feature of V1(�), or a (0- or 1-level) event of one of the
types that are addressed in Lemma 4.14 or in the previous sections. An event of type
(1), (7), or (10) corresponds to a feature of V1(�). An event of type (2) is a G3,22 event,
while an event of type (9) is a 1-level E3 E22 event. An event of type (3) is a G3,21(I)
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event, while an event of type (6) is a 1-level E3 E21 event. An event of type (4) or (5) is a
(0- or 1-level) E3 E2 event, while an event of type (11) corresponds to a vertex ofA(�),
and an event of type (8) is a (0- or 1-level) E3 E1 event.

Note that events of type (12) are 1-level E3 E3 events, which will be charged if they
are the first to occur during the sliding.

Claim. Each 1-level E3 E3 event receives at most 2 units of charge.

Proof. Consider one 1-level E3 E3 event (e, e′), formed by an interaction of PF∩ S∩T
with PC ∩U ∩ X , such that the trapezoid �0 that has e and e′ as its bases is intersected
by V , for some V ∈ � (see Fig. 7(l)). It can receive a unit of charge from four possible
directions—two directions on PF ∩ S ∩ T and two on PC ∩U ∩ X . We slide a z-vertical
segment a, such that its bottom end-point lies on PF ∩ S ∩ T and its top end-point lies
on PC, with the yz-parallel plane �a attached to it, starting from a = e (along one of
the two possible directions). Assume, without loss of generality, that directly after the
beginning of the sliding, the y-coordinate of the point PC ∩ U (inside �a) is between
the y-coordinate of PC ∩ X and the y-coordinate of PF ∩ S ∩ T .

Let�U be the (moving) trapezoid bounded by PF, PC, a, and the vertical line contain-
ing PC ∩U . Directly after the beginning of the sliding, the interior of �U is intersected
only by V . Let (a, g) be the first event that changes the combinatorial configuration
inside (or on the boundary of)�U . If the top end-point of g lies on PC ∩U ∩ V , and the
interior of �U is not intersected by V (or any other simplex of �) when (a, g) occurs,
then (a, g) is a 0-level E3 E3 event that passes 1 unit of charge to (e, e′). In any other case,
(a, g) has to be one of the events of types (1)–(12) above, and (e, e′) cannot receive a unit
of charge from this direction of the sliding, since the event (a, g) necessarily receives it
before (figuratively speaking, (a, g) “intercepts” the unit of charge that can come from
this direction).

This means that (e, e′) receives a unit of charge from this specific direction of sliding
if and only if the first event that changes the combinatorial configuration inside (and on
the boundary of) �U is the event of V intersecting PC ∩ U . An analogous argument
can be repeated for the other three possible directions of sliding from (e, e′)—one on
PF ∩ S ∩ T and two on PC ∩U ∩ X .

The event (e, e′) can be of four types:

A. ∂V lies inside �0 (see Fig. 8(a)).
B. V intersects neither e nor e′ (Fig. 8(b)).
C. V intersects both e and e′ (Fig. 8(c)).
D. V intersects e, but not e′ (Fig. 8(d)); this case is symmetric to the case in which V

intersects e′ but not e.

We analyze each of these types of 1-level events in turn, and prove that events of types
A, B, and C cannot be charged at all, while events of type D receive at most 2 units of
charge.

Suppose the event (e, e′) is of type A. We slide a z-vertical segment a, such that its
bottom end-point lies on PF ∩ S ∩ T and its top end-point lies on PC, starting from
a = e, as above. To show that (e, e′) cannot receive a unit of charge from this direc-
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Fig. 8. The types of 1-level E3 E3 events.

tion of sliding, it is sufficient to show that the first event that changes the combinatorial
configuration inside (or on the boundary of) �U cannot be the event of V intersecting
PC ∩ U such that V does not intersect the interior of �U . This is indeed easy to see,
since before V can intersect PC ∩ U in this fashion, ∂V has to cease lying inside �U

(assuming general position). Thus, before V intersects PC ∩ U as above, there occurs
an event of ∂V exiting the interior of �U , which changes the configuration inside �U .
This means that the event of V intersecting PC ∩ U as above cannot be the first event
that is encountered. Since this argument symmetrically applies to all four directions of
the sliding, it implies that no event of type A can be charged at all.

Suppose the event (e, e′) is of type B or C. We can assume that the first event (a, g)
that changes the combinatorial configuration inside (or on the boundary of) �U is the
event of V intersecting PC∩U such that V does not intersect the interior of�U (because
otherwise (e, e′) cannot be charged from this direction, as explained above). At the
beginning of the sliding, V separates two vertices of�U from two other vertices of�U .
By the assumption that was just made, the first vertex of�U intersected by V is PC ∩U .
This means that at the moment the event (a, g) materializes, V separates one vertex of
�U from two other vertices of �U . Thus, a part of V necessarily lies inside �U at the
time of this event, which contradicts the assumption, and implies as above that (a, g)
cannot pass a unit of charge to (e, e′) at all. Since this argument symmetrically applies
to all four directions of the sliding, it proves that no event of type B or C can be charged
at all.

Suppose the event (e, e′) is of type D, and that V intersects e, but not e′ (the analysis
for the case in which V intersects e′ but not e is fully symmetric). Assume that the first
event (a, g) that is encountered is as above. At the beginning of the sliding, V intersects
a, and the assumption that was just made implies that this is still true at the time the
event (a, g) materializes. This contradicts the assumption and implies as above that
(e, e′) cannot be charged by sliding on PF ∩ S ∩ T (in any of the two directions, since
the argument symmetrically applies for the other direction of sliding as well). This does
not rule out the possibility that (e, e′) is charged by sliding on PC ∩U ∩ X . Thus, events
of type D can receive at most 2 units of charge (from the two directions of sliding on
PC ∩U ∩ X ).

As already explained, combining this with Lemma 4.15 completes the proof of
Lemma 4.13.

We have now bounded by O(n4α(n) log2 n) the number of visibility events of all
possible combinatorial types. This concludes the proof of Theorem 4.1.
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